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Abstract—Due to the rapid development of the Internet, 

network bandwidth and stability are becoming more and more 

important. With the increase in the number of users, how to 

make each user have a high Quality of Service (QoS) is an urgent 

problem to be solved. 5G slicing allows flexible management of 

each user's network usage, which in turn optimizes the overall 

network usage and reduces the consumption of network 

resources. The 5G slicing can flexibly manage each user's 

network usage to optimize overall network usage and reduce 

network resource consumption. In this paper, use machine 

learning to analyze the network traffic, and analyze a total of 

141 different applications on the network, and conduct 

experiments on different machine learning models. Based on the 

above experimental results, propose an algorithm for 5G slice 

management. Based on the above traffic analysis results, we will 

dynamically configure and optimize the resources of each slice 

according to the current network traffic of each user.
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I. INTRODUCTION

In recent years, the growth of IoT devices has also led to 
machine-to-machine (MTM) communication application 
services. In order to enable these emerging application 
services to be more flexibly deployed and programmatically 
controlled in the 5G network environment to meet the quality 
of service requirements of these emerging application services, 
such as high bandwidth and low latency, the key technology 
is Software Defined Network (SDN) and Network Functions 
Virtualization (NFV) [1], which can be centrally managed and 
programmatically controlled by SDN to enable real-time 
deployment of these services. With the centralized 
management and programmable features of SDN [2], dynamic 
changes in the network environment can be monitored in real 
time, while NFV can virtualize network functions to achieve 
the efficiency of flexible configuration and deployment of 
different types of services as well as to reduce deployment 
costs. Therefore, how to utilize microservices in the 5G 
network environment to respond to the large number of 
service requests from various devices and deploy them 
efficiently, while ensuring the independence of each network 
service to avoid information security issues, will be one of the 
difficult problems faced by 5G equipment manufacturers and 
network service providers.

Network slicing is a key technology in 5G networks that 
aims to provide user-specific network services, such as cloud 
services [3]. Therefore, using machine learning technology to 
allocate and optimize resources in network slicing 
management can improve the throughput of network traffic 

[4]. This study aims AI technology to learn different service 
types and classify traffic, analyze historical network traffic to 
predict possible future network behaviors, formulate slice 
allocation strategies based on the classification and prediction 
results, and automatically expand slices and manage the usage 
status of each slice by judging the current network conditions 
through dynamic scaling technology, while the selection of 
slices relies on the large amount of accurate and real-time 
information collected from the network. In the paper an AI-
based traffic classifier and slicing resource allocation 
mechanism, along with slicing allocation strategies, will be 
proposed and developed. We adopt machine learning to 
predict the dynamic changes in network traffic, so as to make 
optimal decisions for allocating network slices to various 
services. In additional, based on resource availability and 
workload, a dynamic scaling algorithm for the dynamic 
resource allocation of slices is proposed, ensuring adaptability 
to the high dynamics and scalability of slices. Experimental 
results show that the AI traffic classifier, trained using 
Random Forest [5] and Gradient Boosting Decision Tree
(GBDT) [6] models, achieved the best performance with an 

accuracy rate of up to 95.73%.

The remaining sections of this paper are organized as 
follows: Section 2 discusses background knowledge and 
related research; Section 3 introduces the system architecture 
and algorithms; Section 4 describes the experiments and
discussions; and Section 5 concludes the paper.

II. BACKGROUND AND RELATED WORKS

This section introduces the research background and basic 

knowledge of this paper. Section A discusses 5G 

microservices and related research; Section B introduces 

network slicing; and Section C discusses auto-scaling.

A. 5G Microservices

Microservices is a software architecture where traditional 
applications often integrate a large number of services into a 
single monolithic deployment, but this deployment approach 
has its limitations. As the services provided by an application 
grow, the size of the program significantly increases, leading 
to deployment and usage overload issues. However, 5G 
microservices leverage the advantages of microservices to 
enhance the overall scalability of the network, providing 
greater flexibility in resource allocation.

When an application exhibits high coupling [7], 
maintenance and refactoring become challenging and time-
consuming. In the event of a failure in a single module or 
service, the entire system becomes unavailable, impacting the 



availability of other services. Utilizing the architecture of 5G 
microservices offers the following benefits: team members 
can independently work on individual services, accelerating 
the development process; adding new functionalities to 
microservices is relatively straightforward; due to the 
independence of microservices, the interruption of one 
microservice does not affect another when multiple 
microservices are in operation.

However, accommodating diverse service requirements 
poses new challenges for efficient 5G resource utilization. To 
address this, reference [8] introduce a novel Stochastic 
Optimization framework for Green Multimedia Services 
(SOGMS). SOGMS aims to maximize system throughput 
while minimizing energy consumption in data delivery. 
Leveraging Lyapunov optimization, it decomposed the 
optimization into three manageable subproblems: quality-of-
experience-based admission control, cooperative resource 
allocation, and multimedia service scheduling. Extensive 
simulations compare SOGMS with state-of-the-art solutions 
in dense 5G networks, demonstrating its effectiveness.

B. Network Slicing

The primary function of network slicing [9] is to partition 
the physical network of a network operator into different 
virtual networks, each catering to specific service 
requirements such as latency, bandwidth, security, reliability, 
and more. This is achieved by interconnecting these virtual 
networks, allowing for the fulfillment of 5G environment 
demands.

Reference [10] proposed a SDN/FNV framework named 
“STREK” offers adaptable Quality-of-Experience (QoE) [11], 
security, and authentication functions across multi-domain 
cloud to edge networks. Its components include a holistic 
SDNFV data plane, NFV service-chaining, network slicing, 
and TREK, a lightweight hybrid cipher scheme. An open 
RESTful API lets applications deploy custom policies. In 
multi-domain/small-cell deployments, STREK uses dynamic 
flow/session-level key generation and efficient handover 
authentication, meeting 5G's low-latency requirements.

The allocation of 5G network slices is one of the hot topics 
in recent years, and it is very important to allocate suitable 
users to the corresponding slices. In order to solve this 
problem, an enhanced learning-based slice allocation 
technique is proposed in [12]which can dynamically allocate 
users to suitable slices according to the environment changes.

C. Auto-Scaling

The technology of dynamic scaling [13] is particularly 
crucial in 5G networks. Dynamic scaling allows for the 
automatic allocation of new resources such as CPU, memory, 
and storage resources during peak usage to maintain user 
Quality of Service (QoS). During off-peak periods, it 
automatically releases excess resources, reducing server costs. 
This enables 5G network slicing to achieve dynamic balance 
and automated resource allocation, enhancing the flexibility 
of the 5G network architecture.

III. SYSTEM ARCHITECTURE

This section introduces the overall system architecture and 
operation flow in detail. Section A introduces the system 
architecture; Section B introduces AI-based traffic classifier; 
Section C introduces slice resource configuration mechanism 
and slice allocation strategy.

A. System Architecture

The system architecture of this paper, as depicted in Figure 
1, is divided into three main components: the AI traffic 
classifier [14], resource management, and slicing allocation 
strategy [15]. The AI traffic classifier is responsible for 
monitoring application traffic and utilizing 5G slicing to 
ensure a satisfactory user experience within the constraints of 
limited resources. When users connect to the base station, the 
system identifies and categorizes their application traffic 
based on packet information, and then allocates the traffic to 
one of three types of slices: lightweight, hybrid, or 
heavyweight. In cases where slicing network resources 
become insufficient, the system employs slicing management 
algorithms to reorganize resources and migrate users to slices 
with ample resources.

Fig. 1. System Architecture.

B. AI-based Traffic Classifier

With the emergence of new network services, 
computational resources exhibit high dynamics. In such cases, 
traditional traffic allocation mechanisms cannot effectively 
distribute resources, potentially leading to issues such as slice 
traffic overload or underutilization. AI-based traffic classifiers 
not only enable highly automated traffic classification and 
identification but also significantly reduce the workload of 
network administrators [16].

To address the issue of uneven resource allocation in 5G 
slicing, this paper employs an AI traffic classifier for traffic 
steering. Traffic is allocated to the appropriate slice based on 
the current service, as illustrated in Figure 2. Before model 
training, relevant network traffic features are extracted, 
including source IP (Internet Protocol Address), packet size, 
network protocol, and various other characteristics for 
discerning network service content. Subsequently, we 
categorize the data into three types of slices: lightweight, 
hybrid, and heavyweight.

1) Lightweight slices primarily serve network services 

with small traffic loads, such as HTTP, Wikipedia, 

Messenger, and other services characterized by low traffic 

volume and high interaction frequency.

2) Hybrid slices are intended for hybrid network 

applications. These applications may experience variations in 

network traffic due to different user service usage. To avoid 

frequent slice switching that can degrade service quality, such 

applications are placed within this slice. Examples include 

Facebook, Instagram, Google, and other hybrid network 

applications.



3) Heavyweight slices cater to applications requiring 

high bandwidth and stability, such as Cloudflare, Google 

Drive, and services demanding substantial network resources 

over extended periods.

Fig. 2. AI-based traffic classifier.

C. Slice Resource Configuration Mechanism and Slice 

Allocation Strategy

In the face of diverse service demands, the current 5G 

computational resource allocation mechanism is static, and 

the available resource pool is limited. To address the issue of 

resource scarcity leading to network service disruptions, 

Auto-Scaling technology is crucial.

Common auto-scaling strategies for 5G network slicing 

are based on metrics such as slice load, traffic usage, and 

service requirements. Two common auto-scaling strategies 

are as follows:

1) Dynamic resource auto-scaling: This strategy adjusts 

resources based on the current slice's demand and resource 

status. When resources are insufficient, additional resources 

are requested from the higher-level resource manager, and 

when resources are excessive, resources are released.

2) Priority-based auto-scaling: Users and network service 

providers can ensure different levels of QoS based on 

contractual agreements. When users have higher priority, 

they receive higher QoS.

In this paper, the dynamic resource auto-scaling strategy 

is selected. Virtual resources for each network slice are 

categorized into three classes based on network traffic. These 

virtual resources are organized in a scalable manner. The 

paper will develop a dynamic slice resource allocation 

method that can dynamically allocate resources based on their 

resource quantity and workload.

The process of dynamic slice resource allocation is as 
follows: When the User Plane Function (UPF) [17] processes 
traffic flows exceeding its capacity, it sends a scaling request 
to the Session Management Function (SMF), requesting 
horizontal resource scaling. The SMF, through the slice 
classifier, selects a new network slice for the user. If all 
network slices are currently overloaded, the UPF notifies the 
Global Session Manager (GSM) to perform resource vertical 
scaling [18], such as increasing CPU cores, memory, and 
bandwidth. For detailed processes, refer to Figure 3 and 
Algorithm 1.

Fig. 3. Allocation strategy flow chart.

Algorithm 1: Slice Resource Allocation Strategy

def auto_scaling_pstrategy(P: Packet, S: SliceReousrce):

    M = model

    pkgType = PkgClassify(P, M)

    for s in S:

        if slice == pkgType:

            if enough_resource(P, s):

                allocate_resource(P, s)

        else if not allocate_from_other_slice(P, s, S):

            request_GSM(P)

IV. PERFORMANCE EVALUATION AND SLICING MANAGEMENT 

ALGORITHM

This section provides a detailed overview of the AI 
classifier experiment and the auto-scaling configuration 
strategy. Section A discusses data preprocessing and the 
handling of dataset imbalances. In Section B, we compare the 
training speed and resource utilization between CPU and GPU. 
Section C delves into the evaluation of the AI traffic 
classifier's performance.

A. Data Preprocessing and Addressing Data Set Imbalance

The network traffic data for this experiment is obtained 
from the network traffic dataset collected by Universidad Del 
Cauca Popayán Colombia. The dataset comprises 141 
network applications and includes 50 network traffic features, 
totaling approximately two million seven hundred thousand 
records of different traffic, as shown in Figure 4.

Using raw, unprocessed data directly for model training 
would result in difficulties in achieving convergence in the 
overall model learning process. To effectively enhance 
learning outcomes, data preprocessing is necessary before 
model training. To ensure the model's ability to accurately 



classify under different circumstances, eight features that 
possibly reflect traffic source and time labels, namely “Flow 
key”, “Src IP numeric”, “Src IP”, “Src Port”, “Dst IP”, “Dst 
Port” and “Proto” were removed. Data imbalance can also bias 
the model's training performance, causing it to lean 
excessively toward classes with a larger quantity. This, in turn, 
leads to inaccurate data predictions. To address the issue of 
dataset imbalance, this project removed data samples with too 
few instances and employed the Synthetic Minority 
Oversampling Technique (SMOTE) [19] oversampling 
technique to address the problems of data scarcity and uneven 
data distribution.

Fig. 4. Data class distribution.

B. Comparing Training Speed Between CPU and GPU

In recent years, the rise of neural network technology has 

been greatly facilitated by the improved computational 

capabilities of GPUs. Therefore, this experiment first focuses 

on testing Random Forest, GBDT, XGBoost [20], and K-

Nearest Neighbor (KNN) [21] models. Using 170,000 packet 

training data as input, the models are employed to classify 

packets into three categories. To confirm that GPUs do 

indeed enhance computational efficiency compared to CPUs, 

this experiment compares the speed differences between the 

two using the Scikit-learn machine learning framework [22] 

as the computational foundation.

In the experimental environment, both Scikit-learn-CPU, 

which runs on CPUs, and Scikit-learn-GPU, which runs on 

GPUs, were installed. They were each used to train the 

aforementioned datasets and models. The average training 

time per epoch (in seconds) is shown in Figure 5. For instance, 

in the case of Random Forest, the CPU takes 287 seconds per 

epoch, while the GPU only takes 28 seconds, which is nearly 

a tenfold difference.

Fig. 5. Comparison of CPU and GPU computing time.

In addition to training speed, GPU-based computations 

can significantly reduce the burden on the CPU during 

training. Figure 6 illustrates the CPU and GPU utilization 

when using Scikit-learn-CPU and Scikit-learn-GPU for 

computations. When using Scikit-learn-CPU, the CPU 

utilization reaches as high as 94%, which affects the basic 

operation of the host machine. However, when using Scikit-

learn-GPU, the CPU utilization is only 20%, while the GPU 

utilization is at 65%. Therefore, the GPU can help alleviate 

the computational load on the CPU, allowing the host 

machine to maintain normal operation.

Fig. 6. Comparison of CPU and GPU utilization.

C. Evaluation of AI Traffic Classifier’s Performance

The performance of models using Random Forest and 

GBDT is better than that of XGBoost and KNN, and these 

algorithms are effective in classifying slices with an 

impressive accuracy of up to 95.73%, as shown in Table I.

TABLE I

DIFFERENT SPLIT-RATIO ACCURACY COMPARISON

Split-Ratio KNN
Random-

Forest
XGboost GBDT

80:20 93.99% 95.73% 91.42% 95.76%

70:30 93.77% 95.66% 91.31% 95.14%

60:40 93.01% 95.45% 91.33% 91.49%

V. CONCLUSIONS

This paper introduces supervised learning to learn initial 
parameters, during the experimental process, it was found that 
the AI traffic classifier performed best under the training of 
Random Forest and GBDT models, achieving an accuracy rate 
of up to 95.73%. In the experimental environment, GPU 
demonstrates a significant tenfold difference in training speed 
compared to CPU. Simultaneously, when utilizing Scikit-
learn-GPU, it effectively alleviates the computational burden 
on the host machine. This advantage holds crucial reference 
value for large-scale data processing and complex model 
training.
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