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Abstract—The centralized and vulnerable nature of the in-
dustrial control system (ICS) communication network makes
it an attractive target for malicious actors aiming to infiltrate
and exploit vulnerabilities. These threat actors seek to cause
disruptions, compromise sensitive data, and potentially sabotage
critical industrial processes. Existing methods for threat detection
assume an ideal scenario where there exists no noise/disturbance
to threat detection and classification, neglecting to account for the
inherent noise and complexity present in real-world industrial pro-
cessing environments. In reality, the deployment of these models
may introduce performance degradation leading to sub-optimal
model performance. In response to the identified issue, this study
presents a security framework that proactively addresses the
challenges posed by noise and provides a robust mechanism for
detecting malicious activities from routine industrial network op-
erations. The proposed framework can be deployed at the supervi-
sion network segment of ICS to analyze incoming network traffic
signals, to effectively distinguish an attack from normal operation
amdist noise. Our proposed approach undergoes experimental
simulations to validate its effectiveness, and is compared with
state-of-the-art based on key performance metrics. Simulation
results show that our approach is robust in reconstructing noisy
traffic signals with a minimal mean square error of 0.12 and an
overall accuracy of 99.6%, outperforming existing methods.

Index Terms—Autoencoder, Denoising Autoencoder Intrusion
Detection, ICS, LSTM, Security

I. INTRODUCTION

The Internet of Things (IoT) connects devices across do-
mains, including industrial systems like power grids and cyber-
physical systems [1]. Industrial Internet of Things (IIoT) inte-
grates technologies in manufacturing, driving Industry 4.0 for
improved efficiency, quality, and safety [2]. This interconnected
ecosystem includes and leverages industrial control systems
(ICS), providing an all-encompassing approach to smart indus-
trial operations. A typical ICS comprises components like dis-
tributed control systems (DCSs), supervisory control and data
acquisition (SCADA) systems, programmable logic controllers
(PLCs), human-machine interfaces (HMIs), and sensors, which
collectively play crucial roles in overseeing mission-critical
control functions across various industrial sectors [3].

The modern ICS architecture consists of 4 key segments
as shown in Fig. 1: corporate network, supervision network,
production network, and the physical. The corporate network

Fig. 1. Industrial Control System Network Architecture

supports critical communication and data exchange, the su-
pervision network processes data and facilitates control com-
mands, the production network enables process control [4],
and data transmission from sensors at the physical layer. The
integrated setup of ICS enhances operational efficiency but
also makes ICS networks attractive targets for threats, given
the original design oversight and insecurity of communication
protocols. Additionally, the lack of operational technology and
software updates further compounds security challenges in the
ICS environment.

Attacks are usually targeted at the supervisory network as
shown in Fig. 1, because it is central in overseeing and coor-
dinating the entire industrial process, hence attacks at this unit
can provide adversaries with significant leverage and impact.
The 2015 “BlackEnergy 33” incident targeting Ukraine’s power
grid exemplifies the vulnerability of ICS to cyber threats [5],
emphasizing the global concern for ICS security. Conventional
defenses like firewalls and authentication systems have limi-
tations in securing ICS networks due to the diverse protocols
within the critical infrastructure, hence the need for artificial
intelligence (AI) based intrusion detection systems (IDS).

A. Research Problem Description/Motivation

Conventional machine learning (ML) models for intrusion
detection in ICS, exhibit moderate to very low overall per-
formance, which is sub-optimal for time-critical systems like
ICS. The solution lies in advanced deep learning (DL) models,



renowned for representing intricate and non-linear processes.
However, the susceptibility to overfitting in DL models, stem-
ming from their extensive parameter count and noise distortions
in real-world industrial settings, hinders their effective deploy-
ment for attack detection. Moreover, existing IDS are mainly
designed for standard network communication protocols such
as TCP/IP [6]. Hence, DL models face challenges in effectively
managing control protocols like Modbus and DNP3 [7], which
are widely used in critical infrastructures. Additionally, vast
feature selection methods have been proposed to generate opti-
mal feature sets for improved performance, but these methods
often emphasize statistical properties, overlooking the efficient
learning of hidden intrinsic structures within high-dimensional
features. In contrast, feature extraction models, such as au-
toencoders, excel at learning high-dimensional features and
compressing them into a set of low-dimensional features that
encapsulate the intrinsic core structure of network traffic.

This study introduces a novel framework known as DAE-
LSTM, that integrates a denoising autoencoder (DAE) and long
short-term memory (LSTM) to handle noisy traffic flow. Thus,
addressing real-world challenges with missing or corrupted val-
ues emanating from faulty sensor measurements or vibrations
in industrial processes. The DAE-LSTM framework effectively
removes noise from traffic data, condenses its representation,
and performs classification tasks using the dense layer, provid-
ing a robust solution for industrial operation perturbations. Our
approach contributes significantly to the field, by enhancing
the model’s feature learning capabilities, crucial for successful
attack detection in ICS.

This study makes the following significant contributions:
1) The integration of a denoising autoencoder (DAE); a

uniquely configured self-learning feature extraction algo-
rithm with LSTM units, offering a robust security solution
for intrusion detection and categorization in the ICS
network.

2) The incorporation of a regularization technique to rein-
force the model against noise interference. This acknowl-
edges the prevalent noise and disturbances in real-world
industrial settings, enhancing the model’s resilience and
effectiveness in detecting intrusions.

3) The proposed framework is evaluated using the ICS-Flow
dataset, chosen for its comprehensive representation of
real-world industrial scenarios, after a thorough analysis
of its properties.

The paper proceeds as follows: Section II reviews related
works. Section III introduces our model. Section IV presents
model evaluation and comparison with state-of-the-art. Section
V concludes the study and outlines future research plans for
IDS in ICS.

II. RELATED WORKS AND RESEARCH GAPS

In the domain of ICS cybersecurity, ML and DL meth-
ods have gained wide recognition. Notably, [8] enhanced an

LSTM-based framework for anomaly detection. However, their
evaluation was based on limited metrics, casting doubt on
the robustness of the model. [9] developed an IDS based
on the random forest (RF) classifier outperforming other ML
classifiers. Yet concerns arose about its real-world applicability
due to dataset balancing, as such is not applicable in a real ICS
environment. Additionally, [4] designed a combined framework
that also addresses the issues with unbalanced data. Authors in
[10] proposed an IDS, using chi-square-based feature extraction
with a modified decision tree. Their method shows good
performance across diverse datasets and is validated by Cohen’s
kappa coefficient and Mathews correlation coefficient metrics.
Also, [11] built an LSTM/AE for intrusion detection in IICS
networks which outperforms other models on key metrics.
Despite the progress in advancements, a common limitation
persists across these models; the oversight of noise impact in
industrial settings, which is vital for real-world deployment,
posing a challenge to achieving optimal outcomes, resulting in
model performance degradation.

A. Basic Concept

1) Learning mechanism for Conventional LSTM: LSTM
overcomes vanishing and exploding gradient issues in training
long sequences within recurrent neural network (RNN) archi-
tecture. Its complex structure revolves around a memory cell
and gating mechanisms. These gates, employing the sigmoid
function, regulate information in the cell state. The forget gate
ft decides what to retain or delete, the input gate it determines
information for storage, and the output gate ot, decides the
portion of the cell to output. The calculations for these gates
are expressed as equations 1, 2, and 3:

ft = σ(Wf · [ht−1, xt] + bf ) (1)

it = σ(Wi · [ht−1, xt] + bi) (2)

Ot = σ(Wo[ht−1, xt] + bo) (3)

where

ft, it, Ot : Activation vectors (output) at time t

σ : Sigmoid activation function
Wf ,Wi,Wo : Weight matrices for forget, input, and output gates
ht−1 : Hidden state vector at time t− 1

xt : Input vector at time t

bf , bi, bo : Bias vectors for forget, input, and output gates

B. Learning mechanism for DAE

Autoencoders are self-learning feature extraction algorithms,
that play a vital role of extracting crucial patterns from data
and compressing it into a lower-dimensional representation.
Consisting of an encoder and decoder, the former captures key
features, mapping them to a reduced latent space, while the
latter reconstructs the original data. A specialized version called



the denoising autoencoder (DAE), extends the basic autoen-
coder by training to remove noise from input signals. DAEs en-
force regularization, acquiring robust, noise-free features in the
hidden layer. The denoised input is then reconstructed through
the decoder. The training aims to minimize the reconstruction
error, and it is quantified by the mean squared error (MSE).

While DAE architectures were originally designed for unsu-
pervised learning as feature extraction techniques to eliminate
noise from input data [12], [13], their structure can be effec-
tively repurposed for supervised learning tasks, as demonstrated
in this study. The fundamental operation of DAE can be
represented as equation 4:

Ẋ = g
(
f(X̃; θ)

)
(4)

where Ẋ is the corrupted input, f , and g are the encoding
and decoding functions, parameterized by θ. The objective is
to minimize the reconstruction loss presented as equation 5:

L(θ) =

M∑
i=1

∥X− Ẋ∥22 =

M∑
i=1

∥X− g(f(X̃; θ))∥22 (5)

where L(θ) is the loss function, X is the original data, X̃ is
the reconstructed output, and the index i represents each data
point.

C. Gaussian noise

Gaussian noise represents a type of signal noise, ranging
from 0.1-0.4, characterized by a probability density function,
that mirrors that of the normal distribution, commonly re-
ferred to as the “Gaussian distribution” [14]. Implying that the
possible values that a noise may assume follow a Gaussian
distribution. The probability density function p for a Gaussian
random variable z can be expressed as equation 6:

p(z) =
1√
2πσ2

exp

(
− (z − µ)2

2σ2

)
(6)

Here, z denotes the grey level, µ represents the mean grey
value, and σ stands for its standard deviation.

III. SYSTEM MODEL

Fig. 2, shows our proposed scheme’s workflow with four
stages: Preprocessing and noise injection, DAE-LSTM training,
LSTM Dense training, and model evaluation.

A. Preprocessing Stage

In this stage, the raw network traffic signal is preprocessed.
It involves encoding labels, interpolating, and standardizing
the data. Encoding ensures proper representation of the target
variable, interpolation was initiated to avoid data loss or
leakage, and standardization scales the datasets to a format
suitable for model use. The dataset is then split into an 80%
training and 20% testing set, after the incorporation of a noise
value of 0.1. The strategic inclusion of noise was inspired by

Fig. 2. Process Flow of Our Proposed Scheme

real-world scenarios in industrial control systems, where sensor
measurements may be tainted by noise or exhibit undesired
behavior, posing challenges in accurately detecting instances
of attacks, resulting in performance degradation.

B. DAE Training

In this stage, the DAE-LSTM model is trained, leveraging
its feature extraction capabilities to extract meaningful features
from the input data. The latent space represents a condensed
and informative encoding of the input which plays a vital role
in capturing relevant information for intrusion detection. The
reconstructed output is flattened and sent to the next stage for
further analysis. The flattened layer allows for connection to the
LSTM dense layer and simplifies the data structure for further
processing.

C. LSTM-Training

This stage takes in the clean reconstructed output as input
for training. The LSTM dense is a layer within the DAE-
LSTM, dedicated to carrying out the classification task. It is
a fully connected layer that processes the information learned,
and produces the final output, making decisions or predictions
based on the learned features. This architecture is fine-tuned to
achieve optimal performance.

D. Model Testing

During testing, the model is evaluated on unseen data to
determine its performance. The DAE-LSTM is validated based
on its ability to reconstruct noisy traffic signals while the LSTM
dense is evaluated based on its classification ability.

E. Dataset Description

The ICS-flow dataset, derived from a simulated bottle-filling
factory control system, encompasses raw network packets,
flow records, and process variable logs. Processed with ICS-
FlowGenerator, the dataset contains 45,719 flows, including
normal operations (“0”) and distinct attacks (IP-Scan, Port-
Scan Replay, DDoS, MitM denoted as (“1”)) for binary classifi-
cation, representing real-world ICS vulnerabilities. The dataset



captures network traffic utilizing the Modbus protocol during
both normal and attack operations. Detailed information on
dataset generation and extracted predictors is available in [15].

Before training, we analyzed the dataset to understand its
learnability, gaining insights into high-dimensional patterns.
The Andrews plot [16], in Fig. 3 revealed non-linearity and
class overlap, guiding our model selection.

Fig. 3. Visualizing Non-Linearity in Dataset using Andrews plot

F. Experimental Set-up

The experiment was conducted in a Python environment us-
ing Tensorflow version 2.9.0. The operating system utilized was
Windows 10. The hardware configuration includes; Intel(R)
Core(TM) i5-7400CPU @ 3.00GHz processor, 8GB RAM, and
a Tesla K80 GPU. Hyper-parameter tuning involved a manual
process to identify optimal settings shown in Table I.

TABLE I
HYPERPARAMETER USED FOR PROPOSED SCHEME

S/n Hyperparameters Value(s)
1 Number of layers 6
2 Dropout rate 0.2
3 Activation function Relu
4 Batch size 30
5 Optimizer Adam
6 Learning rate 0.001
7 Epoch 50
8 Latent space size 19
9 Noise factor 0.1
10 LSTM units 257
11 Loss function MSE / Binary cross-entropy

G. Performance Evaluation Metrics

The proposed model was validated based on its ability to
reconstruct clean traffic signals at a decreased loss, along
with its ability to classify ICS communication and events as
normal behavior, or attack instances. While balanced data can
greatly contribute to optimal model performance, we deliber-
ately chose to work with an imbalanced dataset. This decision
acknowledges that the class distribution naturally mirrors the
occurrences in ICS, where anomalies are less frequent. Never-
theless, to handle this, we leveraged the performance metrics
that effectively measure the model’s performance on such data.
Therefore in addition to accuracy (ACC), we used metrics such

as; confusion matrix, Matthews correlation coefficient (MCC),
recall (Rec), precision (Prec), F1-value and mean square error
(MSE), as shown in equations 7, 8, 9, 10, 11, 12 and computing
time (Comp.T) respectively.

MSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (7)

A =
TP + TN

TP + TN + FP + FN
(8)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(9)

R =
TP

TP + FN
(10)

P =
TP

TP + FP
(11)

⇒ F1value =
2 ∗ Precision ∗Recall

Precision+Recall
(12)

where, FN = False Negative, FP = False Positive, TN = True
Negative, and TP = True Positive.

IV. RESULTS AND ANALYSIS

The experimental results and a comparative analysis of the
proposed DAE-LSTM with other approaches are discussed
in this section. Table II, shows the results of the proposed
model versus an LSTM model trained with similar parameter
configurations.

TABLE II
COMPARATIVE ANALYSIS OF PROPOSED DAE-LSTM WITH LSTM UNDER

SAME PARAMETER CONFIGURATION AND DATASET

Model Acc
(%)

Prec
(%)

Rec
(%)

F1-value
(%)

MCC
(%) MSE Comp.T

(Sec)
LSTM 82.6 93.0 85.2 94.1 81.0 0.31 71
DAE-LSTM 99.6 98.2 95.2 95.0 98.0 0.12 62

The DAE-LSTM model outperforms LSTM across all met-
rics, with a high accuracy of 99.6%, 98.2% precision, and
95.1% recall. Also, the F1-value (which considers both pre-
cision and recall) of the proposed model, is slightly higher
than that of the LSTM. Table II also highlights the minimal
reconstruction loss of 0.12 recorded by the proposed model,
outperforming the LSTM. We also took into consideration
the model’s computational time which is a vital factor when
dealing with time-critical systems like ICS. We noticed that
the LSTM model struggled with reconstructing noisy input and,
hence took a longer time to train, compared to the DAE-LSTM
model. This can be attributed to the intrinsic nature of the DAE,
making it computationally efficient in handling noisy input.



Fig. 4 shows the DAE-LSTM reconstruction error, reaching a
minimal value of 0.12. A lower MSE indicates better precision
in reconstructing noisy input. With a train reconstruction loss
of 0.31 and a validation reconstruction error of 0.12, the pro-
posed model demonstrates effective learning and generalization
capabilities. Indicating its potential to accurately reconstruct
corrupted input network traffic signals in real-world scenarios.

Fig. 4. Reconstruction Loss of proposed model

Fig. 5, shows the precision-recall curve of the proposed
model, initiating at 100% for both precision and recall, main-
taining high performance between 99% and 100%. This sug-
gests stability, demonstrating accurate identification of positive
instances while capturing a substantial proportion of other
instances, emphasizing the model’s effectiveness.

Fig. 5. The Precision-Recall Curve for the Proposed Model.

The confusion matrices in Fig. 6 and Fig. 7, show the number
of rightly classified instances and misclassified predictions of
the proposed framework and LSTM model, respectively. The
diagonal elements from the top-left to bottom-right in the
confusion matrix represent correct predictions (TP and TN),
while the off-diagonal elements indicate incorrect predictions

(FP and FN), respectively. The proposed DAE-LSTM has the
least classification error compared with the LSTM Model.

Fig. 6. Confusion Metrics of LSTM model

Fig. 7. Confusion Metrics of Proposed DAE-LSTM Model

Finally, to further validate the effectiveness of our proposed
model, we compared it with the artificial neural network (ANN)
proposed in [15], based on the same dataset. As shown in
Table III, our proposed scheme achieved the best overall
accuracy of 99.6% compared to their model, while performance
on other metrics seems marginal. Although their proposed
model demonstrated good overall performance on the metrics
employed, they failed to consider the computational time which
is an important metric when dealing with a time-critical system,
such as ICS.

V. CONCLUSION

This study presents a security framework aimed at real-
time attack detection in ICS. Our proposed approach integrates
a regularization technique that considers the noisy nature of



TABLE III
COMPARISON OF THE PROPOSED MODEL WITH A DL-BASED METHOD

FOR BINARY CLASSIFICATION USING THE ICS-FLOW DATASET

Model Scenario Acc
%

Pre
%

Rec
%

F1-value
%

Comp.
Time
sec

ANN [ [15] Normal 99.5 99.5 99.8 99.65 ***Attack 99.2 98.0 99.65

DAE-LSTM Normal 99.6 99.5 98.9 99.97 62 secsAttack 99.1 97.0 97.5

industrial processing, making it robust and effective in detecting
and distinguishing threats targeted towards the network, from
a normal network operation, amidst noise. Results obtained
via experiments using the ICS-Flow dataset, show that our
proposed framework is capable of reconstructing noisy input
at a decreased error rate of 0.12, and a significant accuracy of
99.6% for binary classification task, compared to a different
approach subjected to the same condition.

For our future work, first, we are working on enhancing our
model explainability, by providing insights into the contribution
of features in the decision-making process, and also establish
a more robust comparison of our design with other existing
autoencoder / LSTM methods from the literature. Secondly,
we hope to integrate blockchain technology into our design.
This entails using blockchain as a tamper-resistant ledger to
store information related to network traffic and system logs.
The aim is to establish a more robust, secure, and transparent
record of network activities, providing an additional layer of
trust and integrity for threat detection and mitigation in ICS
networks.
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