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Abstract—Recently, significant advancements have been 

made in the few-shot classification task by integrating pre-

trained self-supervised learning models. Although the self-

supervised learning models have demonstrated their 

effectiveness, their application in few-shot scenarios, 

specifically in meta-training or fine-tuning, is computationally 

intensive and complicated. This paper introduces an efficient 

approach to address these challenges. We propose to use 

feature analysis methods instead of network model training. 

This method uses two factors that define the data generation 

model, resulting in easily classifiable features. The two factors 

are estimated from a set of different vectors from the train 

dataset and the test dataset. Although this method is simple 

compared to network learning, it provides good performance 

in experiments using few-shot classification benchmark 

datasets. 

Keywords—Few-shot classification, Feature analysis, Class 

factor, Environment factor Self-supervised learning,  

I. INTRODUCTION 

Few-shot classification is a challenging task in the field 
of machine learning, where notable progress has been made 
using pre-trained self-supervised learning models [1, 2, 3, 
4]. Such models have the capability of capturing complex 
patterns from extensive datasets and have dramatically 
enhanced the performance of classifiers across diverse tasks. 
However, using these models in a few-shot task requires a 
complex meta-training or fine-tuning process. 

The application of large-scale pre-trained models for 
few-shot classification often demands substantial 
computational resources, hindering their practical 
applicability in real-world problems. To mitigate this 
problem, our research takes a distinct approach by 
proposing a method that utilizes class factors and 
environment factors for feature extraction. Solves the 
limited train data problem by estimating environment 
factors from a set of difference vectors in the meta-train 
dataset. On the other hand, by estimating class factors from 
each test subset of episodes, we can obtain the good features 
for classification. Instead of the complicated task of 
updating parameters within a large model, Our approach 
aims to solve the problem of few-shot classification as a 
relatively simple task by extracting discriminative features 
directly from the data. 

In this paper, we introduce a detailed examination of our 
proposed approach, provide the rationale behind the use of 
class factors [5, 6, 7], and elaborate on the steps involved in 
our methodology. In order to evaluate the effectiveness of 
our method, we conducted comprehensive experiments on 
four widely used benchmark datasets for few-shot 

classification. The results indicate the superior performance 
of our approach, which achieves the best results on two 
datasets and comes close to state-of-the-art performance on 
the remaining two datasets. These results emphasize the 
practical applicability and efficiency of the proposed 
method, positioning it as a competitive solution in the 
landscape of few-shot classification methods. 

II. RELTED WORKS 

A. Few-Shot Classification 

In the domain of few-shot classification, conventional 
research is often based on small networks such as CNN-4-
64 [8, 9, 10] and ResNet-12 [11, 12]. The conventional 
paradigm for general classification tasks is that larger 
models tend to perform better. However, this paradigm is 
subject to challenges in few-shot learning scenarios [13, 14].  
This is because these models tend to overfit the classes in 
the train dataset and are not well suited to the few-shot task 
of classifying unseen classes.  

On the other hand, the use of pre-trained self-supervised 
learning models has become a notable and potentially 
promising approach [15]. These models demonstrate 
superior feature extraction capabilities, learned from 
massive amounts of unlabeled data. This makes them 
suitable candidates for improving few-shot classification 
performance. Several studies have shown positive results 
when such models are applied to relatively large 
architectures for few-shot classification tasks [1, 2, 3, 4]. 
Despite these advances, a significant problem remained. 
The training of large-scale models for few-shot 
classification using conventional techniques proved to be a 
difficult challenge. The sophisticated properties of these 
models required complex procedures, including the need to 
fine-tune or meta-train these models. This made their 
application to few-shot tasks complicated and resource-
intensive. To solve these problems, we propose a more 
efficient classification method by analyzing the given 
features in detail instead of additional network learning. 

B. Class and Environment Factors for feature analysis 

Finding efficient low-dimensional features for 
classification has been widely studied in classical pattern 
recognition research. One of them is the low-dimensional 
feature extraction method [7] based on the data generation 
model [16] defined as the combination of environment 
factors and class factors. Each factor that defines the 
generation model has its own unique characteristics. All 
classes share the same environment factor that represents 
the distortions caused by various environmental conditions. 



On the other hand, class factors represent the unique 
characteristics of each class. For estimating the 
environmental factors, we use the difference vector of two 
data belonging to the same class. The estimated probability 
distribution of the environment factors can be used or 
defining a probabilistic similarity measure like the method 
proposed by Moghaddam et al [17]. 

On the other hand, the class factors are emphasized to 
facilitate classification by excluding environmental factors. 
To achieve this, the residual space, which is the orthogonal 
complement of the principal subspace of environmental 
components, is first estimated and utilized for classification 
[18]. Methods that utilize this residual space have often 
shown promise in classical classification problems [19, 20, 
21]. In this paper, we attempt to apply this classical research 
that has not worked well on complex problems to self-
supervised model features. 

III. PROPOSED METHOD 

 We propose a method that combines a pre-trained self-
supervised learning model with feature analysis using class 
factors and environmental factors for the few-shot task. First, 
to apply the classic feature analysis method to a few-shot 
task, we need to make some modifications to the estimation 
methods. In the proposed method, the data generation model 
is defined as the sum of class factors and environment 
factors according to [16]. This means that data 𝒙 belonging 
to an arbitrary class can be represented as 

 𝒙 = 𝒙𝑐𝑙𝑠 + 𝒙𝑒𝑛𝑣  () 

where 𝒙𝑐𝑙𝑠  is class components and 𝒙𝑒𝑛𝑣  is environment 
components. We want to find low-dimensional factors that 
are easy to classify. If we call each of these low-dimensional 
factors 𝒛 and 𝒚, the data 𝒙 can be represented as 

 𝒙 = 𝒙𝑐𝑙𝑠 + 𝒙𝑒𝑛𝑣 = 𝑾𝒛 + 𝑽𝒚  () 

where 𝑾𝑑×𝑝  and 𝑽𝑑×𝑞  are transformation matrices of p-

dimensional vector 𝒛 and q-dimensional vector 𝒚. 

 Of these, the environmental factor loading matrix is 
estimated using the difference vector 𝜹  of the two data 
belonging to the same class, which can be written as 

 𝜹 = 𝒙 − 𝒙′  () 

where 𝒙  and 𝒙′  belong to the same class. By using the 
decomposition of 𝒙 given in (2), this can be rewritten as 

 𝜹 = (𝑾𝒛 − 𝑾𝒛′) + (𝑽𝒚 − 𝑽𝒚′) ≈ 𝑽(𝒚 − 𝒚′) + 𝝐  () 

where 𝝐 is noise with a small variance. Because of the class-
dependent property of the low-dimensional class factor 𝒛, 
two data samples belonging to the same class will have 
almost the same values of 𝒛. 

 In the classical feature analysis for the conventional 
classification tasks, the set of difference vectors, Δ =
{𝜹 = 𝒙 − 𝒙′|𝒙 𝑎𝑛𝑑 𝒙′ ℎ𝑎𝑠 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑙𝑎𝑠𝑠} , 
is composed from the training set and used for estimating 
the environmental factors. Once the environmental factors 
and their subspace are obtained, its residual space can be 
used for finding class factors. However, in the case of the 
few-shot task, we assume the situation where the number of 
samples in each class is very limited and the classes in test 
set is unseen in the training set. Considering this specific 
situation, we separate the two estimation processes: one for 
the environment factor and the other for the class factor. 

 First, based on the assumption that all classes have the 
same environmental factors, we estimate the environmental 
factor loading matrix 𝑽𝑡𝑟𝑎𝑖𝑛 by using the meta-train dataset 
𝑫𝑡𝑟𝑎𝑖𝑛 , which has a sufficient number of samples. The 
estimated loading matrix can then be applied to the given 
test set with a limited number of samples from unseen 
classes. When the test dataset with n samples is given as a 
𝑛 × 𝑑  matrix 𝑿 , the environmental factor loading matrix 
𝑽𝑡𝑟𝑎𝑖𝑛  can be applied to obtain a matrix 𝑿𝑒𝑛𝑣  containing 
only the environmental components of the entire data 𝑿, 
such as 

 𝑿𝑒𝑛𝑣 = 𝑽𝑡𝑟𝑎𝑖𝑛𝑽𝑡𝑟𝑎𝑖𝑛
𝑻𝑿 () 

Also, by definition of the data generation model, we can get 
a matrix with only class component, 𝑿𝑐𝑙𝑠 , by simply 
subtracting the environment components 𝑿𝑒𝑛𝑣  from the 
entire data X, such as 

 

Fig. 1. The overall structure of the proposed method. Each dataset is converted into features by a pre-trained self-supervised learning model, of which 

intra-class difference vectors set Δ are extracted from the meta-train dataset to estimate 𝑽𝑡𝑟𝑎𝑖𝑛 via PCA. This can be used to extract class factor features 

𝑿𝑐𝑙𝑠 from the test feature set 𝑭𝑡𝑒𝑠𝑡, which can then be subjected to PCA to obtain the final low-dimensional features Z. 

 

 



 𝑿𝑐𝑙𝑠 = 𝑿 − 𝑿𝑒𝑛𝑣 = (𝑰 − 𝑽𝑡𝑟𝑎𝑖𝑛𝑽𝑡𝑟𝑎𝑖𝑛
𝑻)𝑿 () 

 Finally, we apply PCA to 𝑿𝑐𝑙𝑠  to obtain low-
dimensional features that preserve class components as 
much as possible. This is the process of estimating the class 
factor transform matrix 𝑾. Unlike environmental factors, 
class factors are class-dependent, so it makes sense to 
estimate them only for the class to which the subject belongs. 
Therefore, we will estimate the class factor transform matrix 
𝑾 from a subset of each classified episode, which gives us 
the set of low-dimensional features 𝒁, such as 

 𝒁 = 𝑾𝑻𝑿𝑐𝑙𝑠  () 

The final classification stage included the prototype 
classification procedure. The porotype classification 
procedure is often used in few-shot tasks, where the mean 
vector of the training data for each class is defined as a 
prototype and test data are classified by comparing the 
similarity to each prototype. To evaluate the similarity 
between features and prototype, we adopted the Euclidean 
distance metric, which is widely used in other few-shot tasks. 

TABLE I.  CLASSIFICATION ALGORITHM OF THE PROPOSED METHOD 

Algorithm 1 Algorithm for estimation and classification 

Input: Train dataset 𝑫𝑡𝑟𝑎𝑖𝑛, Test dataset 𝑫𝑡𝑒𝑠𝑡 

Output: Class classification results from query 

Load pre-trained self-supervised model 𝑓(∙) 

Construct train dataset feature 𝑭𝑡𝑟𝑎𝑖𝑛 = 𝑓(𝑫𝑡𝑟𝑎𝑖𝑛) 

Construct a randomized intra-class different vector set 𝚫𝑡𝑟𝑎𝑖𝑛 from 𝑭𝑡𝑟𝑎𝑖𝑛. 

𝚫𝑡𝑟𝑎𝑖𝑛 = {𝜹𝑡𝑟𝑎𝑖𝑛 = 𝒙 − 𝒙′|𝒙 and 𝒙′ has belongs to the same class}  

Estimate environmental factor loading matrix 

𝑽𝑡𝑟𝑎𝑖𝑛 = component(𝑃𝐶𝐴(𝚫𝑡𝑟𝑎𝑖𝑛)) 

Construct train dataset feature 𝑭𝑡𝑒𝑠𝑡 = 𝑓(𝑫𝑡𝑒𝑠𝑡) 

Construct test matrix 𝑿 from 𝑭𝑡𝑒𝑠𝑡 

𝑿𝒄𝒍𝒔 = (𝑰 − 𝑽𝑡𝑟𝑎𝑖𝑛𝑽𝑡𝑟𝑎𝑖𝑛
𝑻)𝑿  

Class factor loading matrix 𝑾 = component(𝑃𝐶𝐴(𝑿𝒄𝒍𝒔)) 

Feature extraction 𝒁 = 𝑾𝑻(𝑰 − 𝑽𝑡𝑟𝑎𝑖𝑛𝑽𝑡𝑟𝑎𝑖𝑛
𝑻)𝑿 

Support and query 𝑺, 𝑸 = 𝑠𝑝𝑙𝑖𝑡(𝒁) 

Prototypes 𝑷 = 𝑚𝑒𝑎𝑛(𝑺) 

𝒅 = 𝐿𝟐-norm(𝑸, 𝑷) 

Return argmin(𝒅) 

 

The detailed steps of the proposed method can be seen 
in Table I. The average classification performance across 
these episodes serves as a comprehensive metric, offering 
insights into the method's adaptability and effectiveness 
across diverse few-shot scenarios. 

IV. EXPERIMENTAL RESULTS 

We used four benchmark datasets to evaluate our 
proposed method: miniImageNet [32], tieredImageNet [33], 
CIFAR-FS [34], and CUB [35]. 

1) miniImageNet: Originating from the ILSVRC-12 

dataset, miniImageNet comprises 100 classes and a total of 

60,000 images. The dataset's images are characterized by a 

resolution of 84 × 84 × 3, providing a testing ground for 

the capabilities of our proposed method.  

2) tieredImageNet: Another subset of ILSVRC-12, 

tieredImageNet expands the scope with 608 classes and an 

approximate image count of 780,000. Similar to 

miniImageNet, the images in tieredImageNet adhere to a 

resolution of 84 × 84 × 3. 

3) CIFAR-FS: It is a variant of CIFAR-100 that is 

reconstructed for the few-shot task with a class-wise 

division of train/validation/test data rather than a sample-

wise division within classes. Notably, the images in this 

dataset have a lower resolution of 32 × 32 × 3 , 

introducing a distinctive challenge compared to datasets 

with higher resolutions. 

4) CUB: With a focus on categorizing birds by species, 

the CUB dataset encompasses 200 classes and around 

12,000 images. The images in this dataset adhere to a 

resolution of 84 × 84 × 3, aligning with the characteristics 

of miniImageNet. 
To measure universal performance on the few-shot 

classification task, datasets with different features were used. 
The class divisions for every dataset presented in Table III 
are determined according to the previous works on. The 
performance evaluation comprised 1,000 episodes of few-
shot classification. 

In our research for an effective few-shot classification 
framework, we adopted the DINOv2 model as a feature 
extractor. Through a ViT-based architecture, DINOv2 
showed remarkable self-supervised learning on a large 
dataset of 142M unlabeled images. The availability of pre-
trained models with various sizes, conveniently accessible 
through the PyTorch Hub, supports its versatility. 

Due to practical constraints in the difficult task of 
estimating the environmental factor loading matrix, a 
conservative approach was taken. Randomly selecting 120 
vector pairs per class addressed physical limitations and 
ensured computational efficiency while maintaining the 
fidelity of the representation of the environmental factors. 

TABLE II.  NUMBER OF TRAIN, VALIDATION, AND TEST CLASSES IN 

EACH DATASET 

dataset Train Validation Test 

miniImageNet 64 16 20 

tieredImageNet 351 97 160 

CIFAR-FS 64 16 20 

CUB 100 50 50 

 

In presenting our experimental results for two datasets 
based on ILSVRC-12, as detailed in Table II, we conducted 
a comprehensive comparison with past milestone papers 
and recent works. Remarkably, our focus was on works that 
employ pre-trained self-supervised learning models, which 
is similar to one of our approaches. From our analysis, we 
found that our accuracy significantly outperforms previous. 
Although we fell just short of achieving state-of-the-art 
performance, the significant accuracy achieved is 
encouraging. This is especially significant given the 
considerable effort that state-of-the-art models put into 
meta-training and fine-tuning their large models. 

The efficiency of the proposed method is confirmed by 
the large difference in performance compared to other 
models, which excludes the exceptionally high-
performance state-of-the-art model. This outstanding 
achievement is emphasized by the findings in Table III, 
which details the results of our experiments on CIFAR-FS 



and CUB 200. Notably, our approach achieves a state-of-
the-art status on both datasets, showing a remarkable 
performance gap compared to the previous state-of-the-art 
model.  

We attribute this divergence to the intrinsic nature of the 
datasets. The first two datasets, rooted in ILSVRC-12, 
exhibit substantial and intricate variations, posing 
challenges in facile comprehension. In contrast, CIFAR-FS 
and CUB 200 manifest relatively modest variations, 
rendering our proposed method notably robust. The 
observation that our method performs comparably well, and 
in some instances even surpasses, methodologies that 
update the weights of extensive models through relatively 
straightforward computations indicates the remarkable 
success of our proposed approach. 

In summary, the outstanding results achieved across 
various datasets demonstrate the adaptability and 
effectiveness of our proposed method. The observed 
robustness, specifically on CIFAR-FS and CUB 200, 
establishes our approach as a promising solution in the field 
of few-shot classification, providing valuable insights for 
future research in this domain. 

V. CONCLUSION 

In this paper, we propose a novel approach to few-shot 
classification using pre-trained self-supervised learning 
models and feature analysis with class factors and 
environment factors. The factors transform matrix is 
estimated using a set of difference vectors and the PCA 
method, and the resulting transformation is used to extract 
low-dimensional features that are easy to classify from the 
pre-trained self-supervised model features. Despite the 
simplicity of this process compared to training a network 
model, our method improves on previous methods in terms 
of accuracy, demonstrating better performance even when 
compared to state-of-the-art models. The robustness 
observed, particularly on the CIFAR-FS and CUB 200 
datasets, highlights the adaptability of our approach to 
different levels of dataset complexity. Although it did not 
quite achieve the highest performance on certain datasets, 
the results suggest that our method successfully addresses 
the challenges of few-shot classification without the need 
for complex meta-training or fine-tuning of large models.  
We are also considering using simple neural network 

training to find the optimal transform matrix as a substitute 
for PCA, and extensions to many-class classification 
problems are also a possibility to maximize the benefits of 
our proposed method. 
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