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Abstract—Time is very crucial in Internet of Things (IoT)-
based healthcare applications and any delay can lead to dan-
gerous scenarios, including patient deaths. The Earliest Deadline
First (EDF) scheduling mechanism has been recommended for
use in IoT-based applications in healthcare systems. However,
the EDF performs poorly under overloaded conditions since
priority is given to high-priority packets with close deadlines.
In order to overcome the limitation of EDF, models for the
prioritized scheduling (PS) scheme was proposed. The PS scheme
is an improvement of the EDF scheme for IoT-based healthcare
applications. The PS scheme uses a heterogeneous multi-server
priority queuing system to provide service differentiation by
prioritizing short packets over large packets and delay sensitive
packets are serviced before delay tolerant packets. In this paper,
the analytical models of the PS scheduling scheme are validated
using the Simulink MATLAB R2023b tool. The performance
measures are obtained for the mean slowdown for delay sensitive
and delay tolerant packets as a function of the sizes of packets. In
addition, the performance measures in terms of throughput as a
function of packet sizes for short and large delay sensitive packets
are obtained. We compare the results obtained from simulations
with the analytical results for mean slowdown and throughput.
Simulation results.

Index Terms—EDF, Heterogeneous, Mean slowdown, Priori-
tized Scheme, Size, Throughput

I. INTRODUCTION

The Internet of Things (IoT) has been empowered by recent
technological advancements to create a unified network of
interlinked devices, sensors, and systems [1]. This capability
has extended the scope of IoT’s application in multiple do-
mains, including remote healthcare monitoring, rendering it a
dynamic and formidable technology [2].

The implementation of IoT technology in remote healthcare
monitoring has several benefits compared to conventional
healthcare monitoring approaches [3]. It is anticipated that
IoT will advance emergency management and healthcare mon-
itoring in the near future. In IoT-based healthcare monitoring,
instantaneous and dependable delivery of collected data is cru-
cial to ensure precise patient monitoring, given that healthcare
applications rely on real-time data with minimum latency.

Medical emergencies necessitate priority treatment over
regular services [3]. Moreover, the services offered for medical
data packets should be distinguished based on signal demands.
In emergency scenarios, low latency is crucial for healthcare
traffic to enable prompt response by healthcare professionals
[4], [5]. However, traditional server scheduling schemes used
in computing servers are unsuitable for delivering services to
IoT-based healthcare applications due to the heterogeneity of
servers and varying service requirements [6]. Therefore, it is
essential to enhance standard server scheduling algorithms by
considering the servers’ heterogeneity and different service
requirements to meet users’ expectations efficiently.

According to [7], there is an increase in delay for health-
care IoT packet transmission as the data size increases, with
delays ranging from milliseconds to minutes for time-sensitive
applications.

Several scheduling techniques for IoT-based healthcare
monitoring systems have been proposed in recent studies,
including the Earliest Deadline First method (EDF) [4], Rate-
Monotonic [4], preemptive resume service priority [10], and
Dynamic Transmission Mechanism-L priority (DTM-L) [5].
Despite their effectiveness, these techniques have certain limi-



tations, such as process starvation. This can lead to prolonged
delays for lengthy processes to complete their service if shorter
processes are repeatedly introduced [4], poor performance
when operating under overloaded conditions, these techniques
may not be optimal for multiprocessor systems, low through-
put [11]. Moreover, in scenarios with high arrival rates of
higher-priority applications, these techniques may cause lower-
priority applications to starve [5].

Previous literature has commonly assumed IoT servers to
be homogeneous, with similar devices and equal service rates
[12]. In our earlier work [6], we proposed a two-level priority
system based on the size and delay of healthcare packets,
assuming server homogeneity. However, the IoT ecosystem
comprises of a variety of heterogeneous devices that operate
at different service rates [9]. In addition, in a multi-server
system, replacing outdated or misbehaving servers with newer
or more powerful ones leads to server heterogeneity [13].
As a result, when developing scheduling algorithms for IoT
healthcare monitoring, it is crucial to take into account the
heterogeneity of servers and their capabilities.

This study addresses the aforementioned challenges by
introducing analytical models that evaluate delay and size-
dependent priority-aware scheduling for IoT-based healthcare
packets using heterogeneous multi-server priority queuing
systems. The model’s performance is evaluated based on mean
slowdown and throughput. Mean slowdown is the normalized
response time, which is the ratio of the packet’s response time
to its size [14]. Throughput refers to the amount of data that
can be transferred within a given time frame [15].

The contribution of this study is that the performance of
the analytically developed PS scheduling models are validated
using simulations with mean slowdown and throughput as
performance metrics. The remainder of the paper is structured
as follows: review of previous work with a focus on the server
characteristics and scheduling strategies used in healthcare
monitoring systems is discussed in Section II. Section III
presents the analysis of the expressions. Model validation
and comments are discussed in Section IV, while Section V
presents the conclusion.

II. RELATED WORK

The EDF scheduling approach, which prioritizes requests
according to their absolute deadlines, was proposed in [4].
Data packets with close deadlines receive higher priority
compared to those with distant deadlines, which are given
lower priority. However, EDF has a significant disadvantage
in situations of high load since it focuses on packets that are
near their deadlines, causing delays for other packets that have
sufficient time to meet their deadlines. Hence, it is essential to
develop scheduling techniques that give preference to packets
with tight deadlines while not considerably extending the
deadline for packets with more extended deadlines.

The Rate-Monotonic (RM) algorithm considered in [4],
prioritizes the tasks with the shortest duration. The method
is extremely predictable since scheduling choices are deter-
mined a priori under this technique. However, precomputation

is required whenever changes occur in task parameters. A
task’s duty cycle is another factor that the algorithm uses to
determine priority, with lower duty cycle activities receiving
greater priority.

In their work, Sharif et al. [16] presented a mechanism for
scheduling tasks and allocating resources based on priorities.
The mechanism, known as priority-based task-scheduling and
resource-allocation (PTS-RA), can assign different priorities
to tasks by considering their emergency levels, which are
calculated based on data from a patient’s smart wearable de-
vices. The mechanism can determine whether a task should be
processed locally at the hospital workstations or in the cloud.
This is aimed at reducing the total task processing time and the
bandwidth cost as much as possible. One potential drawback
of PTS-RA task scheduling and resource allocation in edge
computing for health monitoring systems is the increased
complexity of the system. This approach requires sophisticated
algorithms and decision-making processes to determine the
appropriate priorities for tasks and allocate resources effi-
ciently. Additionally, there may be challenges related to data
privacy and security when collecting and processing data from
patients’ wearable devices.

Iqbal et al. [17] presented a smart patient health monitoring
system (PHMS) based on an optimized scheduling mechanism
using IoT-tasks orchestration architecture to monitor vital signs
of remote patients. The proposed smart PHMS consists of
two core modules, a healthcare task scheduling module and
optimization of healthcare services using a real-time IoT-based
task orchestration architecture. The experimental results reveal
that an optimized scheduling mechanism reduces the tasks
starvation compared to a conventional fair emergency first
(FEF) scheduling mechanism. However, the proposed work
did not integrate predictive analytics with IoT to forecast vital
signs to improve the performance of IoT-based healthcare
services.

In order to improve the performance of static scheduling al-
gorithms, a new method called Tasks Classification and Virtual
Machines Categorization (TCVC) based on tasks importance
was proposed by T. Aladwani [18]. Tasks are classified based
on the importance of the patient’s health status that is, high,
medium and low importance. The method was applied with
the Max-Min scheduling algorithm and the performance was
found to outperform the First Come First Serve (FCFS),
Shortest Job First (SJF) and Max-Min scheduling algorithms
in terms of total execution time, total waiting time, and total
finish time. However, under high arrival rate of high important
tasks, low important tasks are starved of service.

A new cloud scheduling architecture called IADA was
presented in [19]. The architecture was aimed at improving
previous methods by using a dynamic classification scheme
for workload variations instead of a segmented classification.
The approach utilizes resources more efficiently and ensures
compliance with Quality of Service requirements through
the application of machine learning techniques, heuristics,
and a Bayesian changepoint detection algorithm for real-time
analysis. However, the study did not address how to physically



place virtual machines to minimize performance degradation
and comply with QoS requirements.

In this paper, we deal with two traffic streams submitted to
heterogenous shared servers and ordered by a non-preemptive
priority scheduling discipline. We propose an analysis of the
mean slowdown for each stream of traffic assuming that
arrivals are Poisson and the server is work-conserving and
non-preemptive. The intention of the study is to validate
the theoretical results from our previous works in [6] using
simulations.

III. ANALYSIS

A. System Model

The proposed system model consists of various healthcare
packets that originate from several distinct sensors mounted
on a patient’s body to track various health conditions, as
illustrated in Figure 1. The healthcare packets produced by
the sensors arrive at the network gateway randomly and have
been shown to be well approximated by the Poisson process, as
reported in [21]. Examples of delay-sensitive packets include
EEG/ECG/EMG with a delay limit of not more than 250 ms,
glucose monitoring with a delay limit of not more than 20
ms, blood pressure monitoring with a delay requirement of
not more than 750 ms, and endoscope imaging with a delay
requirement of not more than 500 ms [8].

Fig. 1. System model [6]

When a packet enters the network gateway, the classifier
immediately assigns the packet a priority based on its level of
delay sensitivity and predetermined requirements such as the
maximum tolerable delay.

On the other hand, medication dispenser data, home tele-
monitoring, access to a patient’s electronic health records,
etc. are some examples of delay tolerant packets [22]. Delay-
sensitive packets are given priority over delay-tolerant packets.
The scheduler then receives the packets and classifies them
into short and large packets depending on the set threshold
size. Large packets are serviced after short packets.

Assumptions
The system model is a heterogeneous multi-server with an
infinite capacity queue, developed under the following assump-
tions:
• Packet arrival rate follows a Poisson distribution function

with parameter λi; i = 1, 2,, in which case λ1 represents

arrival rate of delay sensitive packets while λ2 represents
arrival rate of delay tolerant packets [21].

• Each server’s service times follow an exponential distri-
bution with parameter µi; i = 1, 2, ..., c, in which case µi
is the service rate of server Mi [21].

• The service is offered via a variety of c heterogeneous
servers.

• Each server has infinite capacity [23].
The system model is represented as an M/Mi/c queue,
where M denotes random packet arrival following a Poisson
distribution, Mi denotes the exponentially distributed service
time of server i, and c represents the number of heterogeneous
servers with infinite capacity.

B. Prioritized Scheduling Scheme
Priority awareness is the most crucial criterion when

scheduling the service of multiclass healthcare packets that
possess various levels of urgency [?]. In this PS system,
packets are divided into two priority levels: in terms of delay
requirements, the first priority level classifies packets into
delay-sensitive and delay-tolerant, and short or large packets
at the second priority level, depending on a predetermined
threshold. The working of the PS scheme is shown by the
flow diagram in Fig. 2. To increase the number of packets
serviced in a given amount of time, short packets are given
preference in service over large packets. Buffers are considered
to have infinite capacity for each queue of packets that are
delay-sensitive or delay-tolerant. Similar assumptions were
made in the performance evaluation of IoT-enabled healthcare
monitoring systems [23].

Fig. 2. Flow diagram showing the working of the PS scheme [6]

The packets are then sent to the scheduler, which distributes
them to other shared heterogeneous servers. Concerning server



allocation, three popular allocation strategies have been used
in literature [9]: the fastest server first (FSF) allocation, which
sends the packet to the fastest free server first; the slowest
server first (SSF) allocation, which sends the packet to the
slowest free server first; and the randomly chosen server (RCS)
allocation, which sends the subsequent packet in the queue to
any idle server at random. In this study, we consider the FSF
allocation policy since it has been proven to be better than the
others [9].

Given the differences in term of sizes of packets, the
service rate of healthcare packets can be modeled using the
exponential distribution [8], [12].

The exponential probability density function is given in [8]
as:

f(x) = µe−µx, x ≥ 0, µ ≥ 0. (1)

where the service rate is given as µ.
The proposed PS policy is a non-preemptive, delay-aware,

size-based scheduling policy. At the first priority level, the PS
policy classifies packets into delay-sensitive or delay-tolerant
and on packet sizes, namely short (xs) and large (xl) at
the second priority level. Short packets are prioritized over
large packets for each class of delay-sensitive or delay-tolerant
packets. Utilizing heterogeneous multiple servers, packets be-
longing to the same class are served in first-come, first-served
(FCFS) order.

C. Mathematical background

This study assumes that the servers are ordered in decreas-
ing service rate, that is, µ1 > µ2 > ... > µc. The implication
of this, is that, µ1 is faster than µ2, and µ2 is faster than µ3,
etc. The service rate of the servers can be defined by [9].

Mi =


∑i
j=1 µj i < c∑c
j=1 µj i ≥ c

(2)

Eq. 2 shows that Mi is a variable and may be expressed
in two different ways depending on whether the system has
less than c servers or packets (in which case one server serves
one packet at a time) and when the system contains at least c
packets.

The expressions for the mean response time under the
EDF policy are then defined, and the EDF policy is used to
compare with the prioritized scheduling scheme. Under the
EDF scheme, the server processes packets having the smallest
deadline among all of the waiting packets. For a two priority
class, the waiting time of packets under the EDF scheme is
given in [23].

Ws =Wo + ρsWs + ρdmax(0,Wd −Dd,s) (3)

Wd =Wo + ρsWs + ρdWd + ρsmin(Wd, Dd,s) (4)

where Wo is the mean waiting time required to finish the
service of the packet being served when the tagged packet
arrives. In this case, Wo =

∑2
t=1 λtE(x2

t )

2 .

Ws is the average waiting time for delay sensitive packets,
Wd is the average waiting time for delay tolerant packets, ρs
is the load resulting from delay sensitive packets, ρd is the
load resulting from delay tolerant packets.
Dd,s = dd − ds, where dd is the deadline offset of delay
tolerant packets and ds is the deadline offset for delay sensitive
packets.

D. The PS scheme: Delay sensitive packets

A tagged delay-sensitive packet that arrives to a short
packet-only delay-sensitive queue under the PS scheme will
be delayed all delay-sensitive short packets found in the queue
and the average waiting time for the tagged short delay-
sensitive packet of size xs is given in [6].

W (xss) =
Possm

c
cρx

c+1
ss

λ1(πci=1mi)(1− ρxss)2
(5)

where
ρxss = λ1

∫ xss

0
tf(t)dt = λ1

mc
(1− e−mcxss)− xte

−mcxss

and

Po
−1
ss =

c−1∑
n=0

λn1

πni=1(
∑i
j=1 µj)

+

(
mc
c

πci=1mi

)
(1− ρxss)

−1ρx
c
ss

In the same way, a large delay-sensitive packet that has
been tagged will experience a delay not only from other large
delay-sensitive packets in the queue but also from short delay-
sensitive packets in the queue. Furthermore, the large delay-
sensitive packet that has been tagged will be served only after
all the short delay-sensitive packets that arrived after it in the
queue have been serviced. The average waiting time for a large
delay-sensitive packet of size xl is provided in [6].

W (xls) = 2W (xss) +W (xls) (6)

where W (xss) is as given in (5) and

W (xls) =
Poss(mc)

cρx
c+1
ls

λ1(πci=1mi)(1− ρxls)2
(7)

Also,

Po
−1
ls =

c−1∑
n=0

λn1

πni=1(
∑i
j=1 µj)

+

(
mc
c

πci=1mi

)
(1− ρxls)

−1ρx
c
ls

and ρxls = λ1
∫∞
xt
tf(t)dt = λ1e

−mcxt(xt +
1
mc

)

E. The PS scheme: Delay tolerant packets

The PS scheme chooses the delay tolerant packets after
servicing all delay tolerant packets.

In case the tagged packet happens to be a short delay-
tolerant one, the service of the tagged packet will be delayed
by all short and large delay-sensitive packets, as well as
short delay-tolerant packets already present in the queue.
Furthermore, all short and large delay-sensitive packets that
come after the tagged short delay-tolerant packet in the queue
will cause a delay for the short delay-tolerant packet. The
service of short and large delay-sensitive packets that arrive



after the tagged short delay-tolerant packet is added to the
queue will take place before the tagged short delay-tolerant
packet is serviced. The average waiting time for the delay-
tolerant short packet of size xsd is given in [6] as

W (xsd) = 2W (xss) + 2W (xls) +W (xsd) (8)

where W (xss) and W (xls) are as given in (5) and (7)
respectively. Here,

W (xsd) =
Posd(mc)

cρx
c+1
sd

λ2(πci=1mi)(1− ρxsd)2
(9)

and

Po
−1
sd =

c−1∑
n=0

λn1

πni=1(
∑i
j=1 µj)

+

(
mc
c

πci=1mi

)
(1− ρxsd)

−1ρx
c
sd

where ρxsd = λ2
∫ xt

0
tf(t)dt

The same analysis can be applied to a tagged large delay-
tolerant packet. In this case, this packet will be served after all
short delay sensitive, large delay sensitive, short delay tolerant,
and large delay tolerant packets in the queue have been served.
Moreover, any short or large delay-sensitive packets that arrive
after the tagged large delay-tolerant packet has that been added
to the queue will be serviced before the tagged packet. The
average waiting time for the delay tolerant large packet of size
xld is given in [6] as:

W (xld) = 2W (xss) + 2W (xls) +W (xsd) +W (xld) (10)

where W (xss), W (xls) and W (xsd) are as given in (5), (7)
and (9) respectively. Here

W (xld) =
Posd(mc)

cρx
c+1
ld

λ2(πci=1mi)(1− ρxld)2

and

Po
−1
ld =

c−1∑
n=0

λn2

πni=1(
∑i
j=1 µj)

+

(
mc
c

πci=1mi

)
(1− ρxld)

−1ρx
c
ld

where ρxld = λ2
∫∞
xtd

tf(t)dt.
In the next section, simulations are run in order to assess the

accuracy of the theoretical results with results obtained using
simulations.

IV. MODEL VALIDATION AND COMMENTS

To validate the analytical models, we implement the PS
scheduling policy in the Simulink MATLAB R2023b tool
[20]. Simulink is a graphical programming environment for
modeling, simulating and analyzing dynamic systems. It can
be used to build and simulate the queuing system in a block
diagram form. We considered the Poisson distribution [21] to
generate the arrival rates of both delay sensitive packets, λ1
and arrival rates of delay tolerant packets, λ2. To enusre a
high load value, the arrival rate is varied from 0 to 6.549
packets per second. The server’s service times are generated
using the exponential distribution with parameters, µi, where
i is the service state of the packets for server i. The packet
sizes are distributed by the exponential distribution that has

the coefficient of variability equal to one, since the standard
deviation of an exponential distribution is equal to its mean.

Each server is considered to have infinite capacity [23]. The
server type is selected based on the Fastest Server First (FSF)
allocation policy since it has been proven to be better than the
others [9]. The particular combination of workload parameters
used to generate the packets is shown in Table I. This set
of parameters results in a total load equal to 0.9, which is
considered high load. These parameters are consistent with
those used in the literature. [8], [23], [24], [25].

Using the Simulink MATLAB tool, we obtained perfor-
mance measures for the mean slowdown for delay sensitive
short and large packets as a function of the sizes of packets and
mean slowdown for delay tolerant short and large packets as a
function of packet sizes. In addition, we obtained performance
measures for throughput as a function of packet sizes for
short and large delay sensitive packets. We compare the results
obtained from simulations with the analytical results for mean
slowdown as a function of packet sizes. Since the results
are in agreement, we consider the analytical model (and the
simulation results) validated.

A. Simulation Parameters

In this section, the simulation parameters are presented.

TABLE I
SIMULATION PARAMETERS

Parameter Value

Number of servers, m 5 [24]
Packet arrival rate, λ 0 to 6.549 packets/second

[25]
Service rate for the multi-servers,
µ

1,2,3,4,5 packets/second
[24]

High system load, ρ 0.9 [23]
Average packet size, xt 100 Kb[8]
Threshold of the packet size, xts 75 Kb [8]

B. Evaluation of the mean slowdown of packet sizes for delay
sensitive packets

In this section, the performance of the PS scheduling
scheme is compared for analytical and simulation results
for delay sensitive packets in terms of mean slowdown, the
performance of the EDF policy is included for purposes of
comparison. Fig. 3 presents the variation of mean slowdown
of delay-sensitive short packets with packet size for the
EDF and PS schemes for the analytical models and for the
corresponding detailed simulation, where short packets have
sizes less than or equal to xs = 75 Kb. The results demonstrate
that the analytic model has very good overall agreement with
the MATLAB simulation estimates. The mean slowdown is
slightly underestimated for short packets, shorter than about 30
Kb. The overall agreement between the analytic and simulation
estimates is excellent, and the small discrepancy for short
packets can easily be taken into account due to time taken
in prioritization of the different packets.

Similar observations are noted in Fig. 4 for the mean
slowdown against packet size for delay sensitive large packets,
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Fig. 3. Mean slowdown vs packet size for for delay sensitive short packets

where the analytical model and the corresponding simulations
are in close agreement. Again, large packets are packets with
sizes greater than xs = 75 Kb. The mean slowdown is slightly
underestimated for shorter packets, shorter than about 600 kb.
The agreement between the analytic and simulation results
is in good agreement, and the small discrepancy for shorter
packets can easily be taken into account due to time taken in
prioritization of the different packets.
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Fig. 4. Mean slowdown vs packet size for delay sensitive large packets

C. Evaluation of the mean slowdown of packet sizes for delay
tolerant packets

In this section, the performance of the PS scheduling
scheme is compared for analytical and simulation results
for delay-tolerant packets in terms of mean slowdown. The
performance of the EDF scheme is included for purposes of
comparison. The study validates the analytical models for the
PS scheduling policy, we varied the arrival rate and fixed the
service rate to achieve high load and ascertain the effect of
varying the packet sizes on the mean slowdown for delay
tolerant packets. In Figure 5 we plot the mean slowdown
versus packet size obtained from the analytic model as well as
from the simulations. It is noted that the PS scheme is better
than the EDF scheme, especially for shorter packet sizes. We
note the representative validation results being near in perfect
agreement with the analytic models. Similar to Figure 3, the
mean slowdown is slightly underestimated for short packets,
shorter than about 30 Kb. The overall agreement between the
analytic and simulation estimates is excellent, and the small
discrepancy for short packets can easily be taken into account
due to time taken in prioritization of the different packets.
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Fig. 5. Mean slowdown vs packet size for delay tolerant short packets
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Fig. 6. Mean slowdown vs packet size for delay tolerant large packets

Fig. 6 presents the mean slowdown against packet size for
delay tolerant large packets. The arrival rate is varied while
the service rate is fixed to ensure high load. In this case, large
packets are packets with sizes greater than xs = 75 Kb. The
results demonstrate that the analytic model is in very good
agreement with the MATLAB simulation results. It is also
observed that the mean slowdown is slightly underestimated
for shorter packets, shorter than about 600 Kb.

D. Evaluation of throughput of packet sizes for delay sensitive
packets

In this section, the validated results of the PS scheduling
scheme is presented in terms of throughput for delay-sensitive
packets. The performance of the EDF scheme is included for
purposes of camparison. Figure 7 and 8 shows the validation
results for PS scheduling schemes for delay-sensitive short
and large packets in terms of throughput. We observe that
the simulation validates the model. Similarly, we observe that
the analytic mean slowdown as a function of packet size for
delay tolerant short and large packets is in excellent agreement
with the simulation results. Note also that the mean slowdown
for siumulations results underestimates mean slowdown for
shorter packets in both cases, this observation was noted in
the previous sections. In all cases, it can be observed that as
packet sizes increase, the throughput also increases.

In the next section, the conclusion and future work are
presented.

V. CONCLUSION AND FUTURE WORK

We have validated the analytical models of the PS schedul-
ing scheme with exponentiallly distributed packet sizes. In
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Fig. 8. Throughput vs packet size for delay sensitive large packets

addition, the performance of the EDF scheme is included
for purposes of comparison. We presented results for delay
sensitive and delay tolerant packets for short and large packets
in each case. In addition, we evaluated the performance of the
system using mean slowdown and throughput as performance
measures. Both theoretical and simulation results show that the
proposed mechanism can meet all design requirements for both
short and large packets. Given these validations, the analytical
models can be used to evaluate the performance of PS scheme.
In future research, we will investigate the performance of
the PS scheme under other packet size distributions like the
Bounded Pareto Distribution where there is a mix of a large
fraction of short packets and a small fraction of large packets
but the large packets can cause congestion in the system, in
addition to implementing a threshold on packet sizes.
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