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Abstract— Artificial Intelligence (AI) and Machine 
Learning (ML) are set to transform wireless 
communication systems. By using deep neural networks 
and extensive data, these technologies are improving 
wireless channel performance, making resource 
allocation more efficient, and enhancing signal detection. 
Their impact covers areas like source coding and channel 
estimation, introducing a new era of efficient and 
adaptable wireless communication. These advancements 
speed up networks, improve user experiences, and make 
networks more reliable. AI and ML are playing a crucial 
role in shaping the future of mobile and wireless 
technologies. In this paper, we explore how neural 
networks, through prediction, help to determine optimal 
beamforming angles to maximize the total channel 
capacity between transmitters and receivers. 
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I. INTRODUCTION  

Neural networks play a crucial role in driving 
innovation in various fields, particularly excelling in 
wireless communication, network optimization, and the 
Internet of Things (IoT) [1]. The continuous evolution 
of wireless communication has brought era of data 
abundance, propelling advancements in big data 
analytics and machine learning [1]. In this dynamic 
environment, neural networks have become powerful 
tools for enabling the decoding, harnessing, and 
optimization of this wealth of information. Their 
capabilities enable us to meet the increasing demands of 
next-generation wireless networks, improve the 
efficiency of community wireless communication 
channels, and fine-tune network performance. 
Additionally, they adeptly handle the complexities of 
big data through advanced analytics [1]. In the realm of 
spatial-temporal analysis, particularly within cellular 
network traffic, neural networks exhibit their prowess. 
The development of a Time-Series Similarity-based 
Graph Attention Network (TSGAN) showcases their 

superiority over conventional prediction models, 
emphasizing the immense potential of neural networks in 
enhancing predictions across various time scales [2]. As we 
explore the realm of future communication systems, neural 
networks stand out, particularly in tasks such as predicting 
traffic patterns and managing networks effectively. Neural 
networks, with their ability to learn from training data, provide 
valuable capabilities for network optimization, even without 
explicit channel estimation. This adaptability amplifies their 
utility [3]. Furthermore, neural networks exhibit significant 
potential in intelligent wireless networks, especially through 
innovative adaptive learning [4]. This approach employs 
Transfer Learning (TL) techniques to efficiently allocate 
network resources while addressing critical challenges in the 
field [4]. Neural networks also play a pivotal role in the 
automatic discovery of channel innovation streamlines 
the optimization process, particularly benefiting massive 
Multiple Input Multiple Output (MIMO) systems by 
directly optimizing key system metrics, eliminating the 
need for explicit channel estimation [5]. Additionally, in 
the communication systems fields, machine learning, 
including neural-network-based reinforcement learning, 
contributes significantly. This specialized field 
maximizes data return, optimizes bandwidth utilization, 
and minimizes power consumption, underscoring the 
adaptability and efficiency introduced by neural 
networks in the communication systems domain [6]. In 
the dynamic world of the Internet of Things (IoT), Graph 
Neural Networks (GNNs) play a crucial role, proving to 
be powerful tools for analyzing IoT data. They offer 
deep insights into various IoT sensing environments, as 
evident in a comprehensive review [7].  

In the domain of computer vision-based IoT systems, 
Convolutional Neural Networks (CNNs) play a central 
role [7]. Known for their ability to identify patterns in 
images, CNNs (Convolutional Neural Networks) greatly 
improve the understanding and optimization of IoT data. 
This underscores the important role of neural networks 
in advancing modern technology [7]. In summary, 
neural networks occupy a prominent position in driving 



innovation across diverse domains, including wireless 
communication, network optimization, and IoT. Their 
adaptability, efficiency, and data-driven learning 
capabilities make them indispensable tools for 
addressing the multifaceted challenges posed by 
evolving technologies. The primary goal of this article is 
to present the efficacy and potential of neural networks 
to achieve the maximum total channel capacity in a 
wireless communication system. The utilization of 
neural networks in this context serves as a demonstrative 
example of their predictive capabilities. By using the 
power of neural networks, we aim to highlight their 
competence in making informed predictions, ultimately 
leading to the enhancement of channel capacity. This 
research emphasizes to underscores the practical and 
scientific vaslue of neural networks as a tool for 
optimization and prediction in the domain of wireless 
communication.  

2. DESIGN PARAMETERS 

In this section, we detail the fundamental aspects of 
our implementation. We conduct an exhaustive search 
involving a substantial number of combinations, 
specifically 390,625 in total. The computation time is 3 
days with 72 CPUs and 2 threads per core. This 
extensive exploration is achieved by iterating through a 
range of -60 to 60 degrees with a 5-degree step for each 
of the four antennas. This results in a total of 25 values 
for each antenna, leading to the large number of 
25×25×25×25 combinations. For each combination, the 
total channel capacity is calculated, and these values are 
stored by our algorithm. The combination that yields the 
maximum total channel capacity is sought as our 
primary goal. The environment is visualized in a specific 
area within Berlin, namely Northeast Berlin, as depicted 
in Figure 1. The weather condition is characterized by 
clear air with standard atmospheric parameters, and the 
buildings are modeled with concrete material. The 
wireless communication system operates at 28 GHz, 
with a fixed bandwidth of 2 GHz. A Uniform 
Rectangular Array (URA) is created using a rectangular 
patch antenna element, configured with 8 rows and 4 
columns, and half-wavelength spacing between 
elements. The positions of the transmitter (Tx) and 
receiver (Rx) are defined as Tx1, Tx2, Rx1, and Rx2. 
Angles ranging from -60 to 60 degrees are considered in 
our calculations, with the goal of identifying the optimal 
configuration. 

Tx1: (52.561075, 13.503874, 10)          
Tx2:(52.560802, 13.504149, 10)   
Rx1: (52.560834, 13.504560, 1)    
Rx2: (52.561001, 13.503810,1) 
 

The "ray-tracing" method is employed for channel 
modeling, utilizing the shooting and bouncing ray 
method (SBR) with a maximum one reflection. In this 
step, the channel capacity of the wireless 
communication system for different combinations of 

transmitter (Tx) and receiver (Rx) angles is evaluated. 
The goal is to ensure that the channel capacity is 
assessed. It should be noted that the setup is not specific 
to any unique city conditions; instead, a standard layout 
available in the MATLAB environment is utilized. This 
approach guarantees the robustness of our findings even 
with changes in city configurations or antenna positions. 
Within a nested loop structure, antenna patterns for 
various transmitter and receiver angles are calculated 
using the "beamsteer" function from MATLAB's Phased 
Array System Toolbox. This process entails creating a 
steering vector to represent the spatial response of the 
antenna array, defining scan angles for the main lobe 
beam, computing weights for beamforming based on 
these scan angles, and ultimately calculating the 
radiation pattern of the antenna array.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. (a) The city layout model. (b) The antennas placement 
in the model city [8] . 

 
 

 

 

 

 

 

 

Fig. 2. The digitized antenna radiation pattern. 

Different radiation patterns representing antenna 
directionality and power distribution in 3D space are 
generated by manipulating scan angles and weights.  

(a)

(b)



Antenna elements, designed using classes such as 
"patchMicrostrip" and 
"phased.CosineAntennaElement," are integrated into 
array configurations to generate the desired radiation 
patterns, as depicted in Figure 2. Functionalities such as 
beam steering and beamforming within phased array 
systems are enabled by these elements. Following 
pattern generation, custom antenna elements and 
transmitter-receiver objects are created. The channel 
characteristics are calculated using the "ray-trace" 
function, and each ray is processed to extract channel 
parameters. The total power received and channel 
capacity for each transmitter-receiver pair are then 
calculated, and this information is stored in arrays. The 
iteration through combinations continues until the 
optimal combination, representing the highest total 
channel capacity achievable across all antennas, is 
found. 

3. IMPLEMENTATION 

In this phase, we will develop four distinct neural 
network models. Among these models, two employ the 
sigmoid activation function, while the other two utilize 
the hyperbolic tangent activation function. As depicted 
in Figure 3, these activation functions are utilized in both 
one-layer (a) and two-layer (b) neural network 
architectures. For the one-layer models, we have 
configured them to comprise 14 neurons. In contrast, the 
two-layer models consist of 14 neurons in the first layer 
and 11 neurons in the second layer. 

Additionally, the Identity function, designated as the 
output layer, has been integrated into these models. To 
facilitate the training and validation process, 70% of the 
available data has been allocated. The remaining 30% is 
reserved for evaluating the model's performance and 
assessing its accuracy.  
 

 

Fig. 3. 1-Layer and 2-Layer Neural Network Architectures. 

 

It's important to emphasize that all the data has been 
standardized, a process involving the rescaling of scale-
dependent variables, to ensure consistency in the 
model's training and testing processes. To enhance the 

model's predictive accuracy and minimize errors, we've 
employed the gradient descent method that has been 
determined as an optimization algorithm [9]. Batch 
training was employed for our extensive dataset 
because it is particularly beneficial for large data 
volumes. Moreover, batch training offers the advantage 
of shorter training time. Furthermore, the learning rate 
coefficient, which influences the size of parameter 
updates in each iteration, has been set at 0.1. Finally, 
we've defined the number of training epochs as 2000, 
ensuring an adequate number of iterations for the model 
to converge and capture patterns within the data.  

As depicted in Figure 4, the 2-layer sigmoid model 
exhibits the highest average error, amounting to 1.7%. 
Following closely is the 1-layer sigmoid model with an 
average error of 1.6%. Both of these sigmoid models 
underperform when compared to their hyperbolic 
counterparts. Notably, the single-layer hyperbolic 
tangent model stands out with an impressive 
performance, yielding a mere 1.1% average error. 
However, it's the two-layer hyperbolic tangent model 
that truly excels, boasting a remarkable 0.2% average 
error. This model has proven itself as a highly accurate 
predictor of channel capacities. It's worth emphasizing 
that, as evident from the results presented in Figure 4, 
increasing the number of layers and perceptrons in a 
neural network doesn't invariably lead to performance 
improvements. It's vital to carefully consider the most 
efficient and optimal number of layers and perceptrons 
for the model. This is because the relationship between 
network complexity and performance is nuanced and 
calls for a thoughtful, data-driven approach. 

 

 

 

Fig. 4. Performance Analysis of Neural Network Models. 

It's important to note that over-fitting has not happened 
in these models. Firstly, over-fitting typically occurs 
when the dataset is limited in size, but in our case, we 
have a substantial amount of data. Secondly, over-fitting 
tends to happen when a neural network has a large 
number of layers. However, we've employed either one 
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or two layers, keeping our model relatively simple. 
Additionally, we've imposed limits on the number of 
training epochs, further preventing over-fitting. 

 

Fig. 5. Models Comparison for Channel Capacity Predictions. 
 

Figure 5 displays the numerical predictions of 
channel capacity for each data point, categorized by the 
respective models. Notably, the two-layer hyperbolic 
activation function outperforms the single-layer 
hyperbolic function, demonstrating the superior 
accuracy of the hyperbolic family in channel capacity 
estimation. In these plots, the horizontal axis represents 
the actual data values, while the vertical axis represents 
the predicted values per Gbps. The visual representation 
highlights the effectiveness of the two-layer hyperbolic 
tangent model in closely approximating real values, 
forming a curve that closely resembles the identity line 
(y=x). Following the two-layer hyperbolic model, the 
one-layer hyperbolic and one-layer sigmoid models also 
exhibit curves with minimal deviations from the ideal. 
In contrast, the two-layer sigmoid model demonstrates 
lower estimation accuracy when compared to the other 
models. 

Figure 6 illustrates the relationship between predicted 
channel capacity and residuals. On the X-axis, you'll 
find the predicted channel capacity values, each 
corresponding to a specific data point. The Y-axis 
represents residuals, which are the disparities between 
observed channel capacity and the predicted values. This 
plot serves as a tool for evaluating the accuracy of the 
models' predictions. When the residuals are close to zero 
(y = 0), it signifies that the model's predictions closely 
align with the actual channel capacity. Positive residuals 
indicate overestimation, while negative residuals 
suggest underestimation. These plots reveal that the two-
layer hyperbolic activation function model exhibits the 
highest accuracy. This is evident by the concentration of 
residuals close to zero, indicating minimal prediction 
deviations. In contrast, one-layer and two-layer sigmoid 
models demonstrate weaker performance, as their 
residuals are more scattered, suggesting varying degrees 
of prediction accuracy. Totally, these plots help us 
discern the accuracy and reliability of the different 

models, with the two-layer hyperbolic model emerging 
as the most accurate choice. 

Fig. 6. Models Accuracy Assessment via Residual Analysis. 
 

Figure 7 illustrates the maximum total channel capacity 
predicted by our models. Our main goal is to design 
neural network models that identify optimal 
beamforming angles for maximizing total channel 
capacity, rather than seeking the maximum value within 
the dataset. Nonetheless, comparing these models can be 
important for finding the maximum total channel 
capacity. In this figure, the hyperbolic tangent models 
with one layer predicts 29.1 Gbps and two layers 
predicts 29.4 Gbps as the maximum channel capacity. 
Subsequently, the one-layer sigmoid model forecasts 
28.9 Gbps, while the two-layer sigmoid model predicts 
29.0 Gbps. Notably, the maximum total channel 
capacity is 29.5 Gbps. This reiterates the point that 
increasing the number of neural network layers, despite 
its associated costs and complexity, doesn't guarantee 
enhanced efficiency and predictive performance. 

 
Figure. 7. Maximum total channel capacity comparison among 

neural network models. 
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In the next phase, we decided to change the weather 
condition. Given the superior precision and increased 
anticipated channel capacity demonstrated by the 2-
layer hyperbolic tangent model, we opted to utilize this 
model for predicting the total channel capacity during 
rainy weather. To accomplish this, we randomly 
selected 100 sets of angles for 2 transmitters and 2 
receivers, inputting them into the model. By 
considering the weights and the number of perceptrons, 
we derived an output indicating the optimal angles for 
both transmitters and receivers in this scenario. As 
shown in Figure 8, this process was repeated 20 times, 
resulting in an impressive 90% accuracy. In rainy 
conditions, the maximum total channel capacity is 29.3 
Gbps, and our model successfully recommended 
antenna angles that achieved a near-perfect total 
capacity with average of 26.5 Gbps. It should be noted 
that the duration of each prediction and execution of 
each run has been reduced to less than 2 minutes. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Prediction of total channel capacity in rainy weather by 
using a 2-layer hyperbolic tangent model. 

 

4. CONCLUSION AND FUTURE WORK 

This paper investigates the role of neural networks in 
predicting the optimal beamforming angles to maximize 
channel capacity between transmitters and receivers. At 
first, four neural network models are developed, with 
two using sigmoid activation and two employing 
hyperbolic tangent activation. These models are 
configured with one or two layers, and the data is 
standardized for consistency. The gradient descent 
method and a learning rate coefficient of 0.1 are 
employed to enhance predictive accuracy. Results show 
that the two-layer hyperbolic tangent model outperforms 
other models in prediction with a 0.3% average error, 
emphasizing that increasing the number of layers and 
perceptrons doesn't always lead to improved 

performance. Subsequently, in the second phase, we 
applied our trained and designed model to predict the 
total channel capacity during rainy weather. Our 
findings revealed that our model accurately forecasted 
channel capacity under rainy conditions with an 
impressive 90% accuracy. Hence, the article explores 
the important role of neural networks in facilitating the 
prediction of channel capacity and emphasizes their 
significance in achieving the result. For future research, 
employing reinforcement learning for all antennas is a 
potential approach. This approach enables antennas to 
autonomously learn optimal angles for transmission and 
reception with zero knowledge of the environment, and 
they effort to maximize the total channel capacity 
through autonomous learning. 
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