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Abstract—Anomaly detection is a cutting-edge technology in
the fields of healthcare and machine failure detection. It is
well known that the performance of anomaly detection can be
improved with more labeled data. However, it is common to
predict anomalous and normal data in where are large unlabeled
data and small labeled data. Generally, using a large amount of
labeled data can lead to high accuracy prediction. However, the
cost of labeling data is expensive, which can lead to challenges in
anomaly detection. To achieve high prediction rate of anomaly
detection, it is required to utilize a large amount of unlabeled
data. The only way to achieve high rates of anomaly detection
using both unlabeled data and labeled data is to use semi-
supervised learning. However, if semi-supervised learning is used
without data preprocessing, there is a limitation to obtain high
detection rates. To perform effectively preprocess, we propose a
scheme that leverages graph theory and semi-supervised learning
to address the limitation. The proposed scheme uses graph
Laplacian to get high accuracy in situations where there is little
labeled data and a lot of unlabeled data. We further extend
our scheme by considering friendly-antagonistic interactions
into graph Laplacian, which is called signed graph Laplacian.
We show that using signed graph Laplacian can improve the
performance of our anomaly detection scheme. Furthermore, we
evaluate our proposed scheme on a variety of validated datasets
and show that it outperforms state-of-the-art semi-supervised
anomaly detection methods.

Index Terms—anomaly detection, semi-supervised learning,
graph Laplacian, signed graph Laplacian, self-training, label
propagation, friendly-antagonistic interactions

I. INTRODUCTION

Recent technological advancements have facilitated the
diagnosis of brain tumors and other neurological disorders
through Magnetic Resonance Imaging (MRI) scans. Addition-
ally, these advancements have enabled remote fault detection
in autonomous vehicles and traffic infrastructure. Tradition-
ally, humans have been responsible for identifying health

deterioration or mechanical malfunctions. However, human
judgment is inherently susceptible to errors, which can lead
to incorrect assessments [1]. Erroneous judgements can lead
to delayed problem detection, potentially resulting in severe
consequences, including loss of life.

To address this issue, anomaly detection has been an active
area of research since the 1960s, to empower computers to
automatically identify the anomalies [2]–[4]. Researchers have
made significant efforts to develop techniques that allow ma-
chines to learn and distinguish between normal and abnormal
data patterns. These efforts have resulted in the accumulation
of big data across various fields. However, these data are
typically unlabeled, making it challenging for machines to
learn from them as the data does not indicate whether it
is normal or abnormal. The process of labelling data is
costly, presenting a significant obstacle, namely high cost of
performing anomaly detection.

To address these limitations, we devise a semi-supervised
learning approach to exploit a large amount of unlabeled data
with a small amount of labeled data for anomaly detection.
We also performed experimental analysis to demonstrate the
cost-efficient solution with high efficiency. The rest of the
manuscript is structured as follows. In Section II, we reviewed
the literature on anomaly detection, especially the challenges
and cost-effectiveness. In section III, we propose our scheme
for classifying unlabeled data using the signed graph Lapla-
cian. In section IV, we describe how to perform anomaly de-
tection using machine learning based on the proposed method.
In section V, we rigorously evaluate the performance of our
proposed scheme. Finally, in section VI, we conclude the
paper by summarizing the key findings of our research and
discussing the broader implications of our work.



II. RELATED WORK

In this section, we present a comprehensive review of the
current state-of-the-art in anomaly detection techniques, with
a particular focus on the limitations of existing methods.
Anomaly detection, also known as outlier detection and nov-
elty detection, has been the subject of numerous studies. How-
ever, achieving a high detection rate remains a significant chal-
lenge due to factors such as ‘Unknownness’, ‘Heterogeneous
anomaly classes’, ‘Rarity and class impact’, and ‘Diverse
type of anomaly’. To address these challenges, researchers
have proposed a novel deep learning-based anomaly detection
method, referred to as deep anomaly detection [5].

Despite the advancements, developing effective anomaly
detection methods for complex, high-dimensional data is still
an open problem. To tackle this issue, the authors of [6]
proposed Adversarially Learned Anomaly Detection, a tech-
nique that leverages Generative Adversarial Networks (GANs)
for anomaly detection and uses adversarially learned fea-
tures. Additionally, the authors of [7] introduced an enhanced
scheme called Cycle-consistent Generative Adversarial Net-
work, which capitalizes on the strengths of GANs in anomaly
detection for time series data. These strengths include the
ability to learn the distribution of normal data for effective
anomaly discrimination and the capability to reverse the gen-
erated data back to the original data.

In [8], the authors introduce a technique for anomaly
detection in graph data. This method integrates node-based
and edge-based approaches, capitalizing on the relational
information inherent in graph-based data. Furthermore, [9]
presents a strategy to enhance the convergence of the graph
Laplacian using a kNN self-tuned kernel. In a separate study,
[10] proposes an advanced variant of the graph Laplacian.
This variant incorporates both contrast and density affinity,
leading to improved performance in semi-supervised learning
problems that employ graph spectral analysis. Graph spectral
analysis is a robust method for clustering objects based on their
similarities, which are represented by a graph connecting these
objects [11]–[13]. This enhanced semi-supervised learning
(SSL) Laplacian facilitates improved spectral clustering.

In [14], the authors concentrate on fully unsupervised
anomaly detection using an unlabeled training dataset, which
comprises both normal and abnormal samples. They propose
a method to enhance the robustness of one-class classifica-
tion, which is trained on self-supervised representations (self-
training). This method employs a data refinement process to
effectively tackle the problem. The fundamental principle of
self-training algorithms is based on a semi-supervised learning
technique. This technique iteratively learns a classifier by
assigning pseudo-labels to a set of unlabeled training samples,
provided their margin exceeds a certain threshold [15].

In [16], the authors provide a comprehensive review of
self-training schemes for semi-supervised learning, a field
that has garnered increasing interest in recent years. They
explore various strategies for selecting unlabeled samples for
pseudo-labeling and offer an overview of different self-training

variants and related schemes found in the literature. The
authors also examine recent theoretical advancements in this
research area and elucidate the key features of self-training
employed in several renowned methods. Recently, self-training
has been widely applied in unsupervised domain adaptation,
extending beyond the realm of semi-supervised learning [17]–
[19].

In [20], the authors introduce a label propagation algo-
rithm based on a bipartite graph to tackle the issue of poor
performance of label propagation when certain class regions
lack prior labels. The algorithm constructs a bipartite graph
using example constraints and devises a two-channel example
generation strategy to ensure the representation of all classes
in the generated examples. Furthermore, the authors propose a
supervised update strategy that utilizes known classes to learn
example constraints for supervising missing classes, thereby
facilitating the generation of high-quality examples in both
channels.

However, these studies face a significant challenge due
to the domain shift between the source and target domains.
The prediction confidence provided by the trained model may
be strongly biased towards the source domain, so it is not
reliable for generating pseudo-labels in the target domain.
Consequently, the performances of self-training and label
propagation can be substantially degraded due to the intro-
duction of substantial errors in the pseudo-labels, stemming
from the significant mismatch between the source and target
domains. To solve this problem, there is a way to use large
amounts of labeled data for anomaly detection. But collecting
labeled data is not only expensive but also practically difficult.

We propose two novel deep anomaly detection methods
that efficiently classify unlabeled data, unlike existing meth-
ods. Our methods apply semi-supervised learning techniques,
such as self-training (ST) and label propagation (LP), using
graph Laplacian. Our methods achieve superior performance
in scenarios with a small amount of labeled data by providing
additional class information to unlabeled data, which improves
the classification accuracy. Moreover, we propose an improved
graph Laplacian that incorporates friendly-antagonistic rela-
tionships between data using labeled data. This improvement
enhances the performance in situations with a large amount
of unlabeled data and a small amount of labeled data. We
demonstrate that our improved graph Laplacian can boost the
performance of our anomaly detection methods. We evaluate
our methods on various validated datasets and show that they
outperform state-of-the-art semi-supervised anomaly detection
methods.

III. SIGNED GRAPH LAPLACIAN FOR CLASSIFICATION OF
UNLABELED DATA

In this section, we propose graph Laplacian and signed
graph Laplacian methods for classifying unlabeled data. Graph
Laplacian is a method for classifying graph data using the
connection information between nodes in a graph. Signed
graph Laplacian is a method for classifying graph data that
contains signed relations (friendly-antagonistic interactions)



between nodes [21]–[23]. Based on the Laplacian graph, these
relations are created by providing additional class information
to unlabeled nodes. In this paper, we use the term signed
relations to refer to the friendly-antagonistic interactions in
a graph.

A. Classification using the Graph Laplacian (CGL)

In this section, we use graph Laplacian to preprocess
the data. To construct a graph Laplacian, we use k-Nearest
Neighborhood (kNN) to connect each node. Graph Laplacian
is a matrix that represents the structural properties of a
graph. Based on the connection information between nodes,
we identify the structural characteristics of the graph using
spectral coordinates. These coordinates can be used to classify
graph data. The algorithm using spectral coordinates of graph
Laplacian is as follows [24]:

Algorithm 1: Spectral Coordinates of Graph Laplacian
Input: Set of points X = {x1, x2, . . . , xn} ∈ Rm to

be clustered into k-subsets.
Output: Clustering assignment for each point in X .
Step 1: Construct the adjacency matrix A ∈ Rn×n

with Aij = e−
∥xi−xj∥

2

σ for i ̸= j, and Aii = 0.
Step 2: Form the diagonal matrix D with Dii as the
sum of the i-th row (or column) of A.

Step 3: Construct the Laplacian matrix L = D −A.
Step 4: Find e1, e2, . . . , ek, the k largest eigenvectors

of L (ensuring orthogonality for repeated
eigenvectors). Form the matrix E = [e1 e2 . . . ek].

Step 5: Treat each row of E as a point in Rk and
cluster them into k clusters using the kNN method or
another algorithm.

Step 6: Assign the original point xi to cluster j if and
only if row i of matrix E was assigned to cluster j.

However, graph Laplacian has a drawback that it cannot
accurately classify the data when the distributions of data
from different classes overlap. It also does not capture the
signed relations between nodes, which can indicate friendly or
antagonistic interactions. To address these limitations, we use
a scheme called signed graph Laplacian, which incorporates
signed relations by providing additional class information to
unlabeled nodes.

B. Classification using the Signed Graph Laplacian (CSGL)

Signed graph Laplacian is a scheme that improves the
limitations of graph Laplacian in Section III-A. Signed graph
Laplacian is a matrix that represents the structural properties
of a graph by considering both the connection information
between nodes and the signed relations between nodes. It
classifies graph data using spectral coordinates similarly to
graph Laplacian. However, unlike graph Laplacian, it has
the advantage of providing additional class information to
unlabeled nodes, making it easier to infer the relationship
between labeled points. It also has the advantage of performing

more accurate clustering by reflecting the signed relations
between nodes. The algorithm using spectral coordinates of
signed graph Laplacian is as follows:

Algorithm 2: Spectral Coordinates of Signed Graph
Laplacian
To enhance Algorithm 1, the signed graph Laplacian

algorithm incorporates the signed relations of the
labeled points.

Input: Set of points X = {x1, x2, . . . , xn} ∈ Rm to
be clustered into k-subsets.

Output: Clustering assignment for each point in X .
Step 1: Form the adjacency matrix A ∈ Rn×n defined

by Aij = e−
∥xi−xj∥

2

σ if i ̸= j, and Aii = 0.
Step 2: If xi and xj are labeled points for some i, j,

set Aij = +1 when in the same class and Aij = −1
when in different classes.

Step 3: Define the diagonal matrix D as Dii being the
sum of the i-th row (or column) of A.

Step 4: Based on Steps 1 and 2, construct the signed
Laplacian matrix S = D −A.

Step 5: Find f1, f2, . . . , fk, the k largest eigenvectors
of S (ensuring orthogonality for repeated
eigenvectors). Form the matrix F = [f1 f2 . . . fk].

Step 6: Treat each row of F as a point in Rk and
cluster them into k clusters using the kNN method or
another algorithm.

Step 7: Assign the original point xi to cluster j if and
only if row i of matrix F was assigned to cluster j.

Consequently, the signed graph Laplacian overcomes the
limitations of the graph Laplacian and performs superiorly
in classifying data, even when the distributions of data from
different classes overlap. In Section IV, we introduce a scheme
for performing anomaly detection by applying the techniques.

IV. SEMI-SUPERVISED LEARNING WITH CGL AND CSGL
FOR ANOMALY DETECTION

In this section, we present our method for anomaly detec-
tion that leverages unlabeled data classified by the schemes
proposed in the previous section.

A. Semi-supervised learning algorithm

We use two semi-supervised learning algorithms, namely
label propagation and self-training, that are compatible with
CGL and CSGL. Label propagation is an algorithm that
classifies data using graph theory and gradually assigns labels
to unlabeled data that are similar to labeled data [2], [25]. Self-
training is an algorithm that exploits the structural information
of unlabeled data [26]. Since the data generated by CGL and
CSGL capture the structural information of the original data,
self-training can effectively utilize this information for clas-
sification. The learning process of anomaly detection consists
of common operations and algorithm-specific operations.



B. Common Operations

To perform anomaly detection, we first generate data for
semi-supervised learning based on the graph Laplacian and
signed graph Laplacian proposed in Section III. We then apply
label propagation and self-training to learn from this data. The
common operations are as follows:

1) Input Data: We input data that contains normal and
anomaly information. This data consists of a mixture
of labeled and unlabeled data, assuming a scenario with
abundant unlabeled data and a limited amount of labeled
data—a common situation in the real world.

2) Adjust Dimensions: We adjust the dimensions of the
data to reduce the dimensionality. This can lower the
time complexity and prevent eigenvalues from diverging.

3) Calculate Consistency: We calculate the consistency
between labeled and unlabeled data using weighted kNN
[27]. This method can estimate the similarity between
data points based on their distances. Range search and
kNN are other possible methods for calculating consis-
tency [27], [28], but they may have drawbacks such as
producing isolated nodes or dissimilar connections.

C. Operations for Label Propagation

The operations performed by label propagation are as fol-
lows:

1) Kernel Selection: We use kNN as the kernel of label
propagation, which can calculate the similarity between
nodes based on their distance. Radial basis function
(RBF) kernel is another option, but it may cause exces-
sive or insufficient connections depending on the range
parameter [27], [28].

2) Label Propagation Formula: We apply the label propa-
gation algorithm based on the graph Laplacian matrix L.
The formula for propagating the labels from the labeled
data X to the unlabeled data is given by:

F = (I − αL)−1Y,

where Y is the initial label matrix, F is the final label
matrix, and α is a damping factor. In component form,
the label propagation formula can be written as:

y
(t+1)
i =

∑
j∈N(i)

αijy
(t)
j ,

where y
(t+1)
i is the label of node i at iteration t + 1,

N(i) is the set of neighbors of node i, αij is the weight
of the edge between nodes i and j, and y

(t)
j is the label

of node j at iteration t.

D. Self-Training Operations

The following steps describe the self-training operations:
1) Perform Self-Training: Perform self-training using the

k-best criterion [16], [26]. This criterion selects the k
most confident predictions from the unlabeled data and
adds them to the labeled data. It is more robust and

flexible than the threshold criterion, which requires a
well-calibrated classifier.

2) Train Support Vector Machine (SVM) Model: Train
a support vector machine (SVM) model on the labeled
data using the following objective function:

θ = argmin
θ

[
1

2
∥θ∥2 + C

m∑
i=1

max(0, 1− yi(θ · xi + b)

]
,

where θ is the model parameter, xi is a data point, yi is
the label of xi, and C is the regularization parameter.

After applying these steps, we obtain an anomaly detection
model to classify the data into normal and abnormal classes.

V. EXPERIMENT

We aim to apply our proposed scheme to the health diagno-
sis and equipment anomaly detection industry. In this section,
we conduct anomaly detection experiments using data from
these fields to evaluate the performance of semi-supervised
learning with CGL and CSGL.

A. Dataset

We used two datasets from Kaggle for our experiments:
‘Machine Predictive Maintenance Classification’ [29] and
‘Heart Failure Prediction Dataset’ [30]. We refer to them as
‘maintenance’ and ‘heart failure’ respectively. These datasets
are suitable for anomaly detection tasks in the domains of
health diagnosis and equipment maintenance.

B. Design of experiment

We split each dataset into 80% for training and 20% for
validation. We performed semi-supervised learning with only
0.5% of the training data labeled and the rest unlabeled.
We applied two semi-supervised learning algorithms: label
propagation and self-training. We also generated different
types of data for semi-supervised learning based on the graph
Laplacian and signed graph Laplacian methods proposed in
Section III. We denote the data types as follows:

1) Original dataset (Org): The original data without any
transformation.

2) Laplacian dataset (L): The data transformed by the graph
Laplacian method.

3) Signed Laplacian dataset (sL): The data transformed by
the signed graph Laplacian method.

We combined each data type with each semi-supervised
learning algorithm and obtained six variants: ‘LP+Org’,
‘LP+L’, ‘LP+sL’, ‘ST+Org’, ‘ST+L’ and ‘ST+sL’. We used
kNN as the kernel for both label propagation and self-training.
We varied the value of k from 5 to 25 with a step size of 5
and repeated each experiment 100 times for each k. The source
code, the datasets, and the intermediate data are available at
[31].



C. Computing environment

As the size of data used in semi-supervised learning in-
creases, more memory is required. For fast data preprocess-
ing and semi-supervised learning, high-speed processor is
required. The computer used in this paper is a general PC, but
it is important to determine an appropriate computing resource
considering the size of the data generated in an environment
using this technology and the size of the data that needs to be
processed [32]. The specifications of the computer used in the
experiment are shown in Table I.

TABLE I
COMPUTER SPECIFICATION

Component Specification
CPU AMD Ryzen 9 5900X
RAM DDR4-3200 96 GB
GPU NVIDIA RTX 2060 12GB
OS Ubuntu 22.04 LTS

Used Libraries Python 3.11, scikit-learn 1.3.2, SciPy 1.11.3,
pandas 2.1.1, NumPy 1.26.1

D. Experimental results

As depicted in Figure 1 and Figure 2, the prediction accu-
racy was higher when the data for semi-supervised learning
was generated using the signed graph Laplacian. This suggests
that preprocessing the data to account for the distribution of
normal and abnormal data can enhance the results of semi-
supervised learning.

The figures also demonstrate that adjusting the k-value
appropriately can increase prediction accuracy by ensuring that
nearby nodes in the same class are well-connected. Conversely,
an inappropriate k-value can lead to disconnected nodes or
connections between nodes of different classes, thereby re-
ducing accuracy.

In these experiments, the ‘ST+sL’ method achieved an
accuracy rate of 100%. The high detection rate of ‘ST+sL’ is
likely due to its ability to approximate nonlinear data to linear
data using the signed graph Laplacian, which is compatible
with self-training using SVM as a base classifier.

Fig. 1. Experiment on datasets of heart failure

Fig. 2. Experiment on datasets of maintenance

VI. CONCLUSION

The proposed scheme is well-suited for environments where
unlabeled data is abundant. It can achieve high accuracy
at a low cost by performing semi-supervised learning with
a large amount of unlabeled data and a small amount of
labeled data. This is due to the scheme’s use of the signed
graph Laplacian’s characteristics to classify unlabeled data into
normal and abnormal categories.

However, the proposed scheme has several limitations. One
such limitation is the high computational complexity involved
in calculating the eigenvalues, which can lead to significant
time and memory consumption when classifying unlabeled
data from millions of inputs. Another limitation is that the
scheme does not directly convert unlabeled data to labeled
data. To address these limitations, we plan to conduct research
on techniques for reducing complexity and auto-labeling.

In conclusion, the proposed scheme presents a promising
approach to anomaly detection in environments where unla-
beled data is accumulated. Our future research will aim to
address the identified limitations and enhance the scheme’s
practicality for anomaly detection.
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