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Abstract— Medical image segmentation is a crucial task 

in healthcare as it helps in the accurate diagnosis and 

treatment of various medical conditions. UNet-based 

architectures have been widely used for medical image 

segmentation due to their ability to produce high-quality 

segmentations. However, there is a need to improve the 

performance of these architectures to enhance their 

effectiveness in medical image segmentation further. One 

promising approach is using transformers, which have 

shown great potential in improving the performance of 

various deep learning models. This research compares 

four UNet-based architectures (UNet, UNetR, Trans-

UNet, and Swin-UNet) with and without transformers to 

evaluate their effectiveness in medical imaging using four 

independent datasets. The findings of this study will be 

valuable in advancing the field of medical image 

segmentation and contributing to the optimization of U-

net-based architectures. 
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I. INTRODUCTION 

Medical image segmentation is a process used in 
healthcare to separate different structures or regions of 
interest in medical images. It is critical in clinical analysis and 
diagnosis, providing doctors with the necessary information 
for disease diagnosis and treatment planning [1]. Medical 
image segmentation is crucial to healthcare systems because 
it improves diagnostic efficiency and accuracy, helps doctors 
detect a condition early, and makes more accurate diagnoses. 
By accurately identifying and separating different structures 
and regions, medical image segmentation provides a reliable 
basis for clinical diagnosis and pathology research, 
outputting the region of interest to the doctor [2]. 

Segmentation approaches are used to perform lesion and 
organ segmentation, which are essential to computer-aided 
disease diagnosis and have been improved by using deep 
convolutional neural networks, which have shown excellent 
results. However, medical image segmentation poses a 
significant challenge for networks in balancing local and 
global information, resulting in unstable segmentation 
outcomes. Therefore, several modifications have been 
proposed on U-Net, such as UNet++, SAUNet++, and 
CLAW U-NET, to improve segmentation accuracy [2-4]. 
Accurate medical image segmentation is important in 
healthcare to effectively diagnose and treat various medical 
conditions, making it necessary even in cases where 
incomplete overlap occurs across multiple phases. Multi-
phase images can enhance medical image segmentation, 
which is beneficial for computer-aided disease diagnosis and 
achieving high accuracy in lesion segmentation. Despite the 
improvements made by existing segmentation models, there 
is still a need for further improvement in medical image 
segmentation. 

UNet-based architectures are widely utilized in medical 
image segmentation applications, including CT scans, MRI, 
histopathology, and endoscopy of the prostate, breast, colon, 
abdomen, brain, lungs, etc. The UNet architecture has gained 
popularity in segmentation because it captures both high- and 
low-frequency information, even though it has a considerable 
semantic gap between the encoder and the decoder. The 
UNet-based architecture employs a contracting path and an 
expanding path. The contracting path is a typical 
convolutional network consisting of repeated convolution 
applications, followed by a rectified linear unit (ReLU) and a 
max-pooling operation. The expanding path enables precise 
localization using transposed convolutions. On the other 
hand, the UNet-based transformer models employ a 
transformer and adapt it into a UNet-like architecture, 
showing improved segmentation performance compared to 
other segmentation models [5]. However, U-Net-based 
architectures have not been extensively studied in relation to 
some cancers, such as lung cancer [3]. 

Transformers are becoming increasingly popular in 
medical image segmentation, particularly in UNet-based 



architectures. UNet Transformers (UNetR) introduces a 
novel architecture that treats segmentation as a sequence-to-
sequence prediction problem, using transformers to perform 
better [6]. Additionally, researchers have proposed a 
Convolutional Neural Network (CNN)-based transformer 
architecture (Trans-UNet) that integrates self-attention into a 
convolutional neural network to enhance medical image 
segmentation, replacing the standard design of UNet with a 
hybrid CNN-transformer as an encoder [7]. Swin-UNet is a 
pure transformer-based U-shaped architecture that leverages 
Swin Transformer's success to achieve more accurate 2D 
medical image segmentation [8]. 

In this research, we carried out a comparative analysis to 
evaluate the performance and effectiveness of three 
transformer-based architectures, namely UNetR, Trans-
UNet, and Swin-UNet, over the original UNet architecture 
proposed by Ranneberger et al. [9] using four medical 
imaging datasets. We analyze and discuss the results after 
training and testing the various models with our datasets.  

II. DATASETS DESCRIPTION 

This research uses four datasets containing 

histopathological and endoscopy images.  

Dataset 1 contains retinal images obtained as a 

combination of three different sub-datasets. A sub-dataset, 

DRIVE [10] was obtained from a diabetic retinopathy (DR) 

screening program in the Netherlands with over 40 retinal 

images accompanied by segmentation annotation for two 

classes describing the presence or absence of the DR. The 

second sub-dataset, CHASE_DB1 [11], contains retinal vessel 

segmentation data collected from fourteen children on both 

eyes. The last dataset, STARE [12], comprises 20 retinal 

fundus images with 50% pathology presence. These three 

datasets were combined to obtain the first dataset of our 

experiment. The combination was due to the limited amount 

of data from distinct datasets. The second dataset (Kvasir-

SEG) contains polyp endoscopic images extracted from 

colonoscopy videos. Kvasir includes 1,000 polyp images 

collected from the polyp class in the Kvasir-SEG dataset [13]. 

Additionally, we considered a histopathological dataset 

containing colorectal cancer images for this analysis. The 

NCT-CRC-HE dataset [14] consists of 100,000 non-

overlapping image patches from hematoxylin & eosin (H&E) 

stained histological images of human (CRC) and normal 

tissue. All images are of size 224×224 and classified into nine 

classes. For this experiment, we considered two classes: 

normal colon mucosa and colorectal adenocarcinoma 

epithelium. Lastly, we used the Multi-organ Nucleus 

Segmentation dataset (MoNuSeg) [15]. These data were 

collected from several hospitals and contain a variety of 

cancer types of data consisting of 30 tissue images, each of 

size 1000×1000 pixels, having 21,623 hand-annotated nuclear 

boundaries from 7 different organs, specifically breast, liver, 

kidney, prostate, bladder, colon, and stomach. Figure 1 shows 

sample data from all the datasets.  

 

 

 
 

Figure 1: Dataset Samples. (a) Dataset 1: DRIVE+CHASE-

DB1+STARE; (b) KvasirSeg Dataset; (c) NCT-CRC-HE 

Dataset; (d) MoNuSeg Dataset. 

 

III. RESEARCH DESIGN 

We trained and tested four state-of-the-art algorithms 

using the datasets presented above. This section briefly 

portrays each model we considered for analysis, followed by 

the evaluation metrics used for comparative analysis. 

A. The UNet architecture 

The UNet architecture, proposed by Ranneberger et al. 

(see Figure 2), is a type of CNN specifically designed to 

segment biomedical images. It comprises an encoder and a 

decoder pathway, interconnected through skip connections. 

This structure enables the network to effectively capture high-

level semantic and low-level spatial information, leading to 

improved segmentation performance. The input image is 

passed through a series of convolutional layers in the encoder 

pathway, followed by max-pooling layers, which 

progressively downsample the input and extract higher-level 

features. On the other hand, the decoder pathway consists of a 

series of up-convolutional layers, which increase the spatial 

resolution of the feature maps and enable the network to 

reconstruct the segmented output image. Skip connections 

bridge the encoder and decoder pathways by transferring 

feature maps from the encoder to the corresponding layers in 

the decoder. This allows the network to leverage the high-

resolution features from the earlier layers for more accurate 

segmentation to generate optimal output.  



 
Figure 2: UNet architecture [9]. 

 

B. UNet Transformers (UNetR) architecture 

UNet Transformers (UNetR) is a novel deep learning 
architecture proposed by Hatamizadeh et al. designed to 

tackle various image segmentation and medical imaging 

tasks. The UNetR model is an innovative combination of the 

popular UNet architecture and the powerful transformer 

model. The UNet architecture, originally developed for 

biomedical image segmentation, has been widely adopted in 

various image-processing tasks due to its robustness and 

effectiveness. Its symmetric encoder-decoder structure 

enables the model to capture high-level semantic information 

and fine-grained local details. The encoder captures the 

context of the input image while the decoder reconstructs the 
segmented output from the encoded features. Conversely, 

transformers have gained immense popularity in natural 

language processing and computer vision, demonstrating 

state-of-the-art (SOTA) performance on various tasks. The 

key component of the Transformer architecture is the self-

attention mechanism, which allows the model to weigh 

different input features according to their relevance. 

Integrating transformers into the UNet created an efficient 

and powerful model for various image segmentation and 

analysis tasks. 

 

 
Figure 3: UNet Transformers (UNetR) architecture [6]. 

 

C. The transformer architecture Trans-UNet 

The Trans-UNet model is a popular transformer-based 

medical image segmentation model with SOTA results. In 

Trans-UNet, a modified transformer encoder is used as the 

backbone of the model to extract features from medical 

images. The extracted features are then passed through a 

UNet-style decoder to perform segmentation. Using 

transformers as encoders in Trans-UNet has several 

advantages over traditional encoder-decoder architectures. 

Firstly, transformers can capture long-range dependencies in 

the image, which is crucial for accurate segmentation. 

Secondly, transformers can better preserve spatial information 

in the image, resulting in sharper and more precise 

segmentation masks. Figure 4 below illustrates the Trans-

UNet architecture. An encoding block consisting of CNN and 

transformer layers is used for down-sampling. The CNN 

layers use feature extractors to generate a feature map 

tokenized into a 2D embedding shape by linear projection and 

fed into the transformer layers. The upsampling process is 

straightforward, as the CNN-Transformer encoder is run by a 

3×3 convolution layer with ReLU activation, upsampled, and 

then concatenated with the output of the third-level CNN 

feature extractor until the output is generated. 

 

 
Figure 4: Trans-UNet architecture [7]. 

 

D. Swin-Unet architecture  

The Swin-Unet architecture proposed by Cao et al. for 

medical image segmentation is a U-Net-like pure 
transformer. This model is based on the swin transformer, a 

hierarchical transformer with shifted windows. The swin 

transformer has been shown to outperform previous 

transformer-based models on various computer vision tasks. 

The Swin-Unet model proposed leverages the strengths of the 

swin transformer to achieve SOTA performance on medical 

image segmentation tasks. The architecture comprises a 

series of swin transformer blocks in the encoder and decoder 

pathways (See figure 5). The swin transformer blocks process 

the tokenized image patches to extract high-level features and 

perform non-linear transformations. Like the original U-Net 
architecture, the Swin-Unet model employs skip connections 

between the encoder and decoder pathway. The skip 

connections allow the network to transfer high-resolution 

features from the encoder to the corresponding decoder 

layers, which helps to improve the segmentation 

performance. The Swin-Unet architecture is an innovative 

extension of the U-Net architecture and represents a 

significant advancement in transformer-based models for 

medical image segmentation. 

 



 
Figure 5: Swin-Unet architecture [8]. 

 

E. Evaluation Metrics 

To evaluate the segmentation performance of distinct 

models, two standard evaluation metrics are used to compare 

the methods. The evaluation metrics include Dice Coefficient 

(DC) and Intersection over Union (IoU) or Jaccard 

Coefficient. Four different values, namely true-positive (TP), 

true-negative (TN), false-positive (FP), and false-negative 

(FN), are used to calculate the DC and IoU. These evaluation 

metrics are computed in equations (1) and (2). 
 

𝐷𝑖𝑐𝑒 =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
            (1) 

 

                              𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
               (2)  

 

IV. RESULTS AND DISCUSSION 

In this section, we present a comprehensive analysis of the 

performance of Transformer-based models on four different 

medical image segmentation datasets. Our study explores how 

well the latest models handle other challenges in medical 

image datasets. We want to determine how effective these 

models are in dealing with the different eventual problems in 

various medical images. We compare different Transformer-

based models on various medical image datasets to understand 

their strengths and possible limitations. By looking at the 

results side by side, we want to figure out how well these 

models can work with different types of medical images and 

if they can accurately outline the areas we are interested in. 

Tables I-IV show the comparative analysis of 

segmentation models using four datasets: DRIVE + CHASE-

DB1 + STARE, Kvasir-SEG, NCT-CRC-HE, and MoNuSeg. 

Table I indicates that Trans-UNet outperforms other methods 

by giving overall DC and IoU of 0.716 and 0.573, 

respectively. Similarly, on the NCT-CRC-HE dataset in 

Table III, the Trans-UNet outperforms other methods on DC 

and IoU by achieving 0.835 and 0.728, respectively. For the 

Kvasir-SEG dataset in Table II, the base model UNet 

outperformed other SOTA methods on all metrics. On the 

other hand, based on the results of MoNuSeg in Table IV, we 

can observe that the Swin-UNet achieved better performance 

than other datasets and outperformed previous SOTA 

methods on all metrics. To visualize the performance 

improvement of each method, we plot the comparison results, 

shown in Figure 6. Figure 7 shows the visualization results of 

medical image segmentation using distinct deep learning 

models. 

TABLE I.  RESULTS OF THE DATASET 1  

Method DC IoU Test loss 

UNet 0.6190 0.4656 0.1567 

UNetR 0.6106 0.4596 0.1112 

Trans-UNet 0.7167 0.5732 0.0892 

Swin-Unet 0.6126 0.4460 0.1515 

TABLE II.  RESULTS OF THE KVASIRSEG DATASET 

Method DC IoU Test loss 

UNet 0.7312 0.5880 0.1936 

UNetR 0.4422 0.2880 0.3418 

Trans-UNet 0.4021 0.2580 0.4015 

Swin-Unet 0.5173 0.3523 0.3238 

TABLE III.  RESULTS OF THE NCT-CRC-HE DATASET 

Method DC IoU Test loss 

UNet 0.8162 0.7056 0.2194 

UNetR 0.7184 0.5721 0.3722 

Trans-UNet 0.8364 0.7281 0.2147 

Swin-Unet 0.8363 0.7257 0.2504 

TABLE IV.  RESULTS OF THE MONUSEG DATASET  

Method DC IoU Test loss 

UNet 0.9203 0.8525 0.0961 

UNetR 0.6235 0.4534 0.2939 

Trans-UNet 0.8461 0.7335 0.1289 

Swin-Unet 0.9547 0.9133 0.0432 

 

 
Figure 6: Comparative results for various segmentation 

models/datasets. 

 



 

Figure 7: Visualization of segmentation results. 

 

The performance of UNet, UNetR, Trans-UNet, and 

Swin-UNet depends on various factors, and its effectiveness 

can vary across different image datasets. There is no 

guarantee that a particular architecture will always perform 

better for all datasets. However, before choosing a model 

architecture, it is essential to conduct thorough 

experimentation and validation on the specific dataset and 

task at hand. Comparing the performance of multiple 

architectures and tuning hyperparameters is part of finding 

the best model for a particular application. Moreover, 

interpreting and understanding the results through visual 

inspection of segmentation outputs can provide valuable 

insights into the model's behavior on specific datasets. 

V. CONCLUSION 

This paper investigates the effectiveness of some UNet 

transformer-based models in medical image segmentation 

tasks. We used four independent datasets for the comparative 

analysis, considering the Dice and Jaccard coefficients as the 

most informative metrics to appreciate the model's 

effectiveness. After experiments, we concluded that the 

performance of UNet, UNetR, Trans-UNet, and Swin-UNet 

depends on various factors, and its efficacy can vary across 

different image datasets. There is no guarantee that a 

particular architecture will always perform better for all 

datasets; therefore, choosing architectures and models 

requires thorough experimentation and validation on the 

specific dataset. 
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