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Abstract—In the wake of Industry 4.0, many companies are
equipping their systems with more sensors and collecting huge
amounts of sensor data. This data, in the form of time series, plays
an important role in increasing productivity and implementing
smart factories. One of the most important things is to detect
anomalies caused by various factors (equipment ageing, sudden
stops in the production line, interference from external factors).
One of the limitations of existing time series anomaly detection
research is that it does not take into account the complex spatial
dependencies (inter- and intra-modal correlations) of sensor data.
Therefore, we propose a model that can accurately and effec-
tively detect outliers in multi-modal time series collected from
manufacturing facilities by utilizing Graph Attention Networks.
Our proposed model demonstrates highest performance through
performance comparison with six baselines.

Index Terms—multi-modal time series, anomaly detection,
sensor, graph attention networks, unsupervised learning

I. INTRODUCTION

Recently, the industry is witnessing the emergence of

groundbreaking technologies and production methodologies

concurrent with the advent of the Industry 4.0. Specifically, in

the context of burgeoning trends like smart factory and digital

transformation, corporations are increasingly adopting systems

capable of integrating additional sensors for extensive data

collection. Predominantly, this sensor data is being archived

in the format of time series data.

This time series data provides insights into the complexity

of the production process and is pivotal in the analysis and en-

hancement of the production system’s performance. Nonethe-

less, the occurrence of anomalies is not uncommon, often at-

tributable to unforeseen equipment malfunctions, abrupt halts

in the production line, or perturbations arising from external

influences. Swift and precise detection of anomalies in such

time series data is vital for the successful functioning and

stable production within smart factory system [1].

Given that existing research on time series outlier detection

predominantly focused on univariate time series data, the

practice of anomaly detection has largely involved engineers

setting static thresholds for each sensor and managing them

independently. However, this method is labor-intensive and

renders accurate anomaly detection challenging, particularly

due to the complex interactions characteristic of sensor op-

erations. To address these issues, research is progressing in

the field of multi-modal time series (MTS) anomaly detection.

MTS is a type of time series data defined when multivariate

time series data is viewed as a set of univariate time series

data and univariate time series data with topologically dif-

ferent modality (e.g., temperature, speed, current) is included

according to the characteristics of each sensor.

Nevertheless, accurate detection of anomalies in MTS is

challenging, owing to its intricate spatial dependencies, which

include both inter-modality and intra-modality correlations, as

well as temporal dependencies. Previous studies have focused

on reflecting the temporal dependence of time series. However,

these methods are limited to capturing temporal changes and

fail to address the spatial dependencies between different time

series. In response, models such as MTAD-GAT [2] and GDN

[3] have been developed for anomaly detection, leveraging

Graph Neural Networks (GNN). These advancements have

led to a significantly improved anomaly detection performance

compared to existing models. While preceding methodologies

have advanced significantly, they are impeded by limitations

such as the loss of information among variables arising

from the adopted graph structure learning method, commonly

termed “Top-k”. Another critical limitation is the neglect of

the evolving significance of variables over time.

To address these challenges, we propose UMAD-G

(Unsupervised Multi-modal time series Anomaly Detection

via Graph), a methodology utilizing Graph Attention Net-

works [4]. Specifically, through the utilization of an attention-

based update algorithm, the proposed method identifies a

more precise graph structure, thereby minimizing information

loss during the graph representation process and reducing

computational costs. Subsequently, it extracts the latent vector

by adeptly capturing both spatial and temporal dependen-

cies within each interval of the MTS, achieved through the

graph attention module. Anomaly detection is subsequently

conducted using the latent vector derived in this manner.

Furthermore, the method jointly optimizes both the reconstruc-

tion error and the prediction error, thereby amalgamating the

strengths of each approach.

The key contributions of the method presented in this paper

can be summarized as follows:



• The complex spatial dependencies (inter-modal and intra-

modal correlations) that exist within MTS are effectively

reflected through GNN.

• By identifying the connection structure of the graph

through the attention-based update algorithm, it mini-

mizes the information loss that occurs when representing

the time series as a graph structure.

• Accurate anomaly detection is achievable through the

graph attention module, which effectively captures and

reflects both spatial and temporal dependencies.

• The benefits of each method are synthesized through

the joint optimization of the reconstruction error and the

prediction error.

II. METHODOLOGY

In this section, we outline our proposed methodology,

UMAD-G. UMAD-G takes into account both the spatial and

temporal dependencies in MTS via a graph attention module,

with the graph structure at this juncture being established

through updates driven by attention-based update algorithm.

A. Problem definition

In existing studies, anomaly detection was typically con-

ducted on multivariate time series, X = [x1, x2, · · · , xt] ∈
R

N×T , where N means the number of variables and T means

the length of the entire time series. However, multivariate

time series collected at manufacturing domain possess varying

topological characteristics dependent on the sensor type. As

these characteristics alter the spatial dependence between

the time series, it becomes imperative to conduct anomaly

detection while reflecting these changes. Therefore, this paper

aims to conduct anomaly detection on multi-modal time series.

The definition of multi-modal time series employed here is

consistent with that outlined in Introduction section.

B. Graph structure representation

UMAD-G represents the MTS in a graph structure, where

each variable is a node and their correlations are edges. A

critical consideration in representing MTS as a graph structure

is the definition of edges that signify the correlation between

nodes. Existing methods, such as the fully-connected approach

[2] and the top-k approach [3], encounter issues with high

computational costs and information loss, respectively. Con-

sequently, in this paper, we propose a balanced compromise

between these existing approaches. Assume a graph structure

G = (V, E) with N nodes. Let V denote the node representation

in which each variable in the MTS is embedded, and E denote

the connectivity between nodes. The edges of each node are

represented in a matrix called Adjacency matrix A. Since

time series data natively has no information about edges,

we utilize attention score that can be obtained from graph

attention network (GATv2) [5]. GATv2 is an algorithm that

takes into account the importance of variables in a weighted

form as the model is trained, fetching information from other

nodes connected to the target node. The weight utilized in

this instance is known as the Attention score αij , and the

expression related to the learning parameters of GATv2 is as

follows:

e(hi ,hj ) = a
⊤LeakyReLU(W · [hi ‖ hj ]) (1)

αij = softmaxj(e(hi ,hj )) =
exp(e(hi ,hj ))

∑

j
′∈Ni

exp(e(hi ,hj
′ ))

(2)

h
′

i = σ(
∑

j∈Ni

αij ·Whj) (3)

1) Attention-based update algorithm: Attention score is

appropriate for identifying edges as it signifies the relevance

among MTS variables. For its application, the attention score

is determined through a fully-connected graph structure during

the initial k epochs. Nodes exhibiting an attention score

exceeding a specified threshold are then identified as con-

nected nodes. The adjacency matrix A, defined in this manner,

undergoes updates throughout the learning phase commencing

from the k+1 epoch. The adequately trained matrix A is then

employed during the testing process.

C. Graph attention module

For the training MTS X , we use the sliding window with

length w to generate inputs of fixed length. We define X̃ as

the input of Graph attention module at time t:

X̃ = [xt−w+1,xt−w+2, · · · ,xt] ∈ R
N×w (4)

The proposed graph attention module consists of three

attention modules. The multi-head attention module captures

the global spatial relationships of MTS, while the intra-

modal attention module is designed to model the relationships

between different modalities. In the temporal attention module,

temporal dependencies are modeled, and the feature vectors

produced from each of the three modules are concatenated

into a single feature vector.

1) Multi-head attention module: The multi-head attention

module interacts with all nodes during the feature vector

update process to reflect the global spatial relationships, which

is formulated as:

h
′

i = σ(
1

K

K
∑

k=1

∑

j∈Ni

αij ·Whj) (5)

where, K is the number of heads in the multi-head attention

module. The remaining formula is the same as that typically

used for updating feature vectors in GATv2.

2) Intra-modal attention module: The intra-modal atten-

tion module introduced to reflect the modalities of MTS.The

process of updating the feature vector is similar to that in

the multi-head attention module. However, it differs in that

when constructing the adjacency matrix used for learning,

neighboring nodes are restricted to variables with different

modalities.



3) Temporal attention module: Additionally, the temporal

attention module models temporal dependencies. For this

purpose, the input data X is transposed to XT , which is then

used as input data.

D. Joint optimization

As previously mentioned, we train our model through

joint optimization. This is to integrate the advantages of

forecasting-based methods and reconstruction-based methods.

The forecasting-based model detects anomalies by comparing

predicted values with actual values. It is sensitive even to slight

pattern variations, making it particularly effective in detecting

point anomalies. On the other hand, the reconstruction-based

model performs anomaly detection using reconstruction errors

and tends to reflect the overall distribution of the data well.

This attribute makes it robust to local changes. These advan-

tages are integrated by jointly optimizing both the Forecasting

loss Lf and the Reconstruction loss Lr . The output from the

graph attention module is utilized as the input for each module.

1) Forecasting module: To reduce the complexity of the

model in the Forecasting module, a simple multi-layer percep-

tron (MLP) is employed, and the output of the graph attention

module serves as the input to this MLP. The forecasting loss

can be formulated as Root Mean Square Error (RMSE):

Lf =
1

T − w

√

√

√

√

N
∑

n=1

(xn,t+1 − x̂n,t+1)
2

(6)

where xn,t+1 denotes the ground truth of nth time series at

time t+1, and x̂n,t+1 is the output from the forecasting module

of nth time series at time t+ 1
2) Reconstruction module: For the Reconstruction module,

a Variational Auto-Encoder (VAE) [6] is adopted. The recon-

struction loss is formulated as:

Lr = Ez∼qφ(z|x)[log pθ(x|z)]−KL(qφ(z|x)‖p(z)) (7)

where, Ez∼qφ(z|x)[log pθ(x|z)] denotes the log-likelihood ex-

pectation of x. KL represents the KL divergence.

E. Anomaly detection

As previously described, the Forecasting module and the

Reconstruction module each yield a predicted value, x̂i and

a reconstruction probability, pi, respectively. x̂i represents the

predicted value of the ith time series at each timestamp and

pi represents the probability of reconstruction of the ith time

series at each timestamp. The final anomaly score is defined

as the sum of the results at each timestamp and is calculated

as follows:

score =
N
∑

i=1

(1− pi) + γ(xi − x̂i)
2

1 + γ
(8)

where, γ is a hyperparameter that adjusts the weighting of the

two modules, and we set its value to 0.5.

TABLE I
STATISTICS OF DATASETS

Datasets Features Train Test Anomalies rate

SWaT 51 47515 44986 11.97%

WADI 127 118795 17275 5.99

III. EXPERIMENTS

A. Dataset

Since there is a lack of real-world datasets with labeled

ground truth for manufacturing factories as our domain, we

conducted this experiment on two benchmark datasets: SWaT,

WADI. Secure Water Treatment (SWaT) dataset [7] originates

from a Testbed that is a scaled-down version of a real water

treatment plant. This Testbed was developed by the iTrust

Cyber Security Research Centre at the Singapore University

of Technology and Design. It serves as a miniature version of

a modern Cyber-Physical system, enabling the study of both

normal sensor operations and the impacts of various cyber-

attacks. Water Distribution (WADI) dataset [8] is an extension

of the SWaT, providing data encompassing both normal op-

erations and deliberate attack scenarios. The statistics of both

datasets have been summarized and presented in Table 1.

B. Baselines

We compare the performance of our proposed method with

six popular anomaly detection models, including DAGMM [9],

Omni-Anomaly [10], MAD-GAN [11], USAD [12], MTAD-

GAT, and GDN. For a more comprehensive comparison, we

included two representative GNN-based anomaly detection

models in the baselines.

C. Evaluation metric

We use the Area Under the Receiver Operating Characteris-

tic Curve (AUROC) as the performance metric for comparing

the effectiveness of different models. AUROC allows for a

threshold-independent assessment of performance, as it is

calculated for all possible threshold values. Specifically, the

AUROC is the calculated area under the ROC curve. A

model is considered to have better performance the closer the

AUROC value is to 1.

The ROC curve itself is a graphical representation showing

the variation of the False Positive Rate (FPR) and True

Positive Rate (TPR) at different threshold settings. FPR refers

to the proportion of cases that are actually negative but are

incorrectly predicted as positive by the model. On the other

hand, TPR indicates the proportion of actual positive cases

that the model correctly predicts as positive.

Most time series anomaly detection models commonly use

the F1 score as a performance metric. However, due to the

ambiguity in setting the threshold and the recently highlighted

issue of overestimation with the point adjustment method

[13], this paper solely employs AUROC for performance

comparison.



TABLE II
CONFUSION MATRIX

Predicted: No Predicted: Yes

Actual: No True Negative (TN) False Positive (FP)

Actual: Yes False Negative (FN) True Positive (TP)

TABLE III
RESULTS OF EXPERIMENTS

Model SWaT WADI

DAGMM 0.8436 0.6721

OmniAnomaly 0.8167 0.8198

MAD-GAN 0.8363 0.8026

USAD 0.836 0.7723

MTAD-GAT 0.8464 0.5202

GDN 0.8781 0.8326

UMAD-G 0.8904 0.8428

D. Results and analysis

The experiment was conducted by repeating each compari-

son model 10 times. The batch size was set at 64 for the SWaT

dataset and 128 for the WADI dataset. Table 2 summarizes

the comparison between UMAD-G and the baselines from

the perspective of AUROC. Bold indicates the highest perfor-

mance, underlined indicates the second highest performance.

The results demonstrate that UMAD-G achieved superior

performance over the baselines on both datasets. Notably, the

proposed model’s superiority is evident in its slightly better

performance compared to GDN, a known GNN-based anomaly

detection model renowned for its robust performance.

IV. CONCLUSION

In this paper, we propose UMAD-G, a model designed for

effectively detecting anomalies by reflecting the spatial and

temporal dependencies in multi-modal time series. UMAD-G

models these dependencies through three attention modules

designed to extract different features from the MTS. The

proposed model integrates the advantages of each by jointly

optimizing the reconstruction error and prediction error. Per-

formance comparison experiments on benchmark datasets (i.e.,

SWaT, WADI) show that UMAD-G outperforms Baselines in

terms of AUROC.

Future work in this paper can be done on two fronts.

First, our model performed anomaly detection without any

domain knowledge about the correlations between variables.

If domain knowledge can be acquired in advance, it can help

the model’s anomaly detection performance. Second, current

anomaly detection research assumes a situation after enough

data has been collected. Extending this to real-time anomaly

detection will result in a more practical model.
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