
ChatGPT for Visually Impaired and Blind
Askat Kuzdeuov

Institute of Smart Systems and AI
Nazarbayev University
Astana, Kazakhstan

askat.kuzdeuov@nu.edu.kz

Olzhas Mukayev
Institute of Smart Systems and AI

Nazarbayev University
Astana, Kazakhstan

olzhas.mukayev@nu.edu.kz

Shakhizat Nurgaliyev
Institute of Smart Systems and AI

Nazarbayev University
Astana, Kazakhstan

shakhizat.nurgaliyev@nu.edu.kz

Alisher Kunbolsyn
Institute of Smart Systems and AI

Nazarbayev University
Astana, Kazakhstan

alisher.kunbolsyn@nu.edu.kz

Huseyin Atakan Varol
Institute of Smart Systems and AI

Nazarbayev University
Astana, Kazakhstan
ahvarol@nu.edu.kz

Abstract—According to the World Health Organization
(WHO), hundreds of million people have some type of visual
disability. Vision impairment has a personal impact with lifelong
consequences because more than 80% of our perception, cogni-
tion, learning, and daily activities are mediated through vision.
Moreover, in the era of rapid advancements in artificial intelli-
gence (AI), visually impaired and blind people face challenges at
work and in education because of inaccessibility to AI technolo-
gies. In this regard, we present an assistive mobile application
with an intuitive user interface (UI) for visually impaired and
blind people to interact with ChatGPT via natural conversation.
The app employs automatic speech recognition (ASR), text-to-
speech (TTS), keyword spotting (KWS), voice activity detection
(VAD), and a convenient UI to interact with ChatGPT effortlessly.
We have made the source code, pre-trained models, and UI pub-
licly available at https://github.com/IS2AI/talk-llm to stimulate
the development of assistive mobile applications.

I. INTRODUCTION

According to the World Health Organization (WHO),
around 1.3 billion people, about one-sixth of the world’s
population, have some form of disability. Of these, around
253 million people are visually impaired, of whom about 36
million are blind [1]. In terms of socioeconomic disadvantages,
blind and visually impaired individuals face a number of
challenges in education, employment, and income. According
to a study conducted by the National Federation of the Blind,
only 10% of blind children in the United States are literate,
compared to more than 90% of sighted children [2]. In terms of
employment, a study conducted in the United States found that
the unemployment rate for blind people is nearly double that
of the general population [3]. Additionally, blind individuals
are more likely to work in low-paying jobs with limited
opportunities for advancement [4]. They are also more likely
to live in poverty and are less likely to own their own homes.

Blind people access information through a variety of assis-
tive technologies, such as screen readers, Braille displays, and
audiobooks [5]. Braille displays are devices that convert text
into Braille, a system of raised dots that can be read by touch.
Screen readers are software programs that read text on a com-
puter or mobile device aloud, allowing blind users to access

websites, documents, and other digital content. Blind people
can use search engines (e.g., Google) to find information using
screen reader software that works with search engines. Some
screen readers also have built-in support for Google search,
allowing users to perform a search and navigate the results
directly within the screen reader software. Nonetheless, access
to information in the digital world is cumbersome for the
blind and visually impaired. For instance, many websites and
documents are not designed to be accessible to screen readers.
Often, blind people have to rely on the help of others to access
information, which limits their independence and autonomy
and has a detrimental effect on their psychological well-being.

Speech has been an essential component of human com-
munication from the earliest times [6]. As human societies
evolved and became more complex, language and speech be-
came increasingly important for social interactions, such as ne-
gotiation and storytelling. With the introduction of hieroglyphs
and cuneiforms, writing has allowed for the preservation of
knowledge and cultural traditions and has boosted the abstract
thinking abilities of humankind. However, recent advances
in artificial intelligence led to the emergence of large-scale
language models (LLMs) [7]. For instance, ChatGPT [8] and
GPT-4 [9] have demonstrated state-of-the-art performance on
a wide range of natural language processing (NLP) tasks such
as language translation, text summarizing, question answering,
programming, and many others. These models have been
pretrained on massive amounts of text data and optimized for
dialogues using reinforcement learning from human feedback
(RLHF). LLMs with billions of parameters can process natural
language at an unprecedented level and achieve comparable or
even superior results than human experts in some tasks.

ChatGPT and GPT-4 have the potential to serve as assistive
technologies, providing access to information for individuals
who are blind or visually impaired. OpenAI has also in-
troduced GPT-4V [10], an enhanced version of GPT-4 with
image analysis capabilities. In 2023, OpenAI and Be My
Eyes launched a novel tool called Be My AI, designed to
illustrate the visual world for visually impaired and blind



individuals [10]. The tool was integrated with GPT-4V into the
current Be My Eyes platform, offering explanations of images
captured by the user’s smartphone. Nearly 16,000 blind and
low-vision individuals tested Be My AI, aiding in refining the
product’s safety and overall user experience. However, Be My
AI was accessible only to the beta testers at the time of writing
this paper.

OpenAI provides a website and a mobile app (iOS, Android)
to engage with ChatGPT. Visually impaired and blind users
can utilize screen reader software to access these platforms.
Also, OpenAI has recently incorporated a new feature into
the ChatGPT mobile app that allows users to communicate
through image and voice messages1. The voice feature is
free, but the image feature is accessible only for Plus and
Enterprise users. The voice feature utilizes Whisper [11] to
convert spoken language into written text and a text-to-speech
model that closely resembles human speech. However, the
voice feature utilizes neither KWS nor speaker recognition to
activate the conversation when needed. Therefore, it processes
any speech inputs, including background conversations. It
might impact the conversation because ChatGPT relies on
previous information to respond to the present input.

Another concern is data privacy because all requests (text,
voice, image) are processed in OpenAI’s servers. ChatGPT
logs and saves all conversation transcripts, including any
personal or confidential information inputted, which may
inadvertently leak personal or work details. Another concern
is accessibility. OpenAI offers free access to ChatGPT on
web and mobile platforms, but this doesn’t necessarily ensure
stable usage. To have assured, uninterrupted access, a paid
subscription is required. As of the writing of this paper, GPT-
4 was only available to paying subscribers at a monthly rate
of $20. This cost could potentially be inaccessible for visually
impaired and blind individuals residing in developing countries
due to its relatively high cost. Furthermore, only a limited
number of developers had access to the GPT-4V.

In an attempt to address these restrictions, open-source
alternatives have been emerging. For instance, Meta AI has
introduced LLaMA, which consists of a set of foundational
language models with parameter ranges from 7 billion to
65 billion [12]. These models were trained on vast amounts
of publicly available data and have achieved state-of-the-art
performance on various benchmark datasets. Subsequently,
Meta AI launched Llama 2 with a range of pretrained and
fine-tuned LLMs with parameters ranging from 7 billion to 70
billion [13]. The fine-tuned LLMs, known as Llama 2-Chat,
were optimized for dialogue-based scenarios. These models
have exhibited superior performance compared to other open-
source chat models across multiple benchmarks. Subsequently,
the open-source community implemented fast inference of
Llama 2 in pure C/C++ with 2-bit, 3-bit, 4-bit, 5-bit, 6-
bit, and 8-bit integer quantization [14]. As a result, these
optimized models can run locally on a MacBook and an
Android device. Recently, a large language and vision assis-

1https://openai.com/blog/chatgpt-can-now-see-hear-and-speak

tant, LLaVA [15], was released as an open-source alternative
for GPT-4V. The model attains top-notch performance across
11 benchmark datasets and demonstrates remarkable chat
capabilities, effectively emulating the essence of GPT-4V. The
open-source community also optimized LLaVA with 4-bit and
5-bit quantization [14]. Another powerful open-source visual
language model, CogVLM-17B [16], with 10 billion vision
parameters and 7 billion language parameters, was released.
The model achieved top performance on ten classic cross-
modal benchmarks.

In this work, we developed a mobile app to make these
technologies accessible for the visually impaired or blind.
This app facilitates hassle-free interaction with ChatGPT
through natural speech by utilizing automatic speech recogni-
tion (ASR), text-to-speech (TTS), keyword spotting (KWS),
and voice activity detection (VAD), running these models
locally on a smartphone to safeguard data privacy. Given
the recent progress in open-source LLMs, it’s foreseeable
that ChatGPT could be substituted soon with an optimized
LLM that operates locally. Our source code facilitates easy
replacement of ChatGPT with a lightweight, locally running
LLM model for future developments.

ASR is a technology that transforms spoken language into
readable text. We use ASR to convert verbal user requests
into text format. KWS is a subcategory of speech recognition
that specializes in identifying specific voice commands within
a limited vocabulary and context. This technology allows
efficient processing, lower complexity, and quicker response
times. KWS is utilized in voice assistants such as Amazon’s
Alexa and Apple’s Siri to detect initiation commands. We
employ a lightweight and energy-saving KWS model that
activates the system only when required, thereby conserving
device power. In the case of using cloud-based ASR and TTS
systems, KWS assists in preventing the transmission of unin-
tended inputs, making it a cost-effective tool for chargeable
ASR and TTS models. VAD is another technology we utilize,
which identifies human speech within an audio signal and
separates it from the background noise. It detects when a
voice request ends and initiates the processing of the request
with ASR. TTS is technology that transforms written text into
audible language. We apply TTS to convert ChatGPT’s text
responses into speech. Our main contributions are as follows:

• We developed a mobile app for the visually impaired and
blind to interact with ChatGPT via natural conversation.

• We presented an effective method of creating a synthetic
speech dataset to train a custom KWS model.

• We measured the real-time performance of the employed
speech models by deploying them on a real mobile phone.

• We open-sourced our code, models, and UI to stimulate
the development of assistive mobile applications.

This paper is structured as follows: In Section II, we delve
into the architectural design of our mobile app. Section III
provides the details of the KWS model development. In
Section IV, we discuss the results and limitations of our work.
Finally, we conclude our work in Section V.



KWS Keyword 
detected

Record audio 
& VAD

ASRChatGPTTTSPlay audio

yes

no

1. Listening 2. Recording

3. Processing4. Speaking
audiotexttextaudio

Long 
silence
/noise

no

yes

Fig. 1. System architecture of the app: 1) Persistent audio monitoring to
discern a triggering keyword, 2) Capturing user dialogue and identifying its
conclusion using VAD, 3) Handling requests through ASR, ChatGPT, and
TTS conversion, and 4) Vocalizing ChatGPT’s generated reply.

II. METHODOLOGY

The architecture of our system is illustrated in Figure 1.
It comprises four main modules: Listening, Recording, Pro-
cessing, and Speaking. The system activates the components
sequentially. Initially, the system operates in the Listening
module, where it continuously runs a tiny KWS model to
detect a specific activation keyword uttered by a user. Until the
keyword is recognized, the other components remain inactive.
Once the KWS model detects the keyword, the Recording
module is triggered, and the KWS model is deactivated. The
Recording module starts writing the user’s spoken words. The
system utilizes VAD to determine when the user has finished
speaking based on a predefined duration of silence or noise.
Then, it ceases recording and switches off the microphone and
VAD. Subsequently, the Processing module is engaged, where
an ASR model transcribes the user’s verbal request into text.
Then, the text is processed by ChatGPT, which formulates a
response that is transformed back into audio via a TTS model.
Finally, the system’s last component, Speaking, takes over by
enabling the device’s speaker to output the ChatGPT response
audibly. After that, the system turns off the speaker and reverts
to the Listening mode, turning on the microphone and starting
the KWS model for the next iteration.

A. Keyword Spotting

KWS focuses solely on detecting a designated activation
word. Usually, the keyword is selected deliberately to initiate
the system. For example, Apple’s activation word is “Hey,
Siri,” Google uses “Ok, Google,” and Amazon uses “Alexa”
as their wake-up word. In these systems, the input audio
stream is divided into segments or “windows,” and the KWS
model classifies each window to one of two categories: 1) the
specified keyword or 2) other sounds. It is important to include
a wide variety of spoken words and noises within the “other
sounds” class to enhance the robustness of the model’s ability
to detect the keyword.

For our system, we have selected the term “ISSAI” as
the wake-up word. This abbreviation represents the name of
our institute - the Institute of Smart Systems and Artificial
Intelligence (ISSAI). To streamline the process of collecting
speech data for the targeted word, we leveraged the Piper

text-to-speech system [17] to generate synthetic data. This
approach showed efficacy in training a KWS model [18],
as manual collection would have been time-consuming and
labor-intensive. In this way, it becomes feasible to collect
speech data for any desired word, enabling the development
of a personalized wake-up word detector. Piper provides TTS
models for about thirty languages. We utilized three TTS
models with the highest number of speakers. The models
were trained using English datasets representing American and
British accents. This made it possible to generate speech data
with variations in pronunciation and intonation, resulting in a
more diverse and representative dataset for our wake-up word
detection system.

The first TTS model includes the voices of 904 speakers
trained on the LibriTTS corpus [19]. The second model,
trained on the LibriTTS-R corpus [20], also offers voices
from 904 speakers. The last model was trained on the VCTK
corpus [21], consisting of voices from 109 speakers with
British accents. As a result, we generated 1,917 synthetic
utterances, with a sampling rate of 16 kHz, for the word
“ISSAI”. Additionally, to generate data for other sounds, we
employed 1,000 most frequently used English words2. For
each speaker, we randomly selected ten words from the list
and generated ten utterances by applying the corresponding
model. This methodology enabled us to generate a substantial
total of 19,170 utterances with a 16 kHz sampling rate for the
“other sounds” class. We deliberately produced ten times more
samples for the “other sounds” class compared to the “ISSAI”
class. This strategy challenges the model’s ability to detect the
specific keyword “ISSAI” amidst a vast array of other sounds.

B. Voice Activity Detection

VAD, also known as speech activity detection or speech
detection, is a technique utilized in speech processing to
identify and detect the presence or absence of human speech
in an audio signal. It is commonly employed to segment audio
into the regions of speech activity and silence, enabling more
effective analysis and processing of the speech. We utilized
VAD to detect the absence of human speech to stop audio
recording and then start processing the recorded audio with
ASR. VAD could alternatively be used to prompt the system
rather than using KWS. However, this approach could produce
unintended system triggers as VAD would activate not just for
the desired keyword but whenever it detects conversational
background noise or any non-target speech from the user.

In this project, we utilized a pre-trained, enterprise-grade
voice activity detector named Silero-VAD [22]. This model is
popular in VAD applications, especially for IoT, edge, and mo-
bile use cases. This popularity is due to its lightweight design
with just 250,000 parameters and its small size, approximately
two megabytes. Further enhancing its usability, the model
supports over a hundred languages and delivers impressive
accuracy on established VAD benchmark datasets. It also
integrates smoothly with major ecosystems like PyTorch and

2https://gist.github.com/deekayen/4148741



a) b) c) d)

Recording Processing SpeakingListening

Fig. 2. UI consists of four main parts: a) Real-time detection of a wake-up word, b) Recording user speech either upon wake-word detection or pressing the
mic button, c) Processing user’s request via ASR, ChatGPT, and TTS, and d) Vocalizing the ChatGPT response.

ONNX, allowing operations on platforms that support these
runtimes. Moreover, its distribution under the MIT license
ensures unrestricted use.

C. Automatic Speech Recognition

In this work, we used Whisper [11] for a speech recogni-
tion task similar to ChatGPT’s original app. Whisper offers
models with varying parameters, including tiny (39M), base
(74M), small (244M), medium (769M), and large (1550M).
Whisper offers multilingual models and models trained solely
in English. Nonetheless, operating these models, even the
smallest one, demands substantial computational resources.
Considering the deployment on mobile phones, we used the
Whisper.cpp library [23]. It is an optimized version of Whisper
designed for high-performance inference. It executes the fun-
damental tensor operations in C to achieve efficient inference.
Also, the library offers quantized models with 4-bit and 5-
bit integer quantization. These quantized models occupy less
memory and disk space. As a result, they can be processed
more efficiently. We used a tiny Whisper model (75MB) to
get the fastest inference on mobile phones. The model was
available in the BIN format and under the MIT license. All
models can be found here3.

D. Text-To-Speech

We utilized Piper text-to-speech system to convert the
responses of ChatGPT into speech. Piper provides TTS models
for about thirty languages. The models were trained using
VITS [24] and optimized by exporting to the ONNX format.
Also, Piper presents TTS models in four distinct quality tiers:
x-low, low, medium, and high. The x-low and low models
trained on audio data with a 16 kHz sampling rate. The x-low
and low models have 5-7M and 15-20M parameters, respec-
tively. The medium and high models were trained on audio
data with a 22.05 kHz sampling rate. The medium models

3https://huggingface.co/ggerganov/whisper.cpp

have 15-20M parameters, while the high models comprise 28-
32M parameters. We utilized a low model featuring an English
female speaker’s voice. The model was in the ONNX format
and had a size of 63MB4. The model was available under the
Creative Commons Attribution Share Alike 4.0 International
license. All available models can be found here5.

E. User Interface

We designed the UI of the app in Figma. The main pages
are illustrated in Fig. 2. In addition to facilitating natural
conversation, the UI empowers users who are visually im-
paired or blind to operate the app through tactile feedback
and audible responses. The “Listening” page, seen in Fig. 2a,
includes a sizable microphone button at the center. A user
clicks and holds this button to start audio recording. Once
activated, the “Recording” page becomes visible, as shown
in Fig. 2b. The system provides tactile and sound feedback
when the button gets pressed. Once the microphone button is
released, the system provides sound feedback to notify the user
that the recording has been captured and is being processed,
as depicted in Fig. 2c. The user can halt this process by
double-clicking on the processing button. Upon completion
of processing, the “Speaking” page, which includes a central
player button, is displayed. The user can start or halt the
playback by clicking this button. To return to the “Listening”
page, the user must swipe upward on the “Speaking” page.

The transition between the pages happens automatically
during the voice-only interaction. On the “Listening” page,
the KWS model operates in the background. When the user
says the keyword “ISSAI”, the system automatically starts
recording audio without requiring a press on the microphone
button and consequently switches to the “Recording” page.
Once the VAD senses a silence, recording is halted by the
system and it transitions to the “Processing” page. After the

4https://huggingface.co/rhasspy/piper-voices/tree/main/en/en US/amy/low
5https://huggingface.co/rhasspy/piper-voices/tree/v1.0.0



processing phase, the system showcases the “Speaking” page
and audibly plays back the created audio to the user. After
that the system returns to the “Listening” page.

III. EXPERIMENTS

A. Splitting and Augmenting the KWS Dataset

We split the synthetic KWS dataset into training, validation,
and testing sets, ensuring no overlap of speakers across these
sets. Specifically, we allocated 1609 speakers for the training
set, 100 speakers for the validation set, and the remaining
208 speakers to the testing set. The synthetic dataset created
by the TTS models doesn’t contain any form of noise. To
make our KWS model more robust and suitable for real-
world applications, we augmented the dataset by incorporating
various types of background noises. We utilized the ESC-50
dataset [25], a collection of 2,000 environmental audio clips
divided into 50 categories. We created five augmented versions
by incorporating randomly selected background noises into the
original utterance. In addition, we included all the samples
present in the ESC-50 dataset into the “other sounds” class.
This further enriched the diversity of the sound samples in
that category. After augmentations, the training set comprised
9,654 utterances for the “ISSAI” class and 98,240 utterances
for the “other sounds” class. The validation set held 600
utterances dedicated to “ISSAI” and 6,700 utterances for the
“other sounds” class. Furthermore, the test set contained 1,248
utterances for the “ISSAI” class and 12,680 utterances for the
“Other sounds” class. All utterances were saved in the WAV
format at a 16 kHz sampling rate.

B. KWS Model Selection and Training

We used the Keyword-MLP model [26] for the KWS task.
Our choice was motivated by its high accuracy (97.56%) on the
test set of the benchmark Google Speech Commands dataset
v2 [27]. Its accuracy is comparable with state-of-the-art mod-
els such as KWT [28] and AST [29]. The main advantage of
the Keyword-MLP model is its superior parameter efficiency.
Boasting a relatively small footprint with only 424,811 param-
eters, it is an excellent choice for deployment on compute-
constrained edge devices. The original model was designed to
classify the 35 commands in the Google Speech Commands
Dataset v2. However, our task is easier because we have only
two classes to differentiate. So, we reduced the model size
to 33,922 parameters without compromising its high accuracy
on our testing set. It enhanced the model’s efficiency further,
particularly in environments with limited resources, enabling
it to function effectively in real-time applications. We trained
the Keyword-MLP model on a single NVIDIA A100 graphics
processing unit (GPU) for 100 epochs with a batch size of
256. We applied spectrogram augmentations such as time and
frequency masking to mitigate overfitting during training.

C. Deploying the Models on a Mobile Phone

To assess real-time performance of the models on a real de-
vice, we deployed them on a Samsung Galaxy S22+ equipped
with Android 14 OS and 8GB RAM. We used inference time

TABLE I
RESULTS OF THE KEYWORD-MLP MODEL ON THE TEST SET

Class Precision (%) Recall (%) F1-score (%)
ISSAI 99.04 98.88 98.96
Other sounds 99.89 99.91 99.90

(IT) and real-time factor (RTF) as a metric. IT is the time
taken by a model with a constant input size to predict the
input data. On the other hand, RTF is a latency measurement
used in audio processing systems such as ASR and TTS with
varying input data sizes. We used IT as a metric for Keyword-
MLP and Silero-VAD because their input sizes are constant.
On the other hand, we employed RTF as a metric for Whisper
and Piper due to their varying input sizes. We ran each model
ten times and computed the mean and standard deviation.

IV. RESULTS & DISCUSSION

The accuracy of the Keyword-MLP model was evaluated
using key metrics such as precision, recall, and the F1-
score. Precision is a metric that calculates the percentage of
correct positive predictions out of all positive predictions made
by the model. Recall, also known as sensitivity, measures
the percentage of actual positives correctly identified by the
model. The F1-score is the harmonized mean of precision and
recall. This single metric combines both precision and recall
to provide a more unified view of model performance.

The results of the Keyword-MLP model on the KWS test set
are shown in Table I. The model delivers high performance
for the ”ISSAI” class, securing a precision rate of 99.04%
and a recall score of 98.88%. The F1-score, a measure of
the model’s overall accuracy considering precision and recall,
for the ”ISSAI” class is 98.96%. For the ”Other sounds”
class, the model displays exceptionally high performance with
precision, recall, and F1-score exceeding 99.89%, demonstrat-
ing its robust capability to accurately differentiate the target
keyword from a vast range of other sounds. The original
checkpoint of Keyword-MLP in the Pytorch format had a size
of 1.2MB. However, by transitioning it to the ONNX format,
we successfully reduced its size to merely 0.45MB. This
substantial reduction improves its suitability for deployment
in resource-constrained environments.

The IT and RTF results are shown in Table II. Keyword-
MLP, on average, exhibited an inference time of 2.8 ms with
a standard deviation of 0.6 ms. On the other hand, the Silero-
VAD model had an average inference time of 3.8 ms and a

TABLE II
SUMMARY AND INFERENCE RESULTS OF THE DEPLOYED MODELS

Model Keyword-MLP Silero Whisper Piper
Format ONNX ONNX BIN ONNX
Deployment Offline Offline Offline Offline
Size (MB) 0.45 1.8 75.0 63.1
IT (ms) 2.8±0.6 3.8±0.3 - -
RTF - - 0.12±0.01 0.19±0.01



standard deviation of 0.3 ms. Whisper exhibited an RTF of
0.12 with a standard deviation of 0.01 for an 11-second audio
clip. Piper showed an RTF of 0.19 and a standard deviation of
0.01 for a two-second audio synthesized from a 50-character
text. The results demonstrate that these models can operate
efficiently on modern mobile phones.

Our current app has certain limitations. One such limitation
is the dependency on the OpenAI API to interact with Chat-
GPT, which necessitates creating an account on the OpenAI
Platform and obtaining an API Key. This process can be
challenging for users who are visually impaired or blind. To
make authentication more user-friendly, we plan to implement
a wrapper around ChatGPT to enable users to authenticate
using their Google or Microsoft accounts. The next limitation
is that our app does not process images because GPT4-V was
not available in our region at the time of writing this paper.
The next important point is the lack of feedback from blind
or visually impaired individuals. We plan to collect feedback
to enhance the user experience. Finally, the app only supports
the English language. We will incorporate more languages in
our future work.

V. CONCLUSION

In this work, we have developed a mobile app with an intu-
itive user interface specifically designed for visually impaired
and blind individuals to engage in natural conversations with
ChatGPT. The app incorporates various speech technologies,
such as automatic speech recognition, text-to-speech, keyword
spotting, and voice activity detection. We employed offline
speech models to preserve user privacy. Also, we presented an
efficient method of generating synthetic speech data to train
a custom KWS model. We deployed the models on a mobile
phone. The inference time and real-time factor results showed
that the speech models can run efficiently on the edge device.
We have made the source code, pre-trained KWS model, and
UI publicly accessible to foster the advancement of assistive
mobile applications.

REFERENCES

[1] R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli,
A. Das, J. B. Jonas et al., “Magnitude, temporal trends, and projections
of the global prevalence of blindness and distance and near vision
impairment: A systematic review and meta-analysis,” The Lancet
Global Health, vol. 5, no. 9, pp. e888–e897, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214109X17302930

[2] “The Braille Literacy Crisis in America,” National Federation of the
Blind Jernigan Institute, Tech. Rep., 2009.

[3] M. C. McDonnall and Z. Sui, “Employment and unemployment
rates of people who are blind or visually impaired: Estimates
from multiple sources,” Journal of Visual Impairment & Blindness,
vol. 113, no. 6, pp. 481–492, 2019. [Online]. Available: https:
//doi.org/10.1177/0145482X19887620

[4] M. C. McDonnall, J. L. Cmar, and Z. S. McKnight, “Beyond
employment rates: Earnings of people with visual impairments,” Journal
of Visual Impairment & Blindness, vol. 116, no. 4, pp. 526–532, 2022.
[Online]. Available: https://doi.org/10.1177/0145482X221121830

[5] L. Marshall and J.-L. Moys, “Readers’ experiences of Braille in an
evolving technological world,” Visible Language, vol. 54, no. 1-2, pp.
9–29, 2020.

[6] R. C. Berwick, A. D. Friederici, N. Chomsky, and J. J. Bolhuis,
“Evolution, brain, and the nature of language,” Trends in Cognitive
Sciences, vol. 17, no. 2, pp. 89–98, 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1364661312002823

[7] T. Brown, B. Mann, N. Ryder, M. Subbiah et al., “Language
models are few-shot learners,” in Advances in Neural Information
Processing Systems, vol. 33. Curran Associates, Inc., 2020, pp.
1877–1901. [Online]. Available: https://proceedings.neurips.cc/paper
files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[8] OpenAI. (2022) ChatGPT: Optimizing language models for dialogue.
[Online]. Available: https://openai.com/blog/chatgpt/

[9] ——, “Gpt-4 technical report,” 2023.
[10] ——, “Gpt-4v(ision) system card,” 2023. [Online]. Available: https:

//openai.com/research/gpt-4v-system-card
[11] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and

I. Sutskever, “Robust speech recognition via large-scale weak super-
vision,” 2022.

[12] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix et al., “LLaMA: Open and efficient foundation language
models,” 2023.

[13] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei
et al., “Llama 2: Open foundation and fine-tuned chat models,” 2023.

[14] G. Gerganov, “llama.cpp,” 2023. [Online]. Available: https://github.
com/ggerganov/llama.cpp

[15] H. Liu, C. Li, Y. Li, and Y. J. Lee, “Improved baselines with
visual instruction tuning,” ArXiv, vol. abs/2310.03744, 2023. [Online].
Available: https://api.semanticscholar.org/CorpusID:263672058

[16] W. Wang, Q. Lv, W. Yu, W. Hong, J. Qi, Y. Wang et al.,
“CogVLM: Visual expert for pretrained language models,” ArXiv, vol.
abs/2311.03079, 2023. [Online]. Available: https://api.semanticscholar.
org/CorpusID:265034288

[17] M. Hansen, “Piper: A fast, local neural text to speech system,” 2023.
[Online]. Available: https://github.com/rhasspy/piper

[18] A. Kuzdeuov, S. Nurgaliyev, D. Turmakhan, N. Laiyk, and H. A.
Varol, “Speech command recognition: Text-to-speech and speech corpus
scraping are all you need,” TechRxiv, 2023.

[19] H. Zen, V.-T. Dang, R. A. J. Clark, Y. Zhang, R. J. Weiss, Y. Jia,
Z. Chen, and Y. Wu, “LibriTTS: A corpus derived from librispeech
for text-to-speech,” in Proc. Interspeech, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:102352475

[20] Y. Koizumi, H. Zen, S. Karita, Y. Ding, K. Yatabe et al., “LibriTTS-R:
A restored multi-speaker text-to-speech corpus,” 2023.

[21] J. Yamagishi, C. Veaux, and K. MacDonald, “CSTR VCTK Corpus:
English multi-speaker corpus for CSTR voice cloning toolkit,” 2019.

[22] S. Team, “Silero VAD: pre-trained enterprise-grade voice activity detec-
tor (vad), number detector and language classifier,” https://github.com/
snakers4/silero-vad, 2021.

[23] G. Gerganov, “whisper.cpp,” 2023. [Online]. Available: https://github.
com/ggerganov/whisper.cpp

[24] J. Kim, J. Kong, and J. Son, “Conditional variational autoencoder
with adversarial learning for end-to-end text-to-speech,” in Proceedings
of the 38th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, M. Meila and T. Zhang,
Eds., vol. 139. PMLR, 18–24 Jul 2021, pp. 5530–5540. [Online].
Available: https://proceedings.mlr.press/v139/kim21f.html

[25] K. J. Piczak, “ESC: Dataset for Environmental Sound Classification,”
in Proc. of the Annual ACM Conference on Multimedia. ACM Press,
2015, pp. 1015–1018. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=2733373.2806390

[26] M. Morshed and A. Ahsan, “Attention-free keyword spotting,” 2022.
[27] P. Warden, “Speech Commands: A Dataset for Limited-Vocabulary

Speech Recognition,” ArXiv e-prints, Apr. 2018. [Online]. Available:
https://arxiv.org/abs/1804.03209

[28] A. Berg, M. O’Connor, and M. T. Cruz, “Keyword Transformer: A Self-
Attention Model for Keyword Spotting,” in Proc. Interspeech, 2021, pp.
4249–4253.

[29] Y. Gong, Y.-A. Chung, and J. Glass, “AST: Audio Spectrogram Trans-
former,” in Proc. Interspeech, 2021, pp. 571–575.


