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Abstract— Modern manufacturing processes are influenced 

by smart factories, which collect data from multiple sensors in 

real time. However, detecting anomalies is challenging due to 

their irregular and complex patterns, often resulting in 

unreliable labeling that depends on the engineer's expertise. 

Moreover, in these processes, where sensors are interconnected, 

fluctuations in one variable can potentially influence subsequent 

variables. The proposed method uses cross-variable attention to 

reflect the relationship between variables at different time 

points. It also utilizes contrastive learning to extract a 

representation of only normal data that can be distinguished 

from anomalies without labels. Experimental results on 

multivariate time series data demonstrate that the proposed 

method outperforms existing models in anomaly detection.  

Keywords— Anomaly Detection, Cross-Variable Attention, 

Multivariate Time Series, Contrastive Learning 

I. INTRODUCTION 

Anomaly is a deviation from the normal state or an 
unexpected change. To maintain the stability and reliability of 
a system, anomaly detection techniques are necessary. 
Anomaly detection is used in a variety of fields, including 
manufacturing, energy, finance, healthcare, and cloud 
computing. In particular, anomaly detection in manufacturing 
processes is closely related to product defects and the final 
product of the manufacturing process [1]. Therefore, accurate 
anomaly detection is necessary to improve quality and 
productivity. 

Due to the influence of smart factories, data from multiple 
sensors are being collected in manufacturing processes. These 
are stored at regular time intervals in the form of multivariate 
time series. However, multivariate time series anomaly 
detection in manufacturing processes is challenging due to the 
following reasons: (1) labeling problems dependent on the 
engineer's expertise, (2) the absence of a representation for the 
relationship between variable at different time points. 

First, the amount of sensors collected is vast, and the 
anomaly patterns are irregular and complex. Since data 
labeling is done manually by engineers, the reliability of 
labeling can vary depending on the experience level of the 
engineer. Therefore, an unsupervised learning model is 
necessary for detecting anomalies without labels. 

Second, it is crucial to consider both temporal dependency 
and correlation between variables simultaneously. With the 
development of deep learning, various approaches have been 
explored to capture the temporal relationships, including Long 

Short Term Memory (LSTM), Transformer, and Temporal 
Convolution Network (TCN) [2], [3], [4]. These studies 
mainly consider only the dependencies between variables 
within the same time point. However, in the manufacturing 
process, multivariate sensors are organically connected, so 
small fluctuations in one variable can affect the later time 
points of other variables [5]. Hence, there is a need for 
research that reflects the relationship between variables at 
different time points. 

In this study, we propose a patch-based time-series 
anomaly detection method that reflects the dependency 
between variables at different time points, which we define as 
cross-variable dependency. The proposed method utilizes 
contrastive learning to extract a representation of only normal 
data that is distinct from anomalies without labels. In addition, 
patch based temporal attention is used to learn inter-patch and 
intra-patch relationships. Finally, cross-variable attention 
captures not only the relationships between variables at the 
same point in time, but also the relationships between 
variables at different points in time. 

To summarize, the contributions of this study are as 
follows. 

• Utilizes the patch module and contrastive learning to 
learn a consistent representation of normal without 
labels. 

• Proposes cross-variable attention to capture correlations 
between variables at different time points. 

• Demonstrates high anomaly detection performance on a 
multivariate time series anomaly detection benchmark 
dataset. 

 The composition of this paper is as follows. First, in 
Section 2, we review prior work on unsupervised time series 
anomaly detection and contrastive learning. Section 3 
describes the method we propose in this study, and then 
evaluates the performance of the proposed method in Section 
4. Section 5 presents conclusions and future works. 

II. RELATED WORKS 

A. Unsupervised Time Series Anomaly Detection  

Time series anomaly detection is broadly divided into 
supervised and unsupervised learning based on the presence 
or absence of labels during training. However, since it is 
difficult to acquire labeled data in actual industrial sites, 
unsupervised time series anomaly detection models are 
mainly studied. *Corresponding author—Tel: +82-2-3290-3396; Fax: +82-2-3290-4550 



The existing unsupervised time series anomaly detection 
models are shown in Fig. 1 (a), they only consider the 
dependencies between variables within the same time point 
[6], [7], [8]. However, in a real manufacturing process, it is 
necessary to reflect the relationship between variables at 
different time points, because there are time delay situations 
where fluctuations in a certain variable affect other variables 
several time points later. Therefore, an intuitive time series 
anomaly detection model is proposed as shown in Fig. 1 (b).  

B. Contrastive Learning in Time Series  

Representation learning is an approach that seeks to obtain 
useful representations from unlabeled data to improve the 
performance of various downstream tasks [9]. It extracts 
information based on the inherent structure and patterns in the 
data. 

Contrastive learning using data augmentation is a typical 
representation learning technique [10]. The goal of contrastive 
learning is to learn an embedding space where similar data 
samples are close together and dissimilar data samples are far 
apart. A classical contrastive learning model is trained by 
generating pairs of samples, where positive pairs represent 
similar data and negative pairs represent different data. 

However, unlike the positive pairs generated by the data  
augmentation, it is difficult to define the negative pairs. This 
is because in unsupervised learning, similar samples can be 
selected as negative pairs due to the lack of labels. Therefore, 
models that do not use negative pairs have recently emerged 
[11], [12]. Typically, they use the structure of a siamese 
network, which is a network with shared weights for two or 
more inputs. However, this structure can suffer from mode 
collapsing, where all output values converge to a single 
constant. One of the methods used to solve this problem is the 
stop-gradient method [12]. 

Most contrastive learning models are based on image data. 
However, recently, methods for applying contrastive learning 
to time series data have appeared [9], [13]. However, the data 
augmentation used by these methods do not take advantage of 
the inherent characteristics of time series data [14]. Therefore, 
unlike existing methods that use data augmentation to 
generate positive pairs, this study considers the characteristics 
of time series data. Specifically, it reflects the characteristic 
that normal and abnormal have different representations from 
different perspectives [7]. 

III. PROPOSED METHOD 

In this study, we propose a multivariate time series 
anomaly detection method that combines the patch module 
and contrastive learning to learn the representation of normal 
data and reflect the relationship of variables with different 
time points. The overall structure of the proposed method is 
shown in Fig. 2. The proposed method consists of the 
following four steps (1) Patch module: divide the whole time 
series into patches. (2) Attention module: Learn each 
representation through inter-patch attention, intra-patch 
attention, and cross-variable attention. (3) Encoder: Equalize 
the dimensionality of the representations derived from each 
attention. (4) Training: The similarity between the final 
output, the inter-patch representation and the intra-patch 
representation, is measured by the Kullback-Leibler (KL) 
divergence and trained as a loss function. Finally, the anomaly 
score is used to determine whether the data point is  normal or 
abnormal.  

A. Patch module 

The patch module converts an original time series into 

patches. An input time series � ∈  ℝ����� is passed through 

the patch module to � ∈  ℝ�����. 	 is the length of the time 
series, 
 is the number of variables, � is the patch size, and � 
is the number of patches. The product of � and � is equal to 

 
Fig. 2. (a) Considers dependencies between variables at the same time 

point, (b) relationships between variables at different time points. 

 
Fig. 2. Architecture of Proposed Methods 



	 . When input to the inter-patch and intra-patch attention 
modules, the batch size and the variable dimension are 
combined to form a univariate time series � ∈  ℝ���. Cross-
variable attention, on the other hand, reflects the relationship 

between variables and is therefore input as � ∈  ℝ���. This 
has the advantage of reducing the number of input tokens, 
which reduces computation and memory usage [15]. It can 
also reflect more local semantic information than a point-wise 
time series [16]. 

B. Attention module  

The proposed method consists of three types of attention, 
as shown in Fig. 3: Inter-patch attention to reflect the 
relationship between patches, intra-patch attention to check 
the interaction within patches, and cross-variable attention to 
consider the relationship between variables at different time 
points. Normal data will share similar feature patterns because 
they are strongly correlated with each other, so the difference 
between representations from different perspectives will be 
small, while anomalies will be large. Therefore, inter-patch 
and intra-patch are used to view the representation of the time 
series from different perspectives. In addition, cross-variable 
attention is used to reflect the relationship between variables 
at different time points, i.e., not only the relationship between 
variables at the same time point, but also the relationship with 
variables at previous time points. 

1) Inter-patch attention   
 Fig. 3 (a) illustrates inter-patch attention. � ∈  ℝ��� 

converted into patch units by the patch module is input. After 
that, it is converted into an embedding vector of �� ∈ ℝ� � ����� through the embedding module. Here,  
�����is 
the embedding vector size. To understand the relationship 
between the embedding vectors, we apply inter-patch 
attention. The initial query and key are as shown in Equation 
(1). 

 
   ��� , ��� �   ������ , ������   , 1 �  � H    (1) 

 

��� , ��� ∈  ℝ�� �����"  denotes the query and key, and 

��� , ��� ∈  ℝ �����" � �����"  denotes the learnable parameter 

matrix. H is the number of heads. Next, the attention weight is 
equal to Equation (2). 

 

              #$$%�� �   Softmax - ������ .
/ 
�����

0 (2) 

 
It computes the dot product of query and key, divides by / 
����� to scale it. It then converts it to a probability 

distribution using Softmax. As a result, we calculate how 
relevant a particular patch is to other patches. Then, 
concatenate each representation of the multi-head and derive 
the inter-patch representation #$$%� as shown in Equation 
(3). 

  #$$%� � 12%34$5 #$$%�6 , ⋯ ,  #$$%�"8��� (3) 

   ��� ∈ ℝ ����� � ����� is the learnable parameter matrix. 

 

2) Inter-patch attention   
The intra-patch attention in Fig. 3 (b) learns the 

dependencies between points within the same patch. It shares 
weights with the inter-patch attention network. Same as inter-
patch attention, attention is applied to compute the 
relationship between each embedding vector. The initial query 
and key are as shown in Equation (4). 

 ��� , ��� �   ������ , ������  , 1 �  � H   (4) 
 

��� , ��� ∈  ℝ�� �����"  denotes the query and key, and 

��� , ��� ∈  ℝ �����" � �����" denotes the learnable parameter 

matrix. The attention weights  #$$%�� are computed in a 

similar way to (2). 

 However, unlike (2), which reflects the relationship 
between patches, it calculates how relevant a particular point 
in a patch is to other points. Finally, the intra-patch 
representation #$$%� is derived in the same way as equation 
(3). 

 
Fig. 3. Attention module: It consists of three attentions. (a) Inter-patch attention, which looks at relationships between patches; (b) Intra-patch attention, which 

learns relationships within patches; and (c) Cross-variable attention, which learns relationships between variables at different time points. 



 

3) Cross-variable attention   
 Inter-patch attention and intra-patch attention consider 
temporal dependency. At the same time, we apply cross-
variable attention as shown in Fig. 3 (c) to reflect the 
relationship between variables with different time points. The 

input data � ∈  ℝ���  are transformed into an embedding 

vector of �9 ∈  ℝ� � � � �����  by the embedding module, 
i.e., there are d time series, and each time series consists of N 
patches. We apply cross-variable attention to compute the 
relationship between patches at one point in time and patches 
at another point in time. The initial query and key are as shown 
in Equation (5). 

                  �9� :, �9� :;< �   �=��9� :, �>��9� :;<  , 
    1 �  � H ,   1 � $ � � 

(5)

  

�9� : , �9� :;< ∈  ℝ
� 
?2
@AB denotes the query and key, and 

�=� , �>� ∈  ℝ �����" � �����"  denotes the learnable parameter 

matrix. At this time, as shown in Fig. 3 (c),  �9� :  is formed by 

the variables at a certain time, i.e., all the patches existing at $, and  �C $−Eis formed by the patches at the previous time, $ − E (E ≥ 0). Here, F is a hyper parameter, which means that 
it reflects the relationship between the patches at time $ and 
the patches at time $ − E. The attention weight of a query at 
time t with all keys up to time $ − E is given by Equation (6). 

 

              #$$%9� :;< �   Softmax H      �C 
$�C $−E.

/ 
�����
I (6) 

  

 Furthermore, the farther away the point is, the lower the 
influence will be. To accomplish this, we apply an exponential 
smoothing weighting method. This gives more weight to 
recent observations and an exponentially decreasing weight to 
past observations. The weight at time $ − E  is given by 
equation (7). 

              �@ Jℎ$:;< � @;L�<  (7) 

 M is a parameter that controls the rate of weight decay. The 
larger M  leads to a more rapid decrease in weight, while a 
smaller M  results in a slower decrease in weight. The final 
attention weight, which reflects the relationship between all 
patches from time t to time $ − E, is equal to (8). 

 #$$%9� �  �@ Jℎ$:;< �  #$$%9� :;< 

(8) 
                         +�@ Jℎ$:;<;O �  #$$%9� :;<PO                               + ⋯ + �@ Jℎ$: �  #$$%9� : 

 

Add up all the relationships between all the variables at a 
given time $, as well as the relationships between the variables 
at time $ − E and the variables at time $ . Finally, 
concatenating each of the multi-head representations and 
deriving the cross-variable representation #$$%9 is shown in 
Equation (9). 

 #$$%9 � 12%34$5 #$$%96 , ⋯ ,  #$$%9"8�9� (9) 

 �9� ∈ ℝ ����� � �����  is the learnable parameter matrix. 

 

C. Encoder  

The three representations ( #$$%� , #$$%� , #$$%9 ) 
generated by the Attention module need to calculate similarity 
when training. Therefore, we need to equalize the dimensions 
through an encoder. We used a fully connected layer as the 
encoder. The encoders for each representation all have the 
same structure, but they are trained independently. Finally, 
three representations with the same dimensionality are derived 
as shown in Equation (10), (11), and (12). 

       QRS:�T;UV:Wℎ �  X5#$$%�8 (10) 

     QRS:TV;UV:Wℎ �  X5#$$%�8 (11) 

         QWT�YY;ZVT[V\�� �  X5#$$%98 (12) 

 

Finally, the cross-variable representation is added to the 

inter-patch representation and the intra-patch representation 

to derive the final inter-patch representation � and the final 

intra-patch representation �. � and � are equal to (13), (14). 

 

� �  QRS:�T;UV:Wℎ + QWT�YY;ZVT[V\��  (13) � �  QRS:TV;UV:Wℎ +  QWT�YY;ZVT[V\��  (14) 

D. Training   

 For the same input, we derive two representations, � and �, from different perspectives (inter-patch and intra-patch). 
We use KL-divergence to measure the similarity of the two 
representations. According to the previous assumption, 
representations of the same normal input should be similar to 
each other because there are few anomalies, and normal data 
share latent patterns. The similarity metric for two 
representations � and � is defined as C5�, �8  �  �]5�||�8. 
where �]5∙ || ∙8is the KL divergence. The final loss function 
is shown in Equation (15): 

 

]`�, �; �b �  12 Cd�, e$2fJg4
5�8h  
+   12 C5�, e$2fJg4
5�88  (15) 

 

where X is the input time series, and N and P are the inter-
patch representation and intra-representation. Stopgrad means 
stop-gradient, which prevents the gradient from updating 
when backpropagation, so that N and P are alternately updated 
and become similar. The anomaly score for a time series � ∈ ℝ.��is given by Equation (16): 

#%2?4Aie32g@5�8 �  1
2 C5�, �8  +   1

2 C5�, �8 (16) 
 

Based on a threshold j, which is a hyper-parameter, anomaly 
score is judged as abnormal (1) if it exceeds j, and normal (0) 
otherwise. 



IV. EXPERIMENTS 

A. Dataset 

 To evaluate the proposed model, the Soil Moisture Active 
Passive (SMAP) dataset, Mars Science Laboratory (MSL) 
dataset, and Secure Water Treatment (SWaT) dataset were 
used. SMAP provides soil samples and remote sensing 
information measured by NASA's Mars rovers. MSL is 
NASA's Mars rover sensor and actuator data. SWaT is data 
from real industrial water treatment plants that produce 
purified water. The details of the datasets are summarized in 
Table Ⅰ. 

B. Evaluation Metrics 

 To evaluate the performance, we used confusion matrix as 
shown in Table Ⅱ.  

According to Table Ⅱ, Precision, Recall, and F1 score were 
used as evaluation metrics. Each metric is shown in Equations 
(17), (18), and (19). 

�g@3 k 2% �  	�	� +  E� (17) 

 

Q@34AA �  	�	� + E� (18) 

 

E1 k32g@ � 2 �  �g@3 k 2% �  Q@34AA�g@3 k 2% +  Q@34AA  (19) 

C. Experimental Design 

The GPU specification used in the experiment is NVIDIA 
GeForce GTX 1080 Ti 11GB. We used 1 head for training and 
set the  
�����  to 256. The initial learning rate was set to 0.001 
and the optimizer was Adam. Patch size was set to 5 and 
window size to 100. Threshold δ is specified as the top α% 
percentile, where α is measured on the validation set. For 
performance evaluation, we use the popular point adjustment 
technique [6], [7], [17]. In this method, if some point is 
detected in a certain consecutive anomaly interval, all 
anomalies in that interval are considered to be correctly 
detected.  

D. Experiment Results 

To compare the performance in multivariate time series 
anomaly detection, we set Omnianomaly, USAD, TranAD, 
Anomaly Transformer, and DCdetector as the comparison 
models [6], [7], [17], [18], [19].  

 Table Ⅲ presents a performance comparison between the 
proposed method and other time series anomaly detection 
models. The experiment was repeated five times, and the 
results are presented as the average performance. When 
comparing the performance based on F1 score, we can see that 
the proposed method outperforms the comparison models.  

In particular, the proposed method outperforms the 
attention-based models Anomaly Transformer and 
DCdetector. This means that the proposed method captures 
the interactions between variables that occur across time 
points more precisely through cross-variable attention. It can 
also be interpreted as a stable model in that the standard 
deviation is the smallest in the SMAP dataset and the second 
smallest in the MSL dataset. 

The visualization of false positive case and true positive 
case in SWaT dataset is shown in Fig. 5. We compare the 
proposed method with DCdetector, which is the second best 
performer based on F1 score in Table Ⅲ, through visualization. 
The blue section is the true positive case and the red section is 
the false positive case. The proposed method in Fig. 4 (b) has 

TABEL Ⅰ.     DETAILS OF BENCHMARK DATASETS 

Data  Dimension  # Train # Test 
Anomaly Ratio 

(%) 

SMAP 25 135,183 427,617 12.8 

MSL 55 58,317 73,729 10.5 

SWaT 51 496,800 449,919 11.98 

 

TABEL Ⅱ.    CONFUSTION MATRIX 

 Actual 

True 

 (Abnormal) 

False  

(Normal) 

Predicted 

True 

(Abnormal) 

TP 

(True Positive) 

FP 

(False Positive) 

False 

(Normal) 

FN 

(False Negative) 

TN 

(True Negative) 

 

TABEL Ⅲ.   PERFORMANCE COMPARISION TABLE 

Dataset SMAP MSL SWaT 

Metric Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score 

Omnianomaly 
0.9125 

(0.0372) 
0.7219 

(0.0214) 
0.8060 

(0.0262) 
0.9183 

(0.0473) 
0.7151 

(0.1399) 
0.7934 

(0.0924) 
0.9416 

(0.0502) 
0.7008 

(0.0073) 
0.8027 

(0.0140) 

USAD 
0.9253 

(0.0255) 

0.7112 

(0.1871) 

0.7905 

(0.1258) 

0.9234 

(0.0114) 

0.6577 

(0.2040) 

0.7506 

(0.1418) 

0.9529 

(0.0585) 

0.7121 

(0.0344) 

0.8127 

(0.0011) 

TranAD 
0.8646 

(0.0665) 

0.8195 

(0.1110) 

0.8350 

(0.0578) 

0.8500 

(0.0592) 

0.9679 

(0.1742) 

0.8558 

(0.0788) 

0.9763 

(0.0151) 

0.6951 

(0.0051) 

0.8120 

(0.0016) 

Anomaly 

Transformer 

0.7690 

(0.0461) 

0.9964 

(0.0009) 

0.8879 

(0.0136) 

0.8500 

(0.0066) 

0.9679 

(0.0095) 

0.9051 

(0.0061) 

0.9042 

(0.0569) 

0.9362 

(0.0033) 

0.9045 

(0.0319) 

DCdetector 
0.8926 

(0.0055) 

0.9879 

(0.0060) 
 

0.9378 

(0.0014) 

0.8634 

(0.0014) 

0.9905 

(0.0016) 

0.9226 

(0.0003) 

0.8944 

(0.0152) 

0.9737 

(0.0222) 

0.9265 

(0.0102) 

Proposed Method 
0.9364 

(0.0000) 

0.9916 

(0.0009) 
0.9632 

(0.0004) 

0.9216 

(0.0005) 

0.9823 

(0.0059) 
0.9509 

(0.0030) 

0.9371 

(0.0061) 

0.9818 

(0.0256) 
0.9587 

(0.0092) 

 



fewer false positive cases than DCdetector in Fig. 4 (a), which 
means that the proposed method has learned the relationship 
between variables well, so the frequency of false alarms is 
lower in the normal pattern similar to the actual abnormal 
pattern. 

V. CONCLUSION 

In this study, we proposed a patch-based contrastive 
learning anomaly detection model that reflects the 
dependencies between variables in different time points. The 
proposed method considers cross-variable dependency and 
temporal dependency, and improves the anomaly detection 
performance by extracting representations of the normal by 
inter-patch attention and intra-patch attention.  

For the three benchmark datasets, we obtained superior 
results compared to the F1 score baseline comparison models. 
Therefore, it is expected that the proposed method can 
efficiently learn the relationship between variables to detect 
anomalies in process situations with time delays. 

 In this study, the hyper-parameter E was set to 1, i.e., only 
the relationship between variables before one patch was 
considered. However, this has the limitation that it does not 
reflect the case of time delay for multiple time points. In the 
future, we plan to increase the number of E.  
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Fig. 4. Red segments are the false positive case, and blue segments are the true positive case. (a) DCdetector, (b) Proposed method. 

 


