
Patch-based Time-Series Anomaly Detection with

Cross-Variable Attention

Jeena Son

Department of Industrial and

Management Engineering

Korea University

Seoul, South Korea

a-jeen0722s@korea.ac.kr

Seunghwan Song

Department of Industrial and

Management Engineering

Korea University

Seoul, South Korea

ss-hwan@korea.ac.kr

Jun-Geol Baek*

Department of Industrial and

Management Engineering

Korea University

Seoul, South Korea

jungeol@korea.ac.kr

Abstract— Modern manufacturing processes are influenced

by smart factories, which collect data from multiple sensors in

real time. However, detecting anomalies is challenging due to

their irregular and complex patterns, often resulting in

unreliable labeling that depends on the engineer's expertise.

Moreover, in these processes, where sensors are interconnected,

fluctuations in one variable can potentially influence subsequent

variables. The proposed method uses cross-variable attention to

reflect the relationship between variables at different time

points. It also utilizes contrastive learning to extract a

representation of only normal data that can be distinguished

from anomalies without labels. Experimental results on

multivariate time series data demonstrate that the proposed

method outperforms existing models in anomaly detection.

Keywords— Anomaly Detection, Cross-Variable Attention,

Multivariate Time Series, Contrastive Learning

I. INTRODUCTION

Anomaly is a deviation from the normal state or an
unexpected change. To maintain the stability and reliability of
a system, anomaly detection techniques are necessary.
Anomaly detection is used in a variety of fields, including
manufacturing, energy, finance, healthcare, and cloud
computing. In particular, anomaly detection in manufacturing
processes is closely related to product defects and the final
product of the manufacturing process [1]. Therefore, accurate
anomaly detection is necessary to improve quality and
productivity.

Due to the influence of smart factories, data from multiple
sensors are being collected in manufacturing processes. These
are stored at regular time intervals in the form of multivariate
time series. However, multivariate time series anomaly
detection in manufacturing processes is challenging due to the
following reasons: (1) labeling problems dependent on the
engineer's expertise, (2) the absence of a representation for the
relationship between variable at different time points.

First, the amount of sensors collected is vast, and the
anomaly patterns are irregular and complex. Since data
labeling is done manually by engineers, the reliability of
labeling can vary depending on the experience level of the
engineer. Therefore, an unsupervised learning model is
necessary for detecting anomalies without labels.

Second, it is crucial to consider both temporal dependency
and correlation between variables simultaneously. With the
development of deep learning, various approaches have been
explored to capture the temporal relationships, including Long

Short Term Memory (LSTM), Transformer, and Temporal
Convolution Network (TCN) [2], [3], [4]. These studies
mainly consider only the dependencies between variables
within the same time point. However, in the manufacturing
process, multivariate sensors are organically connected, so
small fluctuations in one variable can affect the later time
points of other variables [5]. Hence, there is a need for
research that reflects the relationship between variables at
different time points.

In this study, we propose a patch-based time-series
anomaly detection method that reflects the dependency
between variables at different time points, which we define as
cross-variable dependency. The proposed method utilizes
contrastive learning to extract a representation of only normal
data that is distinct from anomalies without labels. In addition,
patch based temporal attention is used to learn inter-patch and
intra-patch relationships. Finally, cross-variable attention
captures not only the relationships between variables at the
same point in time, but also the relationships between
variables at different points in time.

To summarize, the contributions of this study are as
follows.

• Utilizes the patch module and contrastive learning to
learn a consistent representation of normal without
labels.

• Proposes cross-variable attention to capture correlations
between variables at different time points.

• Demonstrates high anomaly detection performance on a
multivariate time series anomaly detection benchmark
dataset.

 The composition of this paper is as follows. First, in
Section 2, we review prior work on unsupervised time series
anomaly detection and contrastive learning. Section 3
describes the method we propose in this study, and then
evaluates the performance of the proposed method in Section
4. Section 5 presents conclusions and future works.

II. RELATED WORKS

A. Unsupervised Time Series Anomaly Detection

Time series anomaly detection is broadly divided into
supervised and unsupervised learning based on the presence
or absence of labels during training. However, since it is
difficult to acquire labeled data in actual industrial sites,
unsupervised time series anomaly detection models are
mainly studied. *Corresponding author—Tel: +82-2-3290-3396; Fax: +82-2-3290-4550

The existing unsupervised time series anomaly detection
models are shown in Fig. 1 (a), they only consider the
dependencies between variables within the same time point
[6], [7], [8]. However, in a real manufacturing process, it is
necessary to reflect the relationship between variables at
different time points, because there are time delay situations
where fluctuations in a certain variable affect other variables
several time points later. Therefore, an intuitive time series
anomaly detection model is proposed as shown in Fig. 1 (b).

B. Contrastive Learning in Time Series

Representation learning is an approach that seeks to obtain
useful representations from unlabeled data to improve the
performance of various downstream tasks [9]. It extracts
information based on the inherent structure and patterns in the
data.

Contrastive learning using data augmentation is a typical
representation learning technique [10]. The goal of contrastive
learning is to learn an embedding space where similar data
samples are close together and dissimilar data samples are far
apart. A classical contrastive learning model is trained by
generating pairs of samples, where positive pairs represent
similar data and negative pairs represent different data.

However, unlike the positive pairs generated by the data
augmentation, it is difficult to define the negative pairs. This
is because in unsupervised learning, similar samples can be
selected as negative pairs due to the lack of labels. Therefore,
models that do not use negative pairs have recently emerged
[11], [12]. Typically, they use the structure of a siamese
network, which is a network with shared weights for two or
more inputs. However, this structure can suffer from mode
collapsing, where all output values converge to a single
constant. One of the methods used to solve this problem is the
stop-gradient method [12].

Most contrastive learning models are based on image data.
However, recently, methods for applying contrastive learning
to time series data have appeared [9], [13]. However, the data
augmentation used by these methods do not take advantage of
the inherent characteristics of time series data [14]. Therefore,
unlike existing methods that use data augmentation to
generate positive pairs, this study considers the characteristics
of time series data. Specifically, it reflects the characteristic
that normal and abnormal have different representations from
different perspectives [7].

III. PROPOSED METHOD

In this study, we propose a multivariate time series
anomaly detection method that combines the patch module
and contrastive learning to learn the representation of normal
data and reflect the relationship of variables with different
time points. The overall structure of the proposed method is
shown in Fig. 2. The proposed method consists of the
following four steps (1) Patch module: divide the whole time
series into patches. (2) Attention module: Learn each
representation through inter-patch attention, intra-patch
attention, and cross-variable attention. (3) Encoder: Equalize
the dimensionality of the representations derived from each
attention. (4) Training: The similarity between the final
output, the inter-patch representation and the intra-patch
representation, is measured by the Kullback-Leibler (KL)
divergence and trained as a loss function. Finally, the anomaly
score is used to determine whether the data point is normal or
abnormal.

A. Patch module

The patch module converts an original time series into

patches. An input time series � ∈ ℝ����� is passed through

the patch module to � ∈ ℝ�����. 	 is the length of the time
series,
 is the number of variables, � is the patch size, and �
is the number of patches. The product of � and � is equal to

Fig. 2. (a) Considers dependencies between variables at the same time

point, (b) relationships between variables at different time points.

Fig. 2. Architecture of Proposed Methods

	 . When input to the inter-patch and intra-patch attention
modules, the batch size and the variable dimension are
combined to form a univariate time series � ∈ ℝ���. Cross-
variable attention, on the other hand, reflects the relationship

between variables and is therefore input as � ∈ ℝ���. This
has the advantage of reducing the number of input tokens,
which reduces computation and memory usage [15]. It can
also reflect more local semantic information than a point-wise
time series [16].

B. Attention module

The proposed method consists of three types of attention,
as shown in Fig. 3: Inter-patch attention to reflect the
relationship between patches, intra-patch attention to check
the interaction within patches, and cross-variable attention to
consider the relationship between variables at different time
points. Normal data will share similar feature patterns because
they are strongly correlated with each other, so the difference
between representations from different perspectives will be
small, while anomalies will be large. Therefore, inter-patch
and intra-patch are used to view the representation of the time
series from different perspectives. In addition, cross-variable
attention is used to reflect the relationship between variables
at different time points, i.e., not only the relationship between
variables at the same time point, but also the relationship with
variables at previous time points.

1) Inter-patch attention
 Fig. 3 (a) illustrates inter-patch attention. � ∈ ℝ���

converted into patch units by the patch module is input. After
that, it is converted into an embedding vector of �� ∈ ℝ� � ����� through the embedding module. Here,
�����is
the embedding vector size. To understand the relationship
between the embedding vectors, we apply inter-patch
attention. The initial query and key are as shown in Equation
(1).

 ��� , ��� � ������ , ������ , 1 � � H (1)

��� , ��� ∈ ℝ�� �����" denotes the query and key, and

��� , ��� ∈ ℝ �����" � �����" denotes the learnable parameter

matrix. H is the number of heads. Next, the attention weight is
equal to Equation (2).

 #$$%�� � Softmax - ������ .
/
�����

0 (2)

It computes the dot product of query and key, divides by /
����� to scale it. It then converts it to a probability

distribution using Softmax. As a result, we calculate how
relevant a particular patch is to other patches. Then,
concatenate each representation of the multi-head and derive
the inter-patch representation #$$%� as shown in Equation
(3).

 #$$%� � 12%34$5 #$$%�6 , ⋯ , #$$%�"8��� (3)

 ��� ∈ ℝ ����� � ����� is the learnable parameter matrix.

2) Inter-patch attention
The intra-patch attention in Fig. 3 (b) learns the

dependencies between points within the same patch. It shares
weights with the inter-patch attention network. Same as inter-
patch attention, attention is applied to compute the
relationship between each embedding vector. The initial query
and key are as shown in Equation (4).

 ��� , ��� � ������ , ������ , 1 � � H (4)

��� , ��� ∈ ℝ�� �����" denotes the query and key, and

��� , ��� ∈ ℝ �����" � �����" denotes the learnable parameter

matrix. The attention weights #$$%�� are computed in a

similar way to (2).

 However, unlike (2), which reflects the relationship
between patches, it calculates how relevant a particular point
in a patch is to other points. Finally, the intra-patch
representation #$$%� is derived in the same way as equation
(3).

Fig. 3. Attention module: It consists of three attentions. (a) Inter-patch attention, which looks at relationships between patches; (b) Intra-patch attention, which

learns relationships within patches; and (c) Cross-variable attention, which learns relationships between variables at different time points.

3) Cross-variable attention
 Inter-patch attention and intra-patch attention consider
temporal dependency. At the same time, we apply cross-
variable attention as shown in Fig. 3 (c) to reflect the
relationship between variables with different time points. The

input data � ∈ ℝ��� are transformed into an embedding

vector of �9 ∈ ℝ� � � � ����� by the embedding module,
i.e., there are d time series, and each time series consists of N
patches. We apply cross-variable attention to compute the
relationship between patches at one point in time and patches
at another point in time. The initial query and key are as shown
in Equation (5).

 �9� :, �9� :;< � �=��9� :, �>��9� :;< ,
 1 � � H , 1 � $ � �

(5)

�9� : , �9� :;< ∈ ℝ
�
?2
@AB denotes the query and key, and

�=� , �>� ∈ ℝ �����" � �����" denotes the learnable parameter

matrix. At this time, as shown in Fig. 3 (c), �9� : is formed by

the variables at a certain time, i.e., all the patches existing at $, and �C $−Eis formed by the patches at the previous time, $ − E (E ≥ 0). Here, F is a hyper parameter, which means that
it reflects the relationship between the patches at time $ and
the patches at time $ − E. The attention weight of a query at
time t with all keys up to time $ − E is given by Equation (6).

 #$$%9� :;< � Softmax H �C
$�C $−E.

/
�����
I (6)

 Furthermore, the farther away the point is, the lower the
influence will be. To accomplish this, we apply an exponential
smoothing weighting method. This gives more weight to
recent observations and an exponentially decreasing weight to
past observations. The weight at time $ − E is given by
equation (7).

 �@ Jℎ$:;< � @;L�< (7)

 M is a parameter that controls the rate of weight decay. The
larger M leads to a more rapid decrease in weight, while a
smaller M results in a slower decrease in weight. The final
attention weight, which reflects the relationship between all
patches from time t to time $ − E, is equal to (8).

 #$$%9� � �@ Jℎ$:;< � #$$%9� :;<

(8)
 +�@ Jℎ$:;<;O � #$$%9� :;<PO + ⋯ + �@ Jℎ$: � #$$%9� :

Add up all the relationships between all the variables at a
given time $, as well as the relationships between the variables
at time $ − E and the variables at time $. Finally,
concatenating each of the multi-head representations and
deriving the cross-variable representation #$$%9 is shown in
Equation (9).

 #$$%9 � 12%34$5 #$$%96 , ⋯ , #$$%9"8�9� (9)

 �9� ∈ ℝ ����� � ����� is the learnable parameter matrix.

C. Encoder

The three representations (#$$%� , #$$%� , #$$%9)
generated by the Attention module need to calculate similarity
when training. Therefore, we need to equalize the dimensions
through an encoder. We used a fully connected layer as the
encoder. The encoders for each representation all have the
same structure, but they are trained independently. Finally,
three representations with the same dimensionality are derived
as shown in Equation (10), (11), and (12).

 QRS:�T;UV:Wℎ � X5#$$%�8 (10)

 QRS:TV;UV:Wℎ � X5#$$%�8 (11)

 QWT�YY;ZVT[V\�� � X5#$$%98 (12)

Finally, the cross-variable representation is added to the

inter-patch representation and the intra-patch representation

to derive the final inter-patch representation � and the final

intra-patch representation �. � and � are equal to (13), (14).

� � QRS:�T;UV:Wℎ + QWT�YY;ZVT[V\�� (13) � � QRS:TV;UV:Wℎ + QWT�YY;ZVT[V\�� (14)

D. Training

 For the same input, we derive two representations, � and �, from different perspectives (inter-patch and intra-patch).
We use KL-divergence to measure the similarity of the two
representations. According to the previous assumption,
representations of the same normal input should be similar to
each other because there are few anomalies, and normal data
share latent patterns. The similarity metric for two
representations � and � is defined as C5�, �8 � �]5�||�8.
where �]5∙ || ∙8is the KL divergence. The final loss function
is shown in Equation (15):

]`�, �; �b � 12 Cd�, e$2fJg4
5�8h
+ 12 C5�, e$2fJg4
5�88 (15)

where X is the input time series, and N and P are the inter-
patch representation and intra-representation. Stopgrad means
stop-gradient, which prevents the gradient from updating
when backpropagation, so that N and P are alternately updated
and become similar. The anomaly score for a time series � ∈ ℝ.��is given by Equation (16):

#%2?4Aie32g@5�8 � 1
2 C5�, �8 + 1

2 C5�, �8 (16)

Based on a threshold j, which is a hyper-parameter, anomaly
score is judged as abnormal (1) if it exceeds j, and normal (0)
otherwise.

IV. EXPERIMENTS

A. Dataset

 To evaluate the proposed model, the Soil Moisture Active
Passive (SMAP) dataset, Mars Science Laboratory (MSL)
dataset, and Secure Water Treatment (SWaT) dataset were
used. SMAP provides soil samples and remote sensing
information measured by NASA's Mars rovers. MSL is
NASA's Mars rover sensor and actuator data. SWaT is data
from real industrial water treatment plants that produce
purified water. The details of the datasets are summarized in
Table Ⅰ.

B. Evaluation Metrics

 To evaluate the performance, we used confusion matrix as
shown in Table Ⅱ.

According to Table Ⅱ, Precision, Recall, and F1 score were
used as evaluation metrics. Each metric is shown in Equations
(17), (18), and (19).

�g@3 k 2% � 	�	� + E� (17)

Q@34AA � 	�	� + E� (18)

E1 k32g@ � 2 � �g@3 k 2% � Q@34AA�g@3 k 2% + Q@34AA (19)

C. Experimental Design

The GPU specification used in the experiment is NVIDIA
GeForce GTX 1080 Ti 11GB. We used 1 head for training and
set the
����� to 256. The initial learning rate was set to 0.001
and the optimizer was Adam. Patch size was set to 5 and
window size to 100. Threshold δ is specified as the top α%
percentile, where α is measured on the validation set. For
performance evaluation, we use the popular point adjustment
technique [6], [7], [17]. In this method, if some point is
detected in a certain consecutive anomaly interval, all
anomalies in that interval are considered to be correctly
detected.

D. Experiment Results

To compare the performance in multivariate time series
anomaly detection, we set Omnianomaly, USAD, TranAD,
Anomaly Transformer, and DCdetector as the comparison
models [6], [7], [17], [18], [19].

 Table Ⅲ presents a performance comparison between the
proposed method and other time series anomaly detection
models. The experiment was repeated five times, and the
results are presented as the average performance. When
comparing the performance based on F1 score, we can see that
the proposed method outperforms the comparison models.

In particular, the proposed method outperforms the
attention-based models Anomaly Transformer and
DCdetector. This means that the proposed method captures
the interactions between variables that occur across time
points more precisely through cross-variable attention. It can
also be interpreted as a stable model in that the standard
deviation is the smallest in the SMAP dataset and the second
smallest in the MSL dataset.

The visualization of false positive case and true positive
case in SWaT dataset is shown in Fig. 5. We compare the
proposed method with DCdetector, which is the second best
performer based on F1 score in Table Ⅲ, through visualization.
The blue section is the true positive case and the red section is
the false positive case. The proposed method in Fig. 4 (b) has

TABEL Ⅰ. DETAILS OF BENCHMARK DATASETS

Data Dimension # Train # Test
Anomaly Ratio

(%)

SMAP 25 135,183 427,617 12.8

MSL 55 58,317 73,729 10.5

SWaT 51 496,800 449,919 11.98

TABEL Ⅱ. CONFUSTION MATRIX

 Actual

True

 (Abnormal)

False

(Normal)

Predicted

True

(Abnormal)

TP

(True Positive)

FP

(False Positive)

False

(Normal)

FN

(False Negative)

TN

(True Negative)

TABEL Ⅲ. PERFORMANCE COMPARISION TABLE

Dataset SMAP MSL SWaT

Metric Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

Omnianomaly
0.9125

(0.0372)
0.7219

(0.0214)
0.8060

(0.0262)
0.9183

(0.0473)
0.7151

(0.1399)
0.7934

(0.0924)
0.9416

(0.0502)
0.7008

(0.0073)
0.8027

(0.0140)

USAD
0.9253

(0.0255)

0.7112

(0.1871)

0.7905

(0.1258)

0.9234

(0.0114)

0.6577

(0.2040)

0.7506

(0.1418)

0.9529

(0.0585)

0.7121

(0.0344)

0.8127

(0.0011)

TranAD
0.8646

(0.0665)

0.8195

(0.1110)

0.8350

(0.0578)

0.8500

(0.0592)

0.9679

(0.1742)

0.8558

(0.0788)

0.9763

(0.0151)

0.6951

(0.0051)

0.8120

(0.0016)

Anomaly

Transformer

0.7690

(0.0461)

0.9964

(0.0009)

0.8879

(0.0136)

0.8500

(0.0066)

0.9679

(0.0095)

0.9051

(0.0061)

0.9042

(0.0569)

0.9362

(0.0033)

0.9045

(0.0319)

DCdetector
0.8926

(0.0055)

0.9879

(0.0060)

0.9378

(0.0014)

0.8634

(0.0014)

0.9905

(0.0016)

0.9226

(0.0003)

0.8944

(0.0152)

0.9737

(0.0222)

0.9265

(0.0102)

Proposed Method
0.9364

(0.0000)

0.9916

(0.0009)
0.9632

(0.0004)

0.9216

(0.0005)

0.9823

(0.0059)
0.9509

(0.0030)

0.9371

(0.0061)

0.9818

(0.0256)
0.9587

(0.0092)

fewer false positive cases than DCdetector in Fig. 4 (a), which
means that the proposed method has learned the relationship
between variables well, so the frequency of false alarms is
lower in the normal pattern similar to the actual abnormal
pattern.

V. CONCLUSION

In this study, we proposed a patch-based contrastive
learning anomaly detection model that reflects the
dependencies between variables in different time points. The
proposed method considers cross-variable dependency and
temporal dependency, and improves the anomaly detection
performance by extracting representations of the normal by
inter-patch attention and intra-patch attention.

For the three benchmark datasets, we obtained superior
results compared to the F1 score baseline comparison models.
Therefore, it is expected that the proposed method can
efficiently learn the relationship between variables to detect
anomalies in process situations with time delays.

 In this study, the hyper-parameter E was set to 1, i.e., only
the relationship between variables before one patch was
considered. However, this has the limitation that it does not
reflect the case of time delay for multiple time points. In the
future, we plan to increase the number of E.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korean
government (MSIT) (NRF-2022R1A2C2004457). This work
was also supported by Samsung Electronics Co., Ltd.
(IO201210-07929-01) and Brain Korea 21 FOUR.

REFERENCES

[1] K. Choi, J. Yi, C. Park, and S. Yoon, “Deep Learning for Anomaly
Detection in Time-Series Data: Review, Analysis, and Guidelines,”
IEEE Access, vol. 9, pp. 120043–120065, 2021

[2] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[3] Vaswani, A., et al. "Attention is all you need," Advances in neural
information processing systems, vol. 30, 2017.

[4] S. Bai, J. Kolter, V. Koltun. "An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling," arXiv
preprint arXiv:1803.01271, 2018.

[5] Y. Zhang, J. Yan, "Crossformer: Transformer utilizing cross-
dimension dependency for multivariate time series forecasting," The
Eleventh International Conference on Learning Representations, 2022.

[6] Audibert, J., Michiardi, P., Guyard, F., Marti, S., & Zuluaga, M. A.,
"Usad: Unsupervised anomaly detection on multivariate time series,"
Proceedings of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, 2020, pp. 3395–3404.

[7] Xu, J., Wu, H., Wang, J., & Long, M, "Anomaly transformer: Time
series anomaly detection with association discrepancy," In
International Conference on Learning Representations, 2021.

[8] A. Deng, B. Hooi, "Graph neural network-based anomaly detection in
multivariate time series," Proceedings of the AAAI conference on
artificial intelligence, 2021, pp. 4027–4035.

[9] Eldele, E., et al. "Time-series representation learning via temporal and
contextual contrasting," arXiv preprint arXiv:2106.14112, 2021.

[10] Zhang, X., Zhao, Z., Tsiligkaridis, T., & Zitnik, M., "Self-supervised
contrastive pre-training for time series via time-frequency
consistency," Advances in Neural Information Processing Systems,
vol. 35, pp. 3988–4003, 2022.

[11] Grill, J., et al. "Bootstrap your own latent-a new approach to self-
supervised learning," Advances in neural information processing
systems, vol. 33, pp. 21271–21284, 2020.

[12] X. Chen, K. He, "Exploring simple siamese representation learning,"
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2021, pp. 15750–15758.

[13] Woo, G., Liu, C., Sahoo, D., Kumar, A., & Hoi, S., "CoST: Contrastive
learning of disentangled seasonal-trend representations for time series
forecasting," arXiv preprint arXiv:2202.01575, 2022.

[14] Wen, Q., et al. "Time series data augmentation for deep learning: A
survey," arXiv preprint arXiv:2002.12478, 2020.

[15] Cirstea, R., et al. "Triformer: Triangular, Variable-Specific Attentions
for Long Sequence Multivariate Time Series Forecasting–Full
Version," arXiv preprint arXiv:2204.13767, 2022.

[16] Nie, Y., Nguyen, N. H., Sinthong, P., & Kalagnanam, J., "A Time
Series is Worth 64 Words: Long-term Forecasting with Transformers,"
The Eleventh International Conference on Learning Representations,
2022.

[17] Su, Y., et al, "Robust anomaly detection for multivariate time series
through stochastic recurrent neural network," Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery &
data mining, 2019, pp. 2828–2837.

[18] S. Tuli, G. Casale, N. Jennings. "TranAD: deep transformer networks
for anomaly detection in multivariate time series data," Proceedings of
the VLDB Endowment, vol. 15, no. 6, pp. 1201–1214, 2022.

[19] Yang, Y., Zhang, C., Zhou, T., Wen, Q., & Sun, L., "DCdetector: Dual
Attention Contrastive Representation Learning for Time Series
Anomaly Detection," Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2023.

Fig. 4. Red segments are the false positive case, and blue segments are the true positive case. (a) DCdetector, (b) Proposed method.

