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Abstract—In multiple input multiple output (MIMO) quantize-
forward (QF) relay systems, an autoencoder comprising an
encoder, a decoder, and a channel component has been employed,
demonstrating commendable performance. In the QF relaying,
the relay quantizes the phases of received signals and forwards
them to the destination. A neural network is subsequently inte-
grated into the relay after quantization, introducing a non-linear
beamforming effect. In assessing the efficacy of the autoencoder-
based MIMO QF relay system applying phase quantization
with neural network at the relay, we conduct a comprehensive
analysis of bit error rates. This evaluation compares system
performance related to diverse learning parameters, such as
batch size, number of epochs, and neural network size at the
relay. Simulation results clearly illustrate that these learning
parameters significantly influence the overall performance of the
system.

Index Terms—Autoencoder, deep learning, multi-input multi-
output (MIMO), quantize-forward, relay

I. INTRODUCTION

Recently, deep learning [1] has found widespread applica-
tions across various research fields. In communications, deep
learning has been leveraged to enhance system performance
and computational efficiency [2]–[5]. An impact application of
deep learning in communication systems is the implementation
of autoencoders [5]. This approach views the communication
system as an end-to-end autoencoder, optimizing both the
neural-network transmitter and the neural-network receiver
jointly. Notably, this method is advantageous for channel
models lacking known optimal solutions. Extending this study
to multiple input multiple output (MIMO) systems has demon-
strated superior performance compared to conventional MIMO
systems [6].

Notable advancements have been achieved in relay coop-
erative communication systems, where a relay node supports
communication between a transmitter (source) and a receiver
(destination) [7]. An amplify–forward (AF) relaying, a sim-
plest relay algorithm, amplifies the received signal at the
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relay and forwards it to the destination. However, the AF
relaying introduces noise amplification along with the signal,
and the analog nature of received signals in a half-duplex AF
relay demands high memory for storing continuous signals
before forwarding. To address these challenges, the quantize–
forward (QF) algorithm has been proposed as an alternative
relay method [8]. The QF relaying quantizes the received
signal at the relay and then transmits the quantized signal to
the destination. Consequently, the QF relaying with reduced
memory requirements, achieves performance comparable to
AF relaying.

This paper focuses on the autoencoder-based QF relay
system with phase quantization (PQ) at the relay, incorporating
an encoder (source), a decoder (destination), and a channel
consisting of a source-destination (SD) channel and a source-
relay-destination (SRD) channel [9]–[11]. The introduction of
a neural network after quantization at the relay results in a
non-linear beamforming effect, forming an algorithm named
PQ with neural network (PQNN) [11]. The encoder, decoder,
and the neural network at the relay are jointly optimized. This
paper evaluates the system performance using PQNN at the
relay across various learning parameters, including batch size,
number of epochs, and the neural network size at the relay,
through simulations. Simulation results unequivocally show
that these learning parameters have a significant impact on
the overall performance of the system.

II. A RELAY COMMUNICATION SYSTEM

As shown in Fig. 1, a relay communication system including
a source (S), a destination (D), and a relay (R) is considered.
In this system, the source, the destination, and the relay are
equipped with NS, ND, and NR antennas, respectively. The
links connecting each node are categorized as source-relay
(SR), SD, and relay-destination (RD) links, respectively.

In the first time slot, the source broadcasts a symbol vector
x =

[
x1 x2 · · · xNS

]T ∈ CNS with ∥x∥2 = 1 to the
relay and the destination. Accordingly, the received signals at



Fig. 1. An autoencoder-based relay system

the relay and the destination are expressed as

ySR = HSRx + zSR (1)
ySD = HSDx + zSD (2)

where HSR ∈ CNR×NS and HSD ∈ CND×NS are channel
coefficient matrices for the SR and the SD links, respectively.
zSR ∼ CN (0, σ2INR

) and zSD ∼ CN (0, σ2IND
) are the noise

vectors at the relay and the destination, respectively.
In the second time slot, the received signal ySR at the

relay is reconstructed into a new signal xR = f(ySR) with
∥xR∥2 = 1 following the relay algorithm, and then the signal
is transmitted to the destination. As a result, the received signal
at the destination is

yRD = HRDxR + zRD (3)

where HRD ∈ CND×NR is the RD channel coefficient matrix.
zRD ∼ CN (0, σ2IND

) is a noise vector at the destination.
The destination estimates the signal x using the two received
signals ySD and yRD.

III. AUTOENCODER-BASED QF RELAY SYSTEM

A. Autoencoder

An autoencoder comprises an encoder and a decoder. The
encoder reduces the input dimension, producing a compressed
value, which the decoder uses to reconstruct the input. This
autoencoder structure closely resembles that of a conven-
tional communication system. Consequently, the transmitter
and receiver of the communication system are optimized
as an autoencoder in an end-to-end fashion. In this setup,
the encoder generates a transmission signal corresponding to
the information message, while the decoder reconstructs and
estimates the information message from the received signal.

The autoencoder-based MIMO relay communication system
illustrated in Fig. 1 consists of an encoder (source), a decoder
(destination), and a channel.

In the transmitter, a message s ∈ M = {1, 2, . . . ,MNS} is
encoded to a MNS×1 one-hot vector Soh, passing through two
dense layers and a normalization layer. After the normalization
layer, an encoded symbol vector x is generated.

Referring to the system described in Section II, the source
broadcasts x to the relay and the destination in the first time
slot, with the relay transmitting xR to the destination in the
second time slot. Consequently, the destination receives signals
ySD and yRD over two time slots.

At the destination, the two received signals pass through two
dense layers and a softmax activation function. This network
estimates the original message by producing an output Ŝoh.

(a) PQ

(b) PQNN

Fig. 2. The PQ and PQNN algorithms at the relay

Within the elements of Ŝoh, the index corresponding to the
element with the largest value is determined as an estimation
message ŝ. To reduce the difference between the transmitted
message s and the estimated message ŝ, we use the categorical
cross-entropy loss function between Ŝoh and Soh as

L = −
M∑
i=1

[Soh]i log([Ŝoh]i).

B. QF algorithm

The AF strategy exhibits commendable performance, but
the demand for memory at the relay is substantially high
due to the storage of the analog signal. Conversely, the QF
approach quantizes the phase of the signal received at the relay,
effectively utilizing a limited amount of memory. Additionally,
unlike AF, the QF method eliminates the necessity for channel
information HSR of the SR link, thereby alleviating the compu-
tational burden at the relay. For specific details we first explain
the phase quantization (PQ) and subsequently introduce PQ
with neural network (PQNN).

Applying a q(≥ log2 M)-bit uniform phase quantization
[8], the result for the quantization is [ΘR]i = Q(∠[ySR]i) =

ϕk =
2πk

2q
, when (2k−1)π

2q < ∠[ySR]i ≤ (2k+1)π
2q for

k = 0, 1, . . . , 2q . Then, xR in (3) is denoted as

xR =
1√
NR

ejΘR =
1√
NR

ejQ(∠ySR) (4)

where 1√
NR

arises from the power constraint ∥xR∥2 = 1. This
is referred to as PQ, and it has been introduced for both the
SISO system [9] and the MIMO case [10].

If the relay possesses the capability to accommodate addi-
tional computational load, further enhancements to the system
performance can be achieved by introducing an additional
neural network, particularly one that includes a hidden layer,
after quantization. This extended approach is termed PQNN
[11]. The PQ and PQNN algorithms are succinctly depicted
in Fig. 2.

IV. SIMULATION RESULT AND DISCUSSION

In this section, we evaluate the system performance for the
autoencoder-based QF relay system applying the PQNN at
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Fig. 3. BER performance for various batch sizes.

the relay, where NS = NR = ND = 4,M = 4, and q =
log2 M+2. We explore various learning parameters, including
the batch size B, the number of epochs E, and the number of
nodes in the hidden layer of the neural network at the relay,
through simulations.

For training, we employ Adam optimizer [12] on Ten-
sorFlow frameworks [13]. Unless explicitly specified, the
learning parameters for the simulations are set as follows:
the number of training data N = 10000, the number of test
data Ntest = 1000, the batch size B = 300, the number
of epochs E = 100, and the number of the nodes for the
hidden layer at the relay = 8NR. The simulation process
is conducted repeatedly for 1000 Rayleigh-distributed fading
channel scenarios to calculate the average bit error rate (BER).

A. Batch size

The batch size is a critical parameter in the training phase,
representing the number of data samples processed in parallel
during each training iteration. A too-small batch size allows
for a detailed examination of individual data samples during
training, but it may also lead to significant deviations from the
optimal optimization path during the weight update process.
Conversely, an excessively large batch size increases the num-
ber of simultaneously handled data, reducing the frequency of
weight updates. While this can shorten the training time, it may
result in large memory usage and performance degradation
due to fewer opportunities for weight updates. Determining
the appropriate batch size is crucial as it significantly impacts
memory usage, training time, and performance.

To determine the optimal batch size, a performance compar-
ison is conducted across various batch sizes, as illustrated in
Fig. 3. Notably, the model with a batch size of B = 10 stands
out as the most suboptimal, exhibiting poor performance by a
substantial margin compared to other batch sizes, which tend
to cluster together with relatively similar outcomes.

The choice of batch size is a trade-off between memory
usage and training time. Larger batch sizes increase memory
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Fig. 4. BER performance for various numbers of the epochs.

usage during training but reduce the overall training time due
to fewer training iterations. Conversely, smaller batch sizes
necessitate a longer training time due to a greater number of
training iterations. Given these characteristics, it is advisable
to choose a batch size B ≥ 50 for better model performance.

B. Number of epochs

Epochs represent the number of training iterations com-
pleted on a given training dataset and constitute a crucial
parameter in the training phase, alongside the batch size. If
the number of epochs is excessively large, it can result in long
training times, while too few epochs may hinder convergence
to a stable stage.

In Fig. 4, a comparison of BERs across various numbers of
epochs is presented. Generally, an increase in the number of
epochs tends to improve performance, with the exception of
the case E = 50. Interestingly, the performance at E = 50
shows slightly better performance than the case with E = 100.
However, this observation does not alter the broader trend
of performance improvement with an increased number of
epochs. From the figure, it is evident that the system requires
more than 30 epochs for satisfactory performance. Considering
the trade-off between training time and performance, an ap-
propriate number of epochs (E ≥ 30) can be chosen to ensure
convergence to a stable stage without excessively extending
the training duration.

C. Number of nodes in the hidden layer

This simulation explores the influence of the number of
nodes in the hidden layer for the PQNN algorithm. Consider-
ing the real and imaginary parts for NR received signals at the
relay, ySR, the sizes the input layer and the output layer of the
neural network at the relay are 2NR. Therefore, the number
of nodes in the hidden layer can be set as a value proportional
to 2NR.

In Fig. 5, the BER performance is depicted for cases where
the number of nodes are multiples of 2NR. The graph reveals
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Fig. 5. BER performance for various numbers of nodes for the
hidden layer.

that there is no significant difference in performance among
cases with sizes 8NR, 16NR, 32NR, and 64NR. However,
2NR exhibits inadequate performance, and 4NR also shows
unsatisfactory performance. Therefore, it appears that the
number of nodes in the hidden layer needs to reach a certain
level, 8NR or higher to achieve satisfactory performance.

V. CONCLUSION

In conclusion, our study focuses on enhancing the perfor-
mance of the autoencoder-based MIMO QF relay communi-
cation system by incorporating the PQNN at the relay. We
systematically evaluate the system performance under varying
learning parameters, including the batch size, the number
of epochs, and the neural network size at the relay. The
simulation results explicitly demonstrate that these learning
parameters have a significant impact on the system’s overall
performance. This observation underlines the importance of
selecting these learning parameters to achieve satisfactory
results in deep learning-based communication systems.
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