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Abstract—Conventional autoencoder-based systems, compris-
ing a neural-network encoder at the transmitter and a neural-
network decoder at the receiver, often face limitations in re-
alistic signal transmission due to its reliance on differentiable
channel models. In response to this limitation, an end-to-end
framework has emerged, employing a conditional generative
adversarial network (CGAN) for channel learning. The CGAN
not only learns to represent channel effects through feature
extraction but also facilitates gradient back-propagation between
the receiver and the transmitter, thereby enhancing the system’s
adaptability. This paper extends the CGAN-based end-to-end
system from single input single output channels to multiple input
multiple output (MIMO) scenarios. This CGAN-based MIMO
system demonstrates promising performance comparable to the
autoencoder communication systems, highlighting the potential
of CGANs as effective alternatives for original channels.

Index Terms—Autoencoder, deep learning, generative adver-
sarial network (GAN), multiple input multiple output (MIMO)

I. INTRODUCTION

Traditional communication systems generally involve mul-
tiple signal processing blocks in both the transmitter and
receiver as illustrated in Fig. 1 (a). Although the technologies
within this system are well-established, individual modules are
designed and optimized with diverse assumptions and goals,
challenging the determination of global optimal for the entire
system.

In recent years, deep learning has significantly boosted
conventional communication systems. Various deep neural
networks (DNNs) have shown notable success in different
tasks, such as channel estimation [1], channel decoding [2],
[3] and multiple input multiple output (MIMO) detection [4].
Although these existing methods have brought flexible and
efficient modules, it is not yet known whether independently
optimized processing modules can lead to optimal end-to-end
performance. Autoencoders were introduced into communi-
cations [5], thereby pioneering an end-to-end communication
system learning approach. In the autoencoder-based commu-
nication system, the encoder and decoder networks serve as
the transmitter and receiver, offering a unique method for joint
optimization of modules as depicted in Fig. 1 (b). Remarkably,
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Fig. 1. Structure of MIMO communication systems.

its performance is comparable to traditional communications
in both single input single output (SISO) [5] and MIMO
scenarios [6], contributing to the widespread use of end-to-
end communication systems.

However, the major practical limitation of this idea is its
reliance on a differentiable channel model function, which is
crucial for back-propagation in the training process [7]. A
simplest instance of such a differentiable channel model is
the additive white Gaussian noise channel. In practical appli-
cations, performance may need to be optimized for specific
over-the-air channel effects or combinations of effects such as
device responses, interferences, distortions, and other noises.
While simplified analytical models can be employed in certain
scenarios to describe or simulate specific phenomena, they
often perform inadequately in capturing nonlinear effects in
the real world, particularly when dealing with combinations
of such effects [7]. This limitation arises due to the inherent
complexity and degrees of freedom associated with these
phenomena.

As indicated in Fig. 1 (c), conditional generative adversarial
networks (CGANs) [8] are considered as an appealing solution
capable of representing channel effects and acting as a bridge



to back-propagate gradients from the receiver neural network
to the transmitter neural network [9], [10]. This work extends
the application of CGANs from SISO communication systems
[10] to MIMO scenarios, acknowledging the important role
of MIMO systems in future communications. To the best of
our knowledge, it is the first attempt to construct an end-
to-end MIMO communication system by leveraging CGANs.
Simulation results demonstrate that the CGAN is a promising
channel-agnostic learning algorithm, exhibiting performance
comparable to that of the autoencoder in MIMO communica-
tion systems [6].

II. MODELING MIMO CHANNEL WITH CGAN

A traditional communication system consists of a transmit-
ter and a receiver. The end-to-end communication system, uti-
lizing autoencoders, incorporates the transmitter and receiver
as distinct neural networks. However, the existence of an
unknown channel presents a challenge to the backpropagation
algorithm, impeding end-to-end learning. To tackle this issue,
the CGAN is employed. The CGAN proves effectiveness in
learning channel effects and facilitating the propagation of
gradients between the transmitter and receiver. This section
introduces the CGAN-based channel modeling algorithm.

A. Channel Model

In a MIMO system, the transmitter and receiver are
equipped with Nt transmitting antennas and Nr transmitting
antennas, respectively. During each time slot, the transmitter
sends a symbol vector x = [x1 x2 · · · xNt

]T ∈ CNt

to the receiver, subject to the transmission power constraint
∥x∥2 = 1. The received signal y ∈ CNr is influenced by
the spatial interactions and multipath effects, and it can be
expressed as a linear combination of the transmitted symbols
as follows:

y = Hx+ z (1)

where H ∈ CNr×Nt represents the channel coefficient matrix,
and z denotes the noise term at the receiver. Here, the
elements of z represent i.i.d. circularly symmetric complex
Gaussian random variables with zero mean and variance σ2,
i.e., z ∼ CN (0, σ2INr ). The transmit signal-to-noise ratio
(SNR) is 1/σ2 in this work.

B. Channel Modeling with CGAN

The distinctive feature of generative adversarial networks
(GANs) lies in its generative model structure, consisting of
two key components: a generator and a discriminator. The
generator is designed to model the target distribution, while
the discriminator’s role is to distinguish whether received
samples come from the real distribution or the generator.
During training, the real channel is substituted with a learned
generator, enabling the back-propagation of gradients from
the receiver through the learned channel to the transmitter.
The discriminator is optimized to maximize its ability to
differentiate between generated and real samples, while the
generator is simultaneously trained to minimize the distance
between generated and real samples.

Fig. 2. Architecture of CGAN.

The CGAN represents a special example of the GAN,
when both the generator and the discriminator are conditioned
on some extra information c. As depicted in Fig. 2, the
conditional information is fed as an extra input into both the
generator and the discriminator. The objective function for
optimization related to the generator G and the discriminator
D can be formulated as

min
G

max
D

L(D,G) = Ey[logD(y|c)]

+ En[log(1−D(G(n|c)|c)]
(2)

where y is the real received data, and n is a random noise
distributed corresponding to some distribution pn. D(y|c) is
the output of the discriminator when the received data y in
(1) is provided as input, and D(G(n|c)|c) denotes the output
of the discriminator when the generated data G(n|c) comes
as input, where yG = G(n|c) is the output of the generator.
The transmitted signal and the received signal for the pilot
symbol are selected as the conditional information in the
SISO case [9], [10]. In this MIMO scenario, the condition
c still includes the transmitted signal, denoted as x, and the
received pilot data, denoted as ypilot, but differs slightly from
the case of the SISO system. Specifically, the received pilot
data ypilot involves the received signals when the transmitter
sequentially sends the Nt pilot signals, employing only one
antenna among Nt transmitting antennas at a time. In this
end-to-end MIMO system, the CGAN is employed to learn the
channel distribution by applying both the transmitted signals
(x) and the received pilot signals (ypilot) as depicted in Fig.
3.

III. END-TO-END SYSTEM BASED ON CGAN

With the help of the CGAN, the independent transmitter
neural network and receiver neural network are connected.
The connection facilitates the propagation of gradients to
the transmitter during its training, leading to the updating of
transmitter parameters. Consequently, an end-to-end commu-
nication system based on the CGAN is established. The details
of the system and training process are outlined in this section.

A. System Description

The end-to-end CGAN-based system is illustrated in Fig. 1
(c). A message s ∈ S = {1, · · · ,MNt} is to be transmitted
from the transmitter with Nt antennas. The transmitter encodes
the message into a one-hot vector soh of length MNt . The
end-to-end algorithm treats signal detection as an MNt -class
classification problem, producing a probability vector ŝoh with



Fig. 3. Training and testing process

MNt potential categories. The performance is evaluated using
cross-entropy, defined as follows:

L =

MNt∑
m=1

−soh[m] log(ŝoh[m]) (3)

where soh[m] and ŝoh[m] denote the m-th element of soh and
ŝoh, respectively.

B. Training and Testing Process

The training and testing procedures are shown in Fig. 3.
The instantaneous CSI is randomly sampled from an extensive
channel set H. At each iteration, one module (dash-dot box)
is trained, while the parameters of the remaining modules
(solid box) are fixed. This iterative process alternately trains
the receiver, transmitter, and the channel generator.

During receiver training, the purpose is to reconstruct the
received signal y to determine the transmitted message s. The
optimization of the loss function in (3) aims to minimize
the difference between s and the estimated value ŝ. The
feasibility of direct back-propagation of gradients arises from
the differentiable nature of the receiver as a neural network.

In the training of the transmitter neural network, supervision
of the encoder’s output, x, by the true value s becomes
challenging if gradient propagation is hindered due to a non-
differentiable channel. To enable gradient propagation from
the receiver to the transmitter during transmitter training, a
differentiable generator substitutes the real channel and is
trained to emulate the real channel’s behavior.

As mentioned in II-B, the discriminator and the generator
are trained simultaneously during the generator training pro-
cess. Real data y for the CGAN training is obtained from
the output of the real channel in (1), passing through the
transmitter, while fake data yG is generated by the generator.
The objective function (2) guides the parameter updates in the
CGAN training.

Fig. 4. BER comparsion with Nt = Nr = 2 and M = 2.

Fig. 5. BER comparsion with Nt = Nr = 2 and M = 4.

IV. SIMULATION AND RESULTS

Simulation details and results are presented in this section.
Our method is implemented in Tensorflow 2.7, and all simu-
lations are conducted under Rayleigh fading channels. During
the training stage, the models are trained using 100, 000 ran-
domly generated messages and their corresponding received
signals y following the system structure in (1) considering a
given channel condition H at a fixed SNR of 10 dB. Adam
optimizer is used with the learning of 0.001. During the testing
phase, the evaluation is conducted on a dataset of 10, 000
samples under the same channel condition H. The process is
conducted for multiple Rayleigh-distributed fading channels.
We compare the CGAN-based end-to-end system with the
autoencoder-based research [6] for MIMO systems in term
of bit error rates (BERs) across various SNRs. This work
provides comparison results for four scenarios, as shown from
Fig. 4 to Fig. 7.

In the case of Nt = Nr = 2 and M = 2 as depicted
in Fig. 4, the performance of the end-to-end MIMO system



Fig. 6. BER comparsion with Nt = Nr = 4 and M = 2.

Fig. 7. BER comparsion with Nt = Nr = 4 and M = 4.

closely resembles that of autoencoder-based approach [6] in
terms of BER. Fig. 5 demonstrates a comparable trend when
M = 4, providing further validation of the effectiveness of
the CGAN method.

Subsequently, with an increase in the number of antennas
to Nt = Nr = 4 in Figs 6 and 7, performance results for
both M = 2 and M = 4 demonstrate that the CGAN-based
MIMO system can achieve comparable superior performance
compared to the autoencoder-based approach.

V. CONCLUSION

In summary, the challenges encountered by autoencoder-
based end-to-end communication systems, particularly in the
context of gradient propagation issues for non-differentiable
channel models, have prompted the exploration of alternative
solutions. In response to this, the CGAN has been introduced
as a viable solution. Building upon this concept, we extend the
CGAN-based system from SISO systems to MIMO scenarios.
The presented end-to-end approach demonstrates its effec-
tiveness in the Rayleigh-fading MIMO channel environment,

exhibiting performance comparable to the autoencoder-based
approach. Simulation results support the notion that the CGAN
serves as a promising alternative to conventional MIMO
channel models. In light of these compelling findings, our
future work will be dedicated to extending the application of
the CGAN to practical non-differentiable channel conditions,
thereby enhancing the application of the method in real
channel scenarios.
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