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Abstract— Our research team has developed a device for 

monitoring cardiac signals in the carotid artery. This device 

enables the simultaneous measurement of various cardiovascular 

signals, including Photoplethysmogram (PPG), Phonocardiogram 

(PCG), Electrocardiogram (ECG), and Seismocardiogram (SCG). 

This study estimates blood pressure based on cardiac signals 

measured in the carotid artery and utilizes deep learning to 

minimize the sensors requirements for the estimation. Our 

approach focused on utilizing Seismocardiogram (SCG) and 

Electrocardiogram (ECG) signals for blood pressure estimation. 

By strategically leveraging the complementary nature of these 

signals, we aim to streamline the estimation process, reducing the 

need for extensive sensor fusion. To this end, our teams adapted 

the Long Short-Term Memory (LSTM) architecturefor for 

minimalist sensor fusion model. This model is trained on the 

Chemical Effects in Biological Systems (CEBS) database to 

extract features from sensor data. Additionally, the model 

demonstrates the ability to restore ECG data from SCG inputs, 

highlighting the feasibility of predicting ECG signals using only 

SCG sensors. This research contributes a resource-efficient 

paradigm to blood pressure estimation, prioritizing simplicity and 

minimizing sensor requirements.  By emphasizing the independent 

utilization of SCG sensors in blood pressure estimation, our 

approach provides a practical solution for developing wearable 

health monitoring devices with reduced complexity and enhanced 

efficiency. 
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I. INTRODUCTION 

Various devices for health monitoring have been 
extensively developed. However, leveraging the data from 
these diverse devices for AI applications often requires 
significant preprocessing due to mismatched timelines. The 
quality of data significantly impacts AI performance, 
necessitating high-quality training data for optimal results [1]. 
Recent trends focus on maximizing AI performance while 
providing users with optimal resources, leading to the 
emergence of devices designed to estimate blood pressure 
using various data sources, even with minimal hardware. In 
response to these trends, this paper aims to demonstrate the 
feasibility of blood pressure estimation, using effective 
training data from a single device and minimal hardware 
resources. 

II. METHOD 

A. Development of  a Multi-Biosignal measurement 

Platform 

A system was developed with nRF52840 (Nordic 
Semiconductor, Norway) as the core for measuring PPG, ECG, 
SCG, and PCG signals and establishing Bluetooth Low 
Energy (BLE) communication. Initially, PPG signals are 
acquired using the I2C protocol, while ECG, SCG, and PCG 
signals are obtained through a 12-bit ADC. For PPG and ECG 
measurements, MAX30102 (Analog Devices, USA) and 
AD8232 (Analog Devices, USA) are utilized, respectively. 
PCG and SCG are measured by configuring a circuit to receive 
PCG, followed by measuring SCG from the node before 
passing through a High-pass filter (HPF). Finally, the 
collected biosignal data is transmitted to peripheral devices 
through BLE communication. The research initiates with the 
measurement of four heart-related signals (PPG, ECG, SCG, 
PCG) and the implementation of a BLE communication 
system with a PC [2]. A blood pressure estimation algorithm 
based on the time interval between the ECG R-peak and SCG 
AC-peak is implemented. The device is miniaturized through 
PCB design, with multiple layers hosting different 
components, and the entire system is encapsulated using a 
custom silicone mold. The sensor measurement locations are 
illustrated in Fig. 2. 

 

Fig. 1. System Schematic.  



 

Fig. 2. The sensor measurement locations on the carotid artery section 

B. Signal Processing & Blood Pressure Estimation 

Algorithm 

The biosignals sent via BLE communication from the 
nRF52840 are processed in MATLAB. Each biosignal 
undergoes frequency-domain filtering, with PPG retaining the 
0.5-8Hz range and ECG eliminating noise below 0.5Hz using 
MATLAB's built-in frequency-domain filtering functions. 
SCG and PCG assist in additional noise reduction. Peak 
detection is performed on the SCG signal within 360ms after 
the ECG R-peak to identify the S1 phase. This allows the 
detection of the MO-peak while considering an AC-peak 
occurring 18ms before the MO-peak [3][4][5]. Blood pressure 
is estimated using the RAC method in MATLAB, 
representing the time difference between the ECG R-peak and 
SCG AC peak. The ejection time is derived from RAC time, 
and blood pressure is estimated [5]. Correction algorithms 
considering the user's height, weight, and age are incorporated. 
The algorithm follows the equations below. 

𝐵𝑆𝐴 =  0.07184 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡0.425 ∗ 𝐻𝑒𝑖𝑔ℎ𝑡0.725               (1) 

𝑆𝑉(𝑚𝐿) =  −6.6 + 0.25 ∗ (𝐸𝑇 − 35) − 0.62 ∗ 𝐻𝑅 + 40.4
∗ 𝐵𝑆𝐴 − 0.51 ∗ 𝐴𝑔 

                                                     (2) 

𝑃𝑃 = 𝐻𝑅 ∗ 𝑆𝑉 ∗ 𝑍
𝑆𝑉

(0.013∗𝑊𝑒𝑖𝑔ℎ𝑡−0.007∗𝐴𝑔𝑒−0.004∗𝐻𝑅)+1.307
         

(3) 

 𝑃𝑚 = 𝑄 ∗ 𝑅                                (4) 

𝑃𝑆 = 𝑃𝑚 +
2

3
𝑃𝑝                              (5) 

𝑃𝑑 = 𝑃𝑚 −
1

3
𝑃𝑝                              (6) 

SV: Stroke Volume 

𝑃𝑚: Mean Arterial pressure 

𝑃𝑆: Systolic Pressure 

𝑃𝑝: Pulse Pressure 

HR: Heart Rate 

ET: Ejection Time 

BSA: Body Surface Area  

Q: Cardiac Output 

Z: Impedance to blood flow 

R: Resistance to blood flow 

C. Sequential data Prediction model 

In the context of time series data prediction, an LSTM 

network was employed to forecast ECG data utilizing SCG 

data, taking into consideration long-term dependencies. The 

dataset used in this study was obtained from CEBS data. A 

total of 19 subjects were included in the analysis, with both 

ECG and SCG measurements collected simultaneously. The 

dataset had a high sampling frequency, resulting in a 

substantial volume of data. Consequently, the data underwent 

downsampling, and the downsampled signals were 

segmented into approximately two cycles of cardiac signals 

for training purposes [6]. 

 

III. RESULT  

A. Multi-biosignal Platform Result 

To attach the device to the carotid artery, 

miniaturization is essential. Three 30 mm by 40 mm PCBs, 

each with connectors, are designed and folded in a 3-layer 

fashion. The top PCB includes three ECG electrodes, sensors 

for PPG, and a microphone for PCG and SCG measurements. 

The middle PCB contains ECG sensors and PCG/ SCG 

sensors, while the bottommost PCB contains the BLE module. 

Firstly, the schematic for the first board includes three ECG 

electrodes, a microphone, and MAX30102 for PPG. 

Exclusively for the MAX30102 chip, separate regulation is 

required to supply the necessary 1.8 V DC voltage for LED 

operation, distinct from other components. The signal 

processing units for SCG and PCG, along with the ECG 

electrodes and AD8232, are connected between boards using 

an FFC cable. The connected configuration is illustrated in 

Fig. 3. 

 

Fig. 3. Designed PCB 

In the initial stages of packaging, 3D printing was 

prioritized. A silicone mold was created using 3D printing, 

and instead of the conventional injection-type packaging 

method, a mold was employed to shape only the exterior of 

the packaging. The PCBs were embedded in the mold, and 

the process involved filling it with Ecoflex 0030. [7] During 

the packaging of the three PCBs in this study, there was a 

potential issue of electrode misalignment due to gaps, leading 

to a deviation in the position of measurement electrodes. To 



address this problem, additional silicone support structures 

were fabricated, aligning the gaps between each PCB to 

ensure proper adhesion of electrodes to the carotid artery. 

Additionally, the backside of the packaging allows access to 

data I/O pins (SWDIO), clock pins (SWDCLK), and battery 

connection lines (POWER, GND) through an opening. As 

shown in Fig. 4, this structure facilitates convenient firmware 

updates and a battery detachment system, enabling an easy 

charging method. 

 

(a)                                                  (b)     

                  (c)                                                  (d) 

Fig. 4. (a) Packaging Exterior, (b) Gap Correction Structure, (c) Front view 

of the prototype,  (d) Rear view of the prototype  

 

B. Blood Pressure Estimation Result 

The data obtained from the sensors was plotted in 

MATLAB as shown in Fig. 5. Based on this, blood pressure 

estimation was conducted by incorporating the equations 

described earlier. Blood pressure estimation was conducted 

with a total of 15 sets of data, and based on this, the accuracy 

of the method was analyzed in Table 1. 

 

Fig. 5. Cadiac signal data from Four different sensors. 

 

Fig. 6. Blood Pressure Estimation Results 

TABLE I.  BLOOD PRESSURE ESTIMATION ACCURACY ANALYSIS  

Metric Error Rate(%) 

Overall Error 7.73 

Systolic Error 6.53 

Diastolic Error 8.93 

Accuracy 92.27 

 

C. Predicted ECG Result 

 A long short-term memory network (LSTM) considering 
long-term dependencies of accounts is designed to predict 
ECG data. The model comprises three LSTM layers stacked 
together, where each layer processes the given sequence data 
and passes it on to the subsequent layer. For sequence 
prediction, the output layer was structured using the 
TimeDistributed layer. 

Fig. 7. Model Summay  

During the model's compilation stage, the Adam optimizer 
was chosen, and the Mean Squared Error (MSE) was 
employed as the loss function. The optimizer's learning rate 
was set to 0.01, and gradient clipping was applied to facilitate 
stable training. The training metric for the model is 
represented by the loss values using MSE, as shown in Fig. 8. 
Additionally, a plot comparing the predicted and actual ECG 
for a single sample is presented in Fig. 9. Based on this, it can 
be observed that the model has been trained to avoid 
overfitting. 



 

Fig. 8. Training and Validation loss over Epochs 

 

Fig. 9. Actual and Predicted ECG 

 

IV. CONCLUSION 

This comprehensive approach highlights the development 
of a compact device for measuring various cardiac signals and 
estimating blood pressure. Specifically, it demonstrated the 
potential to predict ECG solely using the SCG sensor and, 
based on this prediction, estimate blood pressure using 
minimal hardware resources—relying solely on the SCG 
sensor. Such achievements lay a crucial foundation for further 
research and applications in the realm of mobile health 
monitoring systems. 
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