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Abstract—After focusing on individual languages for a long
time, multilingual automatic speech recognition has recently
become an active area of research. For instance, Whisper by
OpenAI is capable of recognizing speech in 99 languages. How-
ever, the performance of Whisper is significantly lower for low-
resource languages than for high-resource ones. In this work, we
aim to address this and present a fine-tuning strategy for the pre-
trained Whisper model so that its performance is improved for a
low-resource language family while maintaining performance for
a set of high-resource languages. Specifically, our Söyle model
exhibited high performance for both the Turkic language family
(11 languages) and the official languages of the United Nations.
Our work also presents the first large open-source speech corpus
for the Tatar language. We demonstrate that speech recognition
performance for Tatar improves with the model trained using the
new Tatar Speech Corpus (TatSC). Our model is also trained
to be noise-robust. We open-source our model and TatSC to
encourage further research. We envision that our fine-tuning
approach will guide the creation multilingual speech recognition
models for other low-resource language families.

I. INTRODUCTION

Automatic Speech Recognition (ASR) has seen considerable
advancement in recent years, becoming a cornerstone tech-
nology in various applications such as transcription services,
voice assistants, and more [1]. However, initial approaches
such as Hidden Markov Models (HMMs) and Gaussian Mix-
ture Models (GMMs) often struggled with the complexity and
variability of human speech [2]. In the last decade, however,
there has been a significant paradigm shift with the advent of
Deep Learning (DL).

With the capabilities of DL, researchers began to push the
boundaries of what ASR systems could accomplish. One of
these challenging tasks was multilingual speech recognition.
Instead of building a separate model for each language, the fo-
cus shifted to constructing universal models that could handle a
variety of languages [3]. Despite substantial progress, a major
challenge remains in achieving comparable recognition accu-
racy between resource-rich and resource-poor languages [4].
The imbalance stems from the lack of extensive annotated data

for low-resource languages, which has resulted in their under-
representation in training data and, consequently, poor model
performance [5].

This work aims to address the overarching question: How
can we enhance the performance of multilingual speech recog-
nition models for low-resource languages and language fam-
ilies? As a salient example, we consider the Turkic language
group, which, despite its linguistic significance and large
number of speakers, often falls into the low-resource category
in ASR research due to the lack of annotated speech data.

To bridge this gap, our work adopts a multi-faceted strat-
egy. First, we explore the use of linguistic commonalities
within language families, such as the Turkic group, as a
means of propagating knowledge and enhancing performance
across related low-resource languages. Second, we focus on
the robustness of these systems to ensure their reliability in
diverse and challenging real-world environments. The noise
robustness of ASR has traditionally been linked to the size and
diversity of the datasets employed. However, the availability
of massive datasets is a luxury that research in low-resource
languages often cannot afford. Hence, this paper employs
augmentation strategies designed to enable noise robustness
even with relatively small datasets.

To this end, we introduce Söyle, a multilingual speech
recognition model. Söyle employs a fine-tuning strategy to
Whisper—a model developed by OpenAI and trained on
680,000 hours of data from 99 languages [6]. While Whisper
is promising, especially in zero-shot settings for high-resource
languages, its effectiveness deteriorates for low-resource lan-
guages. Our approach enhances Whisper by fine-tuning it on
a combination of 11 Turkic languages and the six official
languages of the United Nations (UN), preserving its global
applicability.

Central to our methodology is the integration of the newly
curated Tatar Speech Corpus (TatSC). Compiled through
crowdsourcing and audiobook segmentation, TatSC comprises
over 269 hours of audio-text pairs, representing a significant



enrichment of the speech resources available for Turkic lan-
guages. In addition to these methodological contributions, our
work includes experiments on noise robustness using the Söyle
model, fine-tuned on both Turkic and UN languages. These
experiments shed light on the efficacy of pre-training and fine-
tuning strategies in multilingual ASR and offer key insights
for future research in this area.

The structure of this paper is organized as follows: Section II
offers a review of related work relevant to our study. In
Section III, we describe the datasets employed, including the
newly introduced Tatar Speech Corpus, and provide details
of the fine-tuning techniques. Experimental findings and their
subsequent discussions are presented in Section IV. Section V
concludes the paper.

II. RELATED WORK

A. Multilingual Speech Recognition

Historically, the focus of ASR systems has been predomi-
nantly on individual languages. However, with the emergence
of DL, this perspective started to shift towards the development
of shared models that can handle multiple languages [7], [8].
In recent years, multilingual end-to-end models have been
proposed [3], [9], [10]. They do not rely on language-specific
characteristics, but instead learn to map speech directly to
text across a variety of languages. A common technique for
building robust end-to-end multilingual ASR models is to
use transfer learning [6], [11], [12], which uses resource-
rich languages to maximize the performance of resource-poor
languages. Several works have approached the problem of
multilingual speech recognition by incorporating a language
identification (LID) module into the model architecture [13],
[14]. On the other hand, some works (e.g., [9]) did not utilize
the LID tag during inference but instead predicted a language
ID as well as text input.

B. ASR for Low-Resource Languages

Early ASR approaches for low-resource languages included
Connectionist Temporal Classification (CTC) networks [15]
and Recurrent Neural Network (RNN) encoder-decoders with
attention [16]. Alternative studies have explored two-pass
systems with Monotonic Chunkwise Attention (MoChA) [17]
and multi-task learning-based transformer models [18]. Re-
search has also delved into self-supervised models trained
on unlabeled data to produce representations beneficial for
low-resource languages [19]. Utilizing pre-trained wav2vec
2.0 [20], experiments showed a relative reduction in the Word
Error Rate (WER) for Indian languages.

Several datasets and resources have been introduced to
address the challenges posed by low-resource languages.
Examples include the Kazakh Speech Corpus (KSC) [21]
and its updated version [22], the THUYG-20 database for
Uyghur [23], the Uzbek Speech Corpus (USC) [24], and the
Turkish Speech Corpus (TSC) [10]. Kazakh, Kyrgyz, and
Uyghur are also present in larger multilingual corpora (e.g.,
M2ASR [25]).

C. Noise Robust Speech Recognition

In ASR systems, remarkable progress has been achieved
in achieving high accuracy for both mono- and multilingual
scenarios. However, the presence of noise poses significant
challenges in real-world applications. One potential solution
is to separate the original speech and the accompanying noise.
The separation can be based on classical methods [26] or
DL. There are a variety of ways of DNN application for
speech enhancement: ensembled perceptrons [27], CNNs [28],
and generative models [29]. These approaches demonstrate a
significant improvement in audio quality but often result in
artifacts limiting the further use of the data for ASR.

The robustness of ASR models can be enhanced by in-
corporating noisy audio samples in the training process. In
practice, however, it is challenging to obtain a sufficient
amount of diverse and real-world noisy datasets. To address
this limitation, modern corpora for robust speech recognition
include simulated audio data [30]. This approach involves
assembling an extensive dataset of ”clean”, noise-free audio
recordings. Subsequently, these audio samples are augmented
with real-world or white noise to simulate acoustic interference
that mimics real-world conditions [31].

D. Whisper ASR Model

Recognizing the limitations of unsupervised pre-training
and the increased robustness that supervised pre-training pro-
vides across many datasets and domains [32], OpenAI’s Whis-
per model [6] has sought to bridge this gap. Whisper is based
on a large-scale, weakly supervised pre-training approach that
scales to 680,000 hours of labeled audio data and supports 99
languages. Whisper extends the scope of weakly supervised
pre-training beyond English-only speech recognition to be
both multilingual and multitasking. For further details on
the pre-training procedures and the specific hyper-parameter
values of the Whisper model, readers are referred to [6].

III. METHODS

A. Datasets

In this study, we considered a total of 17 languages,
including 11 Turkic languages along with the six official lan-
guages of the UN—Arabic, Chinese, English, French, Russian,
and Spanish. A detailed description of these languages and
their respective classifications is presented in Table I. The
inclusion of the Turkic languages enables us to explore how
multilingual ASR models can be adapted for low-resource
language families. At the same time, the six official languages
of the UN were included to better assess the generalizability
of the model. These languages represent a significant portion
of the world’s population and are used in diverse geopolitical,
cultural, and socio-economic contexts.

We used several data sources to compile the training cor-
pora, including Common Voice (CVC) [33] version 13.0,
KSC2 [22], TSC [10], USC [24], and FLEURS [34]. Among
these, CVC stands out as one of the largest publicly avail-
able multilingual datasets that encompasses a wide variety
of accents, demographics, and recording environments. The



TABLE I
THE LANGUAGES AND DATASETS IN THE STUDY

Language Code Family Script Corpus Duration (hr)

Azerbaijani az Turkic Latin CVC 0.13
FLEURS 13.99

Bashkir ba Turkic Cyrillic CVC 239.66
Chuvash cv Turkic Cyrillic CVC 13.19

Kazakh kk Turkic Cyrillic
CVC 1.69
KSC2 1,194.16

FLEURS 3.85

Kyrgyz ky Turkic Cyrillic CVC 19.28
FLEURS 3.27

Sakha sah Turkic Cyrillic CVC 6.78
Turkmen tk Turkic Latin CVC 1.30

Turkish tr Turkic Latin
CVC 72.24
TSC 218.23

FLEURS 2.62

Tatar tt Turkic Cyrillic CVC 26.55
TatSC 269.15

Uyghur ug Turkic Arabic CVC 62.63

Uzbek uz Turkic Latin CVC 102.30
USC 104.91

FLEURS 2.86

Arabic ar Afroasiatic Arabic CVC 81.82
FLEURS 1.31

Chinese zh Sino-Tibetan Chinese CVC 248.20
FLEURS 3.10

English en Indo-Eur. Latin CVC 2,430.18
FLEURS 1.79

French fr Indo-Eur. Latin CVC 944.28
FLEURS 1.97

Russian ru Indo-Eur. Cyrillic CVC 165.09
FLEURS 2.52

Spanish es Indo-Eur. Latin CVC 480.31
FLEURS 3.11

CVC dataset, which comprises approximately 18,000 validated
hours in 112 languages, was collected via a crowdsourcing
platform. In addition, this study makes use of FLEURS, a par-
allel speech dataset that includes 102 languages and was built
based on the machine translation FLoRes-101 benchmark [35].
Of the 17 languages considered in our research, all of the
six official UN languages are included in FLEURS, whereas
only 5 of the 11 Turkic languages are present in this dataset
(Azerbaijani, Kazakh, Kyrgyz, Turkish, and Uzbek). Specifi-
cally, for Azerbaijani, the inclusion of FLEURS was necessary
because of the limited amount of data in CVC, which consists
of only 8 minutes of speech. For other languages examined in
this study that are present in FLEURS, only the testing data
were utilized. This allowed for a more nuanced assessment
of the zero-shot generalization of the model across different
linguistic contexts.

B. Tatar Speech Corpus

The Tatar Speech Corpus (TatSC) is the first large open-
source speech corpus for Tatar. There are no Tatar speech
corpora of sufficient size to develop modern ASR models,
while the only available open-source corpus is provided on
the Common Voice platform [33] and its total duration barely
exceeds 31 hours. TatSC consists of texts narrated by recruited
speakers, crowdsourced data collected using a social media
bot, and audiobooks (see Table II).

1) Website Sentences: The first part of the corpus consists
of sentences obtained from various Tatar websites. Speakers

TABLE II
TATAR SPEECH CORPUS SPECIFICATIONS

Source Duration
(hr)

Utterances Words Unique
words

Web 99.5 87,425 540,584 50,719
Telegram 146.1 110,683 881,168 12,957

Audiobooks 23.5 19,806 171,117 28,214
Total 269.1 217,914 1,592,869 68,623

were then recruited to narrate these sentences. To ensure the
quality of the recordings, the recording sessions were con-
ducted using laptops and headsets in a noise-free environment.
A total of 99.5 hours of data were collected, which included
87,425 utterances.

2) Telegram Bot: To diversify the speech corpus to include
a range of voices and background noises, a Telegram bot
was utilized. The bot facilitated the collection of speech
from speakers of varying ages and genders. The balance and
representativeness of the dataset were achieved by exporting
sentences from the Tatar National Corpus “Tugan Tel”. The
corpus was analyzed in depth to ensure linguistic representa-
tiveness through N-gram analysis and frequency lists of lem-
mas and inflections. The bot is equipped with two functions:
narration and evaluation. The user starts the narration process
by first providing age and gender information. Then the user
is presented with a random sentence to narrate. The user has
the option to listen to the recorded audio, record it again, or
skip the sentence. In total, the dataset included 667 speakers,
including 437 females and 230 males, resulting in 146.1 hours
of speech with 110,683 utterances.

3) Audiobooks: The final segment of TatSC consists of
audiobooks in Tatar with a combined duration of 23.5 hours,
comprising 19,806 utterances and a vocabulary of 28,214
unique words. In order to secure a broad and representa-
tive collection, we referred to the Tatar Book Publishers’
collection1 and other online platforms offering open-access
audiobooks. The audiobooks were professionally recorded in a
studio by female and male narrators, largely theatre actors. The
extensive preparation process involved several crucial steps,
including the selection of relevant audiobooks, the alignment
and manual verification of sentences, and the creation of the
final database. This process was facilitated by the open-source
platform, Label Studio2, and carried out by native speakers
with linguistic expertise.

The final TatSC dataset was divided into training and
evaluation sets. The evaluation sets include the development
set, which was used to fine-tune the training process, and
the test set, which was used to report metric results. Each
evaluation set consisted of around seven hours of data. In
total, we collected 269.1 hours of data with the corresponding
217,914 utterances.

1https://tatkniga.ru/
2https://labelstud.io/



C. Noise Robustness

To make our model robust to noise, we additionally fine-
tuned it on noise-augmented audios. For this purpose, we
simulated noisy audio recordings using augmentation. As a
source for the noises, we utilized Audio Set, a large-scale
manually-annotated collection of audio events [36]. The key
benefit of this data source is that it contains more than two
million audio materials that can be used as noises. However,
due to the size of the dataset, not all audio categories are
relevant and of high quality. Therefore, we only used the
categories that were rated by human evaluators with over 90%
consistency. As a result, we collected 54,260 noise samples
from 20 different categories.

These noise samples were used to tune our pre-trained
model. Specifically, we trained our Whisper Medium model
for an additional four epochs with noise-augmented samples.
Half of the utterances within the original dataset underwent
augmentation by the introduction of noise, employing specific
signal-to-noise ratios (SNRs) chosen from the set [100, 75, 50,
40, 30, 25].

D. ASR Model Training

We named our model “Söyle”, a word translated as “speak”
in most Turkic languages. In our study, we developed two
versions of the Söyle model: 1) söyle-trc was fine-tuned
exclusively on the Turkic languages, and 2) söyle was fine-
tuned on both the Turkic and official UN languages.

Following the Whisper guidelines, we used the Byte-Pair
Encoding (BPE) text tokenizer [37]. The batch size was set to
16 per graphics processing unit (GPU), making an effective
batch size of 64. The learning rate was 1 × 10−5 with 500
warmup steps. Our models were initialized with Whisper-
medium weights and underwent training for six epochs, a
duration deemed adequate for training purposes. The training
process for each model was conducted on four Nvidia DGX
A100 (40 GB) GPUs.

For benchmarking, we first evaluated all languages in our
study using the pre-trained Whisper model, which we did not
train ourselves but used the off-the-shelf implementation from
Hugging Face [38]. We excluded Chuvash, Kyrgyz, Sakha, and
Uyghur, because their LID tags were not included in the off-
the-shelf model. As an additional reference point, we recreated
the state-of-the-art models for Turkic languages developed
in [10], which we will further refer to as baseline-turkic
and baseline. These two models are built upon the ESPNet
framework [39]. Accordingly, we employed three models for
comparison with our Söyle models: 1 ) whisper: the original
Whisper-medium model with 769 million trainable parameters,
which was used for evaluation only, 2) baseline-trc:
an ESPNet-based model trained with datasets for the Turkic
languages only, and 3) baseline: an ESPNet-based model
trained with all datasets in Table I (i.e., both Turkic and UN
languages).

E. Data Normalization

In normalizing the datasets used in this study, we primar-
ily followed the text standardization procedure outlined in
Whisper [6]. Specifically, we converted all letters to lower-
case and removed all phrases enclosed in square brackets or
parentheses. All markers, symbols, and punctuation characters
that fell into the Unicode categories starting with M, S, or P
in the NFKC-normalized string were replaced with a space.
Consecutive whitespace characters were replaced with a single
space. For languages that do not use spaces to separate words,
such as Chinese, a space was inserted between each letter.
This method is in line with the standardization process used
in Whisper and helps to ensure a fair comparison between
different models and languages.

F. Evaluation Metrics

When evaluating ASR systems, one of the major metrics is
the word error rate (WER). It is calculated by dividing the sum
of substitutions, deletions, and insertions required to match the
transcribed text with the reference by the number of words
in the reference. In essence, WER provides a percentage of
the errors made in the transcription. While WER serves as an
effective metric for most languages, its applicability to Chinese
is limited because of the lack of spaces between words. In
the assessment of Chinese ASR, spaces are inserted between
characters. This adjustment shifts the evaluation metric from
word-level accuracy to character-level accuracy, ultimately
leading to the calculation of the character error rate (CER).

IV. RESULTS & DISCUSSION

Table III presents the performance of the models. The
models are categorized based on their training data, distin-
guishing between those trained solely on Turkic languages
(the baseline-trc and söyle-trc columns) and those
trained on both Turkic and UN languages (the baseline
and söyle columns). The best performance in each row
is highlighted in bold for clarity. The söyle model, fine-
tuned on a combination of the Turkic languages and the six
UN languages, demonstrated exceptional results, achieving a
WER of less than 30% WER across 17 of the 21 corpora
considered. Notably, it outperformed the baseline model
in all instances except two (Chuvash and Arabic CVC). The
baseline-trc model exhibited superior performance for
the Turkic languages, attaining the lowest WER for 10 out
of the 15 Turkic test sets. However, it faced challenges
in recognizing the UN languages. The performance of the
baseline model, trained on both Turkic and UN languages,
displayed a decline, suggesting potential limitations in the
learning capacity of the ESPNet-based model architecture.
Furthermore, it is noteworthy that the söyle model con-
sistently outperformed the original whisper model across
all test sets. This observation highlights the viability of fine-
tuning-based customization within the Whisper architecture,
particularly for low-resource language families.



The integration of the newly developed TatSC into the
söyle model appears to have effectively improved the per-
formance of the model for Tatar. In [10], the best WER for
the Tatar CVC test set was reported to be 16.5%. In contrast,
the söyle model, trained on TatSC, attained a substantially
improved WER of 9.1% when evaluated on the same test set.

For five of the UN languages (English, Spanish, French,
Russian, and Chinese), söyle exhibited superiority over
the baseline model, and it even outperformed original
whisper. This result underscores that our fine-tuning strat-
egy is effective in maintaining and even improving ASR
performance for high-resource languages. However, the rel-
atively low performance observed in the Arabic CVC test
set, both for the original whisper and our söyle models,
underscores the need for larger and cleaner training datasets
for this language.

Table IV presents the WER scores for models evaluated on
the FLEURS dataset across several languages. It is important
to note that these models were not trained on the FLEURS
training set, with the exception of Azerbaijani, as the original
CVC dataset did not contain a sufficient amount of data.
Remarkably, in this zero-shot experiment, söyle achieved
the lowest WER for 9 out of 11 test sets, which illustrates its
capacity for generalization.

To measure the effect of noise-robust training, we con-
ducted a comparative evaluation between the noise-robust
(söyle-NR) model and the original model across major
languages from three distinct corpora (TatSC, KSC2, and
CVC). This evaluation involved augmenting the data with an
unseen set of test noises. Noise robust model söyle-NR
outperformed the original model across the whole range of
SNRs, including SNR values not used during training (5
and 1).

At the same time, it is important to mention, that for high
SNR values (100-25) there is no significant degradation in the
performance of the original Söyle model. This robustness can
be attributed to the diversity of the training data, as described
in Section III-A. The training data for söyle contained
spontaneous speech and recordings from various resources,
such as TV and YouTube videos. These sources often feature
speech with background noise, music, overlapping speech, and
other acoustic elements that contribute to the noise robustness
of the model. In general, we recommend noise augmentation
as a necessary step to improve the performance of multilingual
ASR models, provided adequate computational resources are
available.

V. CONCLUSIONS

In this work, we have presented our approach to building
a multilingual ASR model through fine-tuning a pre-trained
Whisper model. Our söyle model not only maintains but
also improves the performance of the Whisper model for the
UN languages, while improving ASR results for low-resource
languages within the Turkic language family. Furthermore,
we introduced the first large-scale open-source speech corpus
for the Tatar language. The söyle model, trained on this

new corpus, achieved the lowest WER score reported for this
language using the corresponding CVC test set. In addition,
we presented our augmentation recipe for improving the noise
robustness of ASR models. To encourage further research in
this direction, we have made the datasets and codes used in
this work publicly available at https://github.com/IS2AI/Soyle.

REFERENCES

[1] D. Amodei, S. Ananthanarayanan, R. Anubhai et al., “Deep speech 2:
End-to-end speech recognition in English and Mandarin,” in Interna-
tional Conference on Machine Learning (ICML), 2016, p. 173–182.

[2] M. Gales and S. Young, Application of Hidden Markov Models in Speech
Recognition. Now Publishers Inc, 2008.

[3] O. Scharenborg, L. Besacier, A. Black et al., “Linguistic unit discovery
from multi-modal inputs in unwritten languages: Summary of the
“Speaking Rosetta” JSALT 2017 Workshop,” in Proc. of the IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 04 2018, pp. 4979–4983.

[4] B. Zoph, D. Yuret, J. May et al., “Transfer learning for low-resource
neural machine translation,” in Proc. of the Conference on Empirical
Methods in Natural Language Processing, 2016, pp. 1568–1575.
[Online]. Available: https://aclanthology.org/D16-1163

[5] A. Rosenberg, Y. Zhang, B. Ramabhadran et al., “Speech recognition
with augmented synthesized speech,” in Proc. of the IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), 2019, pp.
996–1002.

[6] A. Radford, J. W. Kim, T. Xu et al., “Robust speech recognition via
large-scale weak supervision,” 2022.

[7] J.-T. Huang, J. Li, D. Yu et al., “Cross-language knowledge transfer
using multilingual deep neural network with shared hidden layers,” in
Proc. of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2013, pp. 7304–7308.

[8] K. M. Knill, M. J. F. Gales, S. P. Rath et al., “Investigation of
multilingual deep neural networks for spoken term detection,” in Proc. of
the IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), 2013, pp. 138–143.

[9] C. Zhang, B. Li, T. Sainath et al., “Streaming end-to-end multilingual
speech recognition with joint language identification,” in Proc. Inter-
speech, 2022.

[10] S. Mussakhojayeva, K. Dauletbek, R. Yeshpanov et al., “Multilingual
speech recognition for Turkic languages,” Information, vol. 14,
no. 2, p. 74, Jan 2023. [Online]. Available: http://dx.doi.org/10.3390/
info14020074

[11] Y. Zhang, W. Han, J. Qin et al., “Google USM: Scaling automatic speech
recognition beyond 100 languages,” arXiv preprint arXiv:2303.01037,
2023.

[12] D. Orel, R. Yeshpanov, and H. A. Varol, “Speech recognition for Turkic
languages using cross-lingual transfer learning from kazakh,” in Proc. of
the IEEE International Conference on Big Data and Smart Computing
(BigComp), 2023, pp. 174–182.

[13] S. Toshniwal, T. N. Sainath, R. J. Weiss et al., “Multilingual speech
recognition with a single end-to-end model,” in Proc. of the IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, pp. 4904–4908.

[14] A. Waters, N. Gaur, P. Haghani et al., “Leveraging language id in
multilingual end-to-end speech recognition,” in Proc. of the IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU),
2019, pp. 928–935.

[15] A. Graves, S. Fernandez, F. Gomez et al., “Connectionist temporal clas-
sification: Labelling unsegmented sequence data with recurrent neural
nets,” in International Conference on Machine Learning (ICML), 2006.

[16] D. Bahdanau, J. Chorowski, D. Serdyuk et al., “End-to-end attention-
based large vocabulary speech recognition,” 2015.

[17] J. Kim, M. Kumar, D. Gowda et al., “Semi-supervised transfer learning
for language expansion of end-to-end speech recognition models to low-
resource languages,” 2021.

[18] A. Gulati, J. Qin, C.-C. Chiu et al., “Conformer: Convolution-augmented
transformer for speech recognition,” 2020.

[19] N. KrishnaD., P. Wang, and B. Bozza, “Using large self-supervised
models for low-resource speech recognition,” in Proc. Interspeech,
2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:
239705336



TABLE III
WER (%) RESULTS ON THE CVC, KSC, TSC, TATSC, AND USC TEST SETS.

Group Code Corpus whisper baseline-trc söyle-trc baseline söyle
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