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Abstract—Graph classification is a hot topic of machine learn-
ing for graph-structured data, and it is also a very potential and
valuable research. However, the difficulty of graph classification
is challenging and special, which is quite different from the
normal classification problems. One of the most difficult points
of graph classification is that the numbers of vertex neighbors
in graphs are usually variable, which makes the number of
weights uncertain and ambiguous. Recent work such like the
graph attention network apply the transformer on the graph
neural network. However, the learned attentions cannot strictly
reveal the importance of each part of graph, which makes the
model less explainable. Moreover, for small datasets, it performs
less effectively because of the excessive parameters. In order to
overcome these difficulties, we propose a lightweight model with
an edge weighting function based on the probability distributions
of node pair features learned by the Gaussian mixture model.
Although the proposed framework is simple, the experimental
results shows its effectiveness on small datasets.

Index Terms—Graph Classification, Probability Distribution
Learning

I. INTRODUCTION

Graph-structured data have been used widely in various
fields, such as chemoinformatics, bioinformatics, social net-
works, and computer vision [15]. Therefore, there also exist
many classification tasks for the graph-structured data, such
as the toxicity analysis of compounds and recognitions of
handwrittings. However, there exist some difficulties of the
graph classification, most of which quite differ from other
classfication problems of computer vision and natural language
processing. One of the biggest problems is that, unlike the
matrix data of a image or the sequence data of a sentence,
the number of neighbors of a vertex in a graph is usually
variable and uncertain. As shown in Figure 1, this makes it
hard to learn the weights of neighbors because we cannot
define a size-fixed parameter such like a convolution kernel
in image data, or a sliding window in sequence data. To
deal with these size-variable data, a related research named
Graph Attention Networks (GAT) [14] propose a Graph Nerual
Network (GNN) based on the attention mechanism similar to
the well-known transformer [13], where they learn a weighting
function to evaluate the attentions of node pairs in the feature
aggregation step. The GAT brought great success to the node
classification tasks. Nevertheless, for the graph classification
tasks, it performs less effectively when node features of a

Fig. 1. A vertex tends to have varible number of neighbors, which makes it
hard to learn size-fixed parameters. Therefore, a weighting function based on
features of vertex pairs might help.

whole graph needs to be aggregated together. It is also hard to
prove that the learned attentions strictly reveal the importance
of each part of the whole graph, which makes the model
less explainable. Furthermore, for small graph datasets, the
attention-based GNNs usually perform worse than graph ker-
nel methods. This is because attention-based methods usually
have more parameters (from the multi-head framework) than
traditional methods and are more prone to over-fitting due to
the excessive parameters.

In order to introduce the idea of attention in graph clas-
sification tasks on small graph datasets while avoiding the
excessive deep learning parameters, we propose a lightweight
model with attentions learned by the Gaussian Mixture Model
(GMM). We replace the deep attention learning with the
GMM, a conventional machine learning method, which greatly
reduces the number of deep learning parameters. In more
details, we utilize probability distributions of aggregated node
pair features learned by GMM to compute scalar attentions for
edges instead of adjusting it through deep learning. With these
edge weights, we then update node features with a simple sum
aggregation message passing framework and finally classify it
with a single linear layer. Although we still use deep learning



to adjust the parameters of linear layers in our experiments, the
number of these parameters is small, and they only function as
independent classifiers and do not participate in the message
passing process. Fig 5 presents the overall framework of
our proposed model. It shows that our proposed model has
extremely few learnable parameters, all of which come from
the single linear layers for each class. However, although
there are very few deep learning parameters in our model, the
experimental results show that our proposed method can still
outperform many state-of-the-art graph kernel methods and
GNNs in graph classification tasks. Our contributions could
be summarized as follows:
• We propose a lightweight message-passing model with

scalar attentions computed by the GMM-learned prob-
ability distribution of node pair features. It avoids the
performance degradation of the traditional attention-based
GNNs on small datasets. Moreover, it also provides an
explainable scheme of edge weighting;

• We extend our model to a multi-layer and multi-class
framework, which make it applicable to different clas-
sification tasks. The evaluation results show that our
proposed model is simple but effective, which has a better
performance than many state-of-the-art methods.

II. PRELIMINARIES

This section introduces some notations and prelimiaries. We
use lower-case letters in bold typeface to express the vectors
such like a, b, c. For matrices, we express them by upper-case
letters in bold typeface such like A,B,C. R denotes the set of
real numbers.

A. Graph Attention Network

Let h(t)
i ∈ Rd denote the d-dimensional hidden feature of

i-th node at t-th iteration, and let N (i) be the set of indices of
the neighbors of the i-th node. The graph attention network,
as a message-passing-based GNN, updates node features with
the equation below.

h
(t+1)
i = σ

 ∑
j∈N (i)

αi,jWh
(t)
j

 ,

where W denotes the learnable parameter, and αi,j denotes
the learned attention of i-th and j-th node. The attention is
computed by the following equation.

αi,j =
exp

(
LeakyReLU(a[W′hi||W′hj ])

)∑
k∈N (i) exp

(
LeakyReLU(a[W′hi||W′hk])

) ,
where a,W′ are the learned parameters, the former is a vector
and the later is a matrix. || denotes the vector concatenation
operation.

B. Multivariate Gaussian Mixture Model

The multivariate GMM is a category of the mixture prob-
abilistic models, which aims to represent the probability
distribution of the observed data. The multivariate GMM is
a combination of several multivariate normal distributions.

Normally, a D-dimensional GMM with K components is
expressed as p(x) =

∑K
i=1 αiN(µi,Σi), where x ∈ RD

denotes an observation of the data which we want to model.
N(µi,Σi) denotes a normal distribution with the mean vector
µi ∈ RD and the covariance matrix Σi ∈ RD×D. αi denotes
the weight of each component. The most popular way to
solve the optimal parameters αi,µi,Σi is the expectation-
maxmization (EM) algorithm [17] with non-convex clustering
initialization.

III. RELATED WORK

For graph classification tasks, Graph Kernel (GK) methods
were the mainstream methods and it has been used widely
for several decades before Graph Neural Networks (GNN)
came out. Theoretically, GKs are kernel functions which could
compute similarity for graph pairs. Most of GKs are based on
the isomorphism and structural similarity of graph-structured
data. In earlier researches, GKs have shown its effectiveness
for graph classification tasks with machine learning algorithms
including the Support Vector Machine (SVM). A famous work
of GK is the Weisfeiler–Lehman (WL) Graph Kernel [10],
which brought great success in this domain and it is still inspir-
ing many state-of-the-art reseaches now. In WL graph kernel,
They proposed a similarity metric based on the Weisfeiler–
Lehman test and implement it as a general framework. To
improve the similarity metric of the WL graph kernel and
make it more robust for the decomposite graph structure,
related work [8] brought an optimal assignment kernel variant
from the WL graph kernel, which is called Weisfeiler–Lehman
Optimal Assignment (WL-OA) graph kernel. It is based on
an optimal bijection between substuctures of graph pairs,
which performs better and more robust than the original WL
graph kernel. Similar to the WL-OA graph kernel, there is
a research [12] proposing a Wasserstein-based Weisfeiler–
Lehman (WWL) Graph Kernel, which maps a node embedding
based on its neighborhood pattern to a novel feature space.
In this feature space, they compute distance of graphs based
on the Wasserstein distance of two point clouds where a
single point denotes a node of graphs. There are many other
impressive works of the Wasserstein-based graph kernels [3],
[5] and works beyond the WL test [6].

In recent years, as the large-scale datasets become more
important, the shortcomings of GKs become more obvious:
the high cost of both the computational complexity and the
memory. Thus, GNNs become hot topics in graph domain
including the graph classification, the node prediction and the
link prediction. A representative method of GNN in recent
years is the Graph Convolution Network (GCN) [7], which
is inspired by the Convolution Neural Network (CNN) in
computer vision domain and applies the same way to deal
with graph-structured data. Another representative GNN is the
Graph Isomorphism Network (GIN) [16]. The GIN is inspired
by the WL graph kernel which specifically examines graph
isomorphism. They prove that the SUM aggregation generates
better aggregation than other schemes including MEAN and
MAX, in message passing process of graphs. They apply this



Fig. 2. Overview of step 1, where connected vertex pairs will be mapped to
a discrete distribution.

scheme in GIN, which make it more powerful than other
GNNs in graph classification tasks.

IV. PROBABILITY DISTRIBUTION LEARNING FOR BINARY
CLASSIFICATION

In this section, to make it easy to understand, we first
propose a probability distribution learning scheme of vertex
pairs under a simple task: the binay classification. We will then
expand it for the multi-class classfication in the next section.

A. Step 1: Sample the vertex pairs and map them to a discrete
distribution

As described in the introduction section, in order to compute
the scalar attentions, we suppose to learn the probability
distribution of the node pair features. We start from a vertex
pairs sampling operation as our Step 1. Firstly, to represent
the vertex pairs, we form a union feature vector for a vertex
pair by combining the single vertex features. As shown in
Figure 2, before the process of sampling, we compute the
feature vector of vertex pair which will form a discrete
distribution. We suppose that the representation of vertex
pair should be invaried regardless of different input orders,
because they are structurally isomorphic. By considering this
situation, we apply the summation of the vertex features as
our vertex pair representation. Let x1,x2 ∈ Rd be the feature
of two connected vertices and let fpair : Rd × Rd → Rd be
the function aggregating features of these two vertices, the
aggregated feature of vertex pair is

fpair(x1,x2) = x1 + x2.

After the aggregation, we can obtain a d-dimensional vector
for each connected vertex pairs, which can be mapped to a d-
dimensional Euclidean metric space.

For the process of sampling, let us consider a binary
classification task, we first divide the graphs into 2 subsets
corresponding to their class labels. Next, all connected vertex
pairs of graphs in the subset of i-th class label will be
mapped to a distribution D̂i. Thereafter, we can get 2 discrete
distrbutions D̂1, D̂2 for a binary classification task, which are
two discrete point clouds including all the vertex pair samples.

Fig. 3. Overview of step 2, where we use the GMM to learn a continuous
probability distribution.

Fig. 4. Illustration of the independent parts in distributions.

B. Step 2: Use the GMM to learn the probability distribution

One could use the sampled discrete distribution to compute
an attention-like weight for a newly inputted vertex pair.
However, it might bring great difficulties for computation,
which might lead to high computational costs and memory
costs because of too many point comparisons. Therefore,
to simplify the computational process, we use distribution
learning methods such as the GMM to learn a continuous
probability distribution of vertex pairs as shown in Figure
3, where we use a C-component GMM to approximate the
probability distribution. Thereafter, for each point cloud D̂i,
we can obtain a probality function Di : Rd → R, which takes
a vertex pair feature vector as input and outputs its probability
density.

C. Step 3: Compute a combined distribution

Through analyzing the obtained continuous distributions, we
found that there usually exist some parts of these distributions
which are relatively independent to different class labels. As
shown in Figure 4, the red part does not change too much
w.r.t class label 1 and class label 2. These parts should be
considered as features less valuable for classification because
they have a similar probability model w.r.t both the class label
1 and 2. In order to filter out these independent parts, we apply
a simple way to combine two distribution as:

D′ = |D1 −D2|,

where D1,D2 are two distributions and D′ is their combined
distribution.
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Fig. 5. Illustration of the framework for the multi-class classification task,
where the vertex features of a single graph will be updated separately w.r.t
each class label and finally they will be concatenated into an ouput vector.

D. Step 4: Update each vertex feature

Similar to most graph classification methods, we apply a
message-passing-based framework to update and aggregate
vertex features in graphs. In this step, feature of each vertex
will be updated by aggregating its and its neighbors’ features.
Let xi ∈ Rd be the feature vector of i-th vertex in a graph,
then it will be updated as

x′i =
∑

j∈N (i)

fθ(xi,xj) · xj , (1)

where fθ : RD × Rθ → R is:

fθ(xi,xj) =
exp (D′(xi + xj))∑

k∈N (i) exp (D′(xi + xk))
,

where N (i) denotes the set of neighbors of i-th vertex.
The step 1 to step 4 will repeat H iterations for updating.

If the process of updating ends, all vertex features will be
inputted into a global mean pooling layer to get a graph
representation, which will be used for classification.

V. CLASS-WISE FEATURE UPDATING FOR MULTI-CLASS
CLASSIFICATION

So far, the feature updating process w.r.t a single class-
label is described in the previous section, which can be

directly used in the binary classification task. However, there
are many classification tasks that have more than 2 class
labels. In order to extend our method so that it can work in
the multi-class classification task, we conduct a separate-and-
concatenate framework which is as shown in the Fig. 5. Let
G be the graph that we are going to transform and classify,
X ∈ RN×D denotes its vertex features, which has N vertices
and each vertex is embedded into a D-dimensional vector.
Assume that we have K class labels. In this case, we first copy
the vertex features and repeat them into K channels, which
are denoted as X(1)...X(K). The vertex features in K channels
will be updated separately and independently for a proper
number of iterations, corresponding to the class label that
they belong to. This means that, in the probability distribution
learning step of the i-th channel, graphs will be divided into
two subsets: belonging to class label i and not belonging to
class label i, which correspond to the D̂1, D̂2 in Section IV-A.
Then the probability distribution is learned as described in the
previous section. After finishing the feature updating process,
we will conduct a graph SUM pooling on the vertex features,
where the vertex features will be added together to form a
new embedding for the graph G. Then we will apply several
linear layers to X(1)...X(K) separately, which take an input of
D dimension and give an output of 1 dimension. Then we can
obtain K scalars p1..pK , each of them denotes the probability
of belong to their class labels. Finally, these scalars will be
concatenated together to form an output o ∈ RK , which will
be inputted into a log-softmax classifier. Overall, our proposed
model does not require any deep learning process except a
linear classifier.

VI. COMPLEXITY ANALYSIS

In this section, we present the computational comlexity
analysis of our proposed framework. Let n,m denote the
number of nodes and the number of edges in a single graph,
respectively. Let K be the number of components of GMM,
and let l be the number of message passing layers, and let D
be the number of feature dimensions. Our proposed method
needs O(lmKD2) to compute the edge weight fθ(xi,xj) in
Eq. (1), because the commputational complexity of GMM is
O(KD2). For the GAT, its complexity is O(l(anFD+amD))
[14], where a denotes the number of multi-heads, D,F denote
the number of input and output dimension, respectively.

VII. NUMERICAL EVALUATION

We conduct evaluation experiments on several widely-used
real world benchmark datasets, which are the MUATG [2],
the PTC-MR [4], the PROTEINS [1], the COX2 [11], the
AIDS [9] datasets. For each dataset, we conduct one time
of 10-fold nested cross validation to get the average accuracy
and standard deviation. For the parameter setting our proposed
method, we use the GMM with 100 clusters and update vertex
features for H = 4 iterations.

For the comparing methods, we choose 4 state-of-the-art
works, which are the Weisfeiler-Leman graph kernel (WL)
[10], the Wasserstein Weisfeiler-Leman graph kernel (WWL)



TABLE I
AVERAGE CLASSIFICATION ACCURACY ON GRAPH DATASETS

METHOD MUTAG PTC-MR PROTEINS COX2 AIDS

WL [10] 85.61±8.02 62.51±4.11 74.24±3.75 81.36±3.21 97.90±0.95
WWL [12] 85.90±7.39 65.31±7.06 74.13±3.47 81.75±3.71 98.23±0.96
WL-OA [8] 82.72±7.09 63.45±8.63 73.83±3.61 80.47±4.44 99.02±0.61
GIN [16] 88.59±6.89 64.76±7.67 73.72±4.27 82.59±4.42 97.87±1.08
GAT [14] 72.83±9.80 54.98±8.55 70.69±3.53 81.74±3.83 91.00±1.89

unweighted 74.03±8.79 60.16±9.03 76.82±3.82 78.15±0.80 98.12±0.44
weighted 80.87±10.53 65.42±7.40 75.74±4.31 83.07±4.94 99.14±0.55

[12], the Weisfeiler-Leman graph kernel with Optimal Assign-
ment (WL-OA) [8], the Graph Isomorphism Nerual Network
(GIN) [16] and the Graph Attention Network (GAT) [14]. For
graph kernel methods WL, WWL and WL-OA, we apply a grid
search with H ∈ {1, 2, 3, 4, 5, 6, 7, 8} and utilize the Support
Vector Machine (SVM) for classification. For GIN, we also
apply grid searchs with H ∈ {1, 2, 3, 4, 5, 6, 7, 8} and the
hidden dimensions within {32, 64, 128}. For GAT, we apply
grid searchs with H ∈ {1, 2, 3, 4, 5, 6, 7, 8} and the number of
heads within {1, 2, 3, 4}. We set the hidden dimensions for
each head as 32. In order to show the difference between
weighted strategy and unweighted strategy, we also add an
unweighted variant of our proposed method, where we update
vertex feature by the following equation:

x′i =
1

|N (i)|
∑

j∈N (i)

xj .

The experimental results are shown in Table I, where the
top-2 are in bold typeface. From the results we can see that our
proposed method outperforms all comparing methods in the
PTC-MR, the BZR and the COX2 datasets. For the MUTAG
dataset, although our method is not the best, it obtain a nice
accuracy which is not far from other methods.

VIII. CONCLUSION

In this paper, we propose a lightweight message passing
method based on a weighting function learned by applying
the GMM to the probabiliry distributions of vertex pairs. The
experimental results show its effectiveness in classification
performance. For future works, we have several direction: 1)
Apply sampling methods such as the Gibbs sampling to reduce
computational costs; 2) Use deep distribution learning methods
to learn continuous distributions for better outcomes.
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