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Abstract—In histopathology image analysis, accurate segmen-
tation of nuclei holds immense significance, particularly in the
early detection and treatment of diseases like breast cancer.
Nuclei segmentation is a fundamental but challenging task
because of the intricate variations in nuclear shapes, sizes,
densities, and overlapping instances. In this paper, we evaluate
eight convolutional neural network (CNN) models, two of them
existing models namely U-Net, SegNet, and six hybrid models by
combining U-Net and SegNet modify decoder with ResNet, VGG
and DenseNet (ResNet-UNet, ResNet-SegNet, VGG-UNet, VGG-
SegNet, DenseNet-UNet, and DenseNet-SegNet. This experiment
aims to identify the best deep-learning model for segmenting
hematoxylin and eosin (H&E) stain images using a publicly
available dataset called MoNuSeg. From the experimented work,
we found that VGG-UNet outperforms other models with an F1
score of 0.8452 and IoU of 0.6929 respectively. This research
will serve as a foundation for the future construction of more
complex deep learning models with cascade or any combination
of the models studied.

Keywords—Cancer, Histopathology Image, Deep Learning, Nu-
clei Segmentation, H&E

I. INTRODUCTION

Cancer is a deadly disease that affects millions of people
worldwide [1]. It’s not a single illness but rather a collection
of diseases characterized by the abnormal growth of cells that
have the potential to invade or spread to other parts of the
body. From breast and lung to skin and blood cancers, this
condition encompasses a vast array of types, each with its
unique characteristics and challenges. Digital pathology plays
a crucial role in the diagnosis, prognosis, and treatment of
cancer [2]. By digitizing tissue samples and utilizing advanced
imaging techniques, digital pathology enables pathologists
to analyze and interpret these samples with unprecedented
precision and efficiency. Moreover, digital pathology helps
personalize treatments by detailing tumor characteristics and
guiding tailored therapies. Overall, it transforms cancer under-
standing, diagnosis, and treatment.

Fig. 1. Sample images from MonuSeg dataset: the stain images and their
corresponding ground truth labels.

Histopathology is a specialized field within pathology that
involves the microscopic examination of tissues to study
the manifestations of diseases [3]. Typically performed on
tissue samples obtained through procedures such as biop-
sies or surgical resections, histopathology is integral to the
accurate diagnosis and characterization of various medical
conditions, including cancer. Through the analysis of cellular
and tissue structures, histopathologists gain crucial insights
into the nature and extent of diseases, aiding in the formula-
tion of effective treatment strategies. Hematoxylin and Eosin
(H&E) staining, is a fundamental and widely used technique
in histopathology. H&E staining is essential for providing
contrast in histological sections, allowing pathologists to ob-
serve tissue architecture, identify different cell types, and
evaluate the presence of abnormalities or diseases. It serves
as the cornerstone of histopathological examination, playing
a pivotal role in routine pathology reporting and aiding in
the comprehensive understanding of various medical condi-
tions. In summary, histopathology, utilizing techniques like
H&E staining, unravels disease complexities at cellular and
molecular levels. It guides tailored treatment based on tissue
and cell specifics. The combination of morphological and



molecular information derived from histopathological analyses
is paramount in advancing our understanding of diseases and
improving patient care. In Figure 1, an illustration is provided
depicting a H&E image alongside its corresponding ground
truth.

Segmentation within digital pathology is a critical step that
delineates specific regions or structures within tissue samples,
playing a pivotal role in cancer diagnosis and treatment.
Preceding the application of machine learning or deep learning
algorithms for classification [4] and the automated calculation
of cancer status scores [5], a critical step involves nuclei
segmentation. By precisely identifying areas of interest such
as tumor boundaries, cell types, or areas of significance like
necrosis, segmentation provides pathologists and algorithms
with a clear view of the intricate details within the sample.
This process enables quantitative analysis, offering insights
into tumor characteristics, grading, and molecular profiles
that are essential for personalized treatment plans. Automated
segmentation algorithms streamline this process, enhancing
efficiency and expediting decision-making. Moreover, Seg-
mentation helps extract vital data for new diagnostic methods
and therapies, advancing our fight against cancer.

The framework proposed by the authors in [6] introduces a
method for weakly supervised segmentation based on partial
points annotation. Their two-stage approach commences with
semi-supervised training of a detection model, utilizing par-
tially labeled nuclei locations. The subsequent stage focuses on
weakly supervised segmentation, employing coarse labels de-
rived from detected nuclei locations. Naylor et al. [7] presented
a deep learning-based approach for segmenting nuclei in H&E
stained tissue slides. This method formulates the segmentation
task as a regression of intra-nuclear distance maps, implicitly
incorporating a shape prior into the segmentation network.
The approach surpasses previous methods and includes a
meticulously annotated dataset for nuclei segmentation. Xie
et al. [8] proposed an instance segmentation approach that
integrates Deep Convolutional Neural Networks (CNN) with
Marker-controlled Watershed to handle overlapping nuclei
in histopathology images. Their Deep Interval-Marker-Aware
Network addresses multiple segmentation tasks and utilizes
the interval between overlapping nuclei to refine segmentation
results. Another contribution on CNN by [9] introduces fully
convolutional networks with multiple encoders and deep fu-
sion for enhanced segmentation. The multi-scale architectures
outperform single-scale U-Nets, benefiting from both local and
global contexts. In [10], the authors advocate for incorporat-
ing the geometric structure of the special Euclidean motion
group SE(2) in CNN for translation and rotation equivariance.
This framework undergoes evaluation in three histopathol-
ogy image analysis tasks, including mitosis detection, nuclei
segmentation, and tumor detection. Leveraging the unique
optical properties of H&E staining images, [11] proposes
a Hematoxylin-aware CNN model for nuclei segmentation.
The Triple U-net structure integrates RGB, Hematoxylin, and
Segmentation branches with a feature aggregation strategy,
outperforming state-of-the-art methods. Wang et al. [12] in-

troduce RCSAU-Net, a novel segmentation method utilizing
an improved U-Net architecture and GAN-based learning
to enhance nuclei segmentation accuracy and address over-
and under-segmentation issues. The integration of adversarial
training enhances contextual semantics, resulting in superior
performance on MoNuSeg and PanNuke datasets, showcasing
robust generalization capabilities.

This study is an extension of our recent research in [13],
wherein we introduced two methods, ResNet-SegNet and
ResNet-UNet, derived from the well-known SegNet and UNet
approaches. Our earlier findings revealed that ResNet-UNet
outperformed in offline evaluations on ER-IHC stain images.
We developed a real-time application based on our proposed
models, employing PR-IHC stain images despite training our
models with ER-IHC stain images. We conducted evaluations
in both offline (using the test set) and online (using real-
time setup) scenarios, presenting our findings accordingly. In
this work, we leverage both SegNet and UNet methods to
propose our own hybrid approaches using VGG, DenseNet
and ResNet, for histological image segmentation. The output
model will be named as VGG-UNet, VGG-SegNet, DenseNet-
UNet, DenseNet-SegNet, ResNet-UNet, and ResNet-SegNet.
The models are trained using the publicly available H&E
dataset (Monuseg [14]), expanding on our previous paper,
which solely focused on the ER-IHC dataset.

The paper follows this structure: Section II furnishes a
comprehensive overview of the methodology utilized. Section
III delves into the presentation of results and discussions.
Lastly, Section IV encapsulates the conclusions derived from
our findings.

II. METHODOLOGY

The flowchart in Fig. 2 illustrates the sequential steps
involved in the training and testing workflow. Initially, the
dataset images undergo patch to a standardized dimension
of 500 by 500 pixels from 1000 by 1000. Then the image
resizes to 512 by 512 pixels. The eight deep learning models,
U-Net, SegNet, VGG-UNet, VGG-SegNet, DenseNet-UNet,
DenseNet-SegNet, ResNet-UNet, and ResNet-SegNet archi-
tectures, are then trained on the prepared datasets. Following
the training phase, the models are subjected to evaluation using
the test set derived from the image database. Two distinct types
of evaluations are conducted to assess the performance of the
trained models. The entire process is aimed at optimizing the
models for accurate and effective image segmentation.

A. Dataset

The proposed model was evaluated using a well-known
publicly available dataset called MoNuSeg [14], and then
compared with the existing state-of-the-art methods. The
Multi-Organ (MoNuSeg) dataset comprises 30 H&E stained
histopathology images for training, each of size 1000× 1000,
with annotations for 21,623 nuclear boundaries. Captured at a
40x magnification factor, these images feature patients selected
from the TCGA website, originating in various hospitals and
representing diverse cancer types. The MoNuSeg dataset is



Fig. 2. Image segmentation workflow

particularly valuable for its diversity in nuclear appearances
and practicality, encompassing images from seven organs
(Breast, Stomach, Liver, Prostate, Kidney, Colon, and Bladder)
belonging to 30 different patients. Fig. 1 illustrates examples
of Regions of Interest (RoI) and Ground Truth for one sample
image.

The test dataset used in the evaluation consists of images
from organs that were not included in the training set, making
it even more challenging than the training set. The dataset
includes 14 RoIs data for testing additionally, with each cancer
type represented by two RoIs. The testing data size is also the
same as the training dataset around 1000 by 1000. During both
training and testing procedures for semantic segmentation, we
patch the images into 500x500 segments and resize them to
512x512.

B. Deep Learning Models

We use two existing models, U-Net and SegNet, and another
six hybrid models by combining U-Net and SegNet modify
decoder with ResNet, VGG and DenseNet (ResNet-UNet,
ResNet-SegNet, VGG-UNet, VGG-SegNet, DenseNet-UNet,
and DenseNet-SegNet) shown in Table I to train and test
our dataset. In Fig. 3 shows how we produced hybrid VGG-
UNet and VGG-SegNet from UNet and SegNet. Other archi-
tectures like ResNet-UNet, ResNet-SegNet, DenseNet-UNet,
and DenseNet-SegNet are made in the same way. UNET and
SegNet are both popular architectures in the field of semantic
segmentation, a computer vision task that involves classifying
and segmenting objects within an image. While they share
the common goal of pixel-wise segmentation, they differ in

their underlying architectures and design philosophies. UNET,
introduced by Ronneberger et al. [15], is characterized by
a U-shaped network structure, featuring an encoder path
for capturing contextual information and a decoder path for
precise localization. On the other hand, SegNet, proposed by
Badrinarayanan et al. [16], employs an architecture based on
an encoder-decoder framework, but it leverages a different
strategy by using pooling indices from the encoder for up-
sampling in the decoder.

1) Overview of U-Net architecture: The U-Net architecture
consists of an encoder, a bottleneck layer, a decoder, and an
output layer. The encoder, forming the top part of the U shape,
captures context and features from the input image through
convolutional layers and max-pooling. A bottleneck layer
refines these features, connecting the encoder to the decoder.
The decoder, forming the bottom part of the U shape, upsam-
ples the features to the original input size using transposed
convolution operations. Skip connections play a vital role
by linking corresponding layers in the encoder and decoder,
aiding in the recovery of fine details and maintaining spatial
information. The final output layer produces a segmentation
mask, a pixel-wise classification map, with activation functions
like softmax or sigmoid depending on the segmentation task.
Skip connections, also known as residual connections, enhance
the model’s ability to precisely localize and segment objects
in the image.

2) Overview of SegNet:: SegNet’s encoder consists of mul-
tiple convolutional layers, similar to other neural networks,
extracting hierarchical features from the input image. What
sets SegNet apart is its use of max-pooling indices, recording
locations of maximum values during pooling. These indices
are stored and later used in the decoder for upsampling.
Like U-Net, SegNet may have a bottleneck layer capturing
abstract features. The decoder, responsible for upsampling,
uses a unique ”unpooling” operation with stored max-pooling
indices, maintaining spatial information effectively. The output
layer classifies pixels into predefined categories based on the
segmentation task, using an appropriate activation function.
Unlike U-Net, SegNet doesn’t have skip connections; instead,
it relies on max-pooling indices for precise upsampling, aiding
in spatial detail recovery.

3) Overview of VGG-UNet and VGG-SegNet architecture:
VGG16 is a popular neural network known for its effectiveness
in classifying images. It was created by the Visual Geometry
Group at the University of Oxford and gained recognition in
the ImageNet competition [17]. In the VGG-UNet architecture,
VGG acts as the encoder, extracting features from the input
image and reducing its size. The decoder, following the U-
Net design, uses transposed convolutions for upsampling and
includes skip connections to combine information from both
VGG and U-Net. Our implementation simplifies the U-Net
decoder, using only one convolutional layer per block to
reduce parameters and computation time. The final decoder
layer creates a segmentation map by classifying each pixel. In
VGG-SegNet, VGG serves as the encoder, extracting features
for segmentation. The decoder follows SegNet, preserving



Fig. 3. Proposed models architecture.

spatial details with max-pooling indices. Our implementation
maintains the SegNet-like structure, using one convolutional
layer per block to reduce parameters. Unlike the original Seg-
Net, our model has three skip layers instead of four. The final
decoder layer generates the segmentation map by classifying
pixels into categories using an appropriate activation function.

4) Overview of DenseNet-UNet and DenseNet-SegNet ar-
chitecture: DenseNet-169, a variant of the DenseNet architec-
ture renowned for its effectiveness in image classification, was
developed by Gao Huang [18]. In the DenseNet-UNet setup,
DenseNet acts as the encoder, extracting hierarchical features
efficiently with dense connectivity. The decoder, inspired by
U-Net, employs transposed convolutions and skip connec-
tions for upsampling, streamlining the process with a single
convolutional layer per block for reduced parameters and
enhanced computational efficiency. The final layer produces a
segmentation map, categorizing each pixel. In the DenseNet-
SegNet configuration, DenseNet serves as the encoder, cap-
turing hierarchical features, while the decoder follows the
SegNet architecture with transposed convolutions and max-
pooling indices for accurate upsampling. Our implementation
maintains a SegNet-like structure, using one convolutional
layer per block and 3 skip layers, contributing to parameter
reduction and computational efficiency. The decoder’s output
generates a segmentation map, employing an appropriate ac-
tivation function for pixel classification.

5) Overview of ResNet-UNet and ResNet-SegNet archi-
tecture: ResNet-50, a key member of the ResNet family

introduced by Kaiming He et al. in 2015 [19], has made
a significant impact on deep learning and computer vision
with its effectiveness in training deep neural networks. In
the ResNet-UNet architecture, ResNet serves as the encoder,
capturing hierarchical features through residual blocks with
skip connections that address vanishing gradient challenges.
The decoder, following the U-Net design, utilizes transposed
convolutions and skip connections to link encoder and decoder
layers. Our implementation simplifies the U-Net decoder by
using a single convolutional layer per block, reducing pa-
rameters and computational overhead. Similarly, in ResNet-
SegNet, the ResNet component excels as the feature extractor,
leveraging residual blocks with skip connections for training
deep networks. The decoder, inspired by SegNet, employs
transposed convolutions and utilizes max-pooling indices for
precise upsampling. Our model maintains a SegNet-like struc-
ture with one convolutional layer per block, reducing parame-
ters and computational costs, and features 3 skip layers instead
of 4. The final decoder layer classifies pixels into categories,
producing the segmentation map with an appropriate activation
function.

C. Data Augmentation

Data augmentation techniques are crucial for making mod-
els more versatile. There are three main approaches: randomly
flipping and rotating images to help models recognize objects
from various angles, adjusting brightness randomly to adapt
to different lighting conditions, and adding Gaussian noise to



TABLE I
SEGMENTATION MODELS USED IN THE EXPERIMENT.

Model Name Encoder Decoder Parameters
(In Millions)

Training Time
(1 epoch)

SegNet Vanilla CNN SegNet 33.3M 459s
U-Net Vanilla CNN U-Net 31.0M 484s

ResNet-SegNet ResNet SegNet 16.3M 136s
ResNet-Unet ResNet U-Net 16.3M 205s
VGG-SegNet VGG SegNet 12.3M 243s
VGG-Unet VGG U-Net 12.3M 209s

DenseNet-SegNet DenseNet SegNet 11.9M 346s
DenseNet-Unet DenseNet U-Net 11.9M 328s

simulate real-world imperfections and improve performance
in noisy environments. Together, these strategies enhance a
model’s ability to handle diverse situations beyond its training
data, ultimately improving its performance in tasks like im-
age classification, segmentation, and object detection in real
applications.

D. Evaluation Method

Evaluative methods such as precision, recall, F1 score, and
Jaccard index play a crucial role in evaluating the performance.

Precision is the ratio of correctly predicted positive observa-
tions to the total predicted positives. It assesses the accuracy
of positive predictions. Recall, also known as sensitivity or
true positive rate, is the ratio of correctly predicted positive
observations to all observations in the actual class. It measures
the ability of the model to capture all the relevant cases. The F1
score is the harmonic mean of precision and recall. It provides
a balance between precision and recall, especially when there
is an uneven class distribution.

Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives

F1 Score =
2× Precision × Recall

Precision + Recall
The Jaccard Index, also known as the Jaccard similarity

coefficient (IoU), is a measure of similarity between two sets.
It’s defined as the size of the intersection of the sets divided
by the size of the union of the sets. Mathematically, it can be
expressed as:

J(A,B) =
|A ∩B|
|A ∪B|

III. RESULTS AND DISCUSSIONS

The MoNuSeg dataset serves as a crucial asset for ap-
praising the efficacy of diverse image segmentation models in
precisely identifying objects within images. Our comprehen-
sive assessment encompasses eight distinct models: SegNet,
UNet, ResNet-SegNet, ResNet-UNet, VGG-SegNet, VGG-
UNet, DenseNet-UNet, and DenseNet-SegNet. And three more
existing models UCTransNet-pre [20], ATTransUNet [21], and
CT-Net [22] where their author applies the same dataset we

TABLE II
PERFORMANCE METRICS FOR VARIOUS MODELS FOR MONUSEG

DATASET

Model Name IoU F1 Precision Recall
SegNet [16] 0.5653 0.7530 0.7923 0.7380
UNet [15] 0.6076 0.7545 0.9203 0.6381
ResNet-SegNet 0.6499 0.7928 0.9374 0.6930
ResNet-UNet 0.6703 0.8213 0.8756 0.7858
VGG-SegNet 0.6745 0.8373 0.8643 0.8200
VGG-UNet 0.6929 0.8452 0.8890 0.8110
DensNet-UNet 0.6611 0.8050 0.9194 0.7230
DensNet-SegNet 0.6426 0.7945 0.9065 0.7195
UCTransNet-pre [20] 0.6550 0.7908 - -
ATTransUNet [21] 0.6551 0.7916 - -
CT-Net [22] 0.665 0.798 - -

use. Our scrutiny is specifically directed toward key metrics,
including the IoU, F1 score, precision, and recall. The evalu-
ative methods results of all the models are detailed in Table
II.

Fig. 4. Some highest segmentation result with RoI and Ground Truth for
VGG-UNet in MoNuSeg dataset

Fig. 5. Some lowest segmentation result with RoI and Ground Truth for
VGG-UNet in MoNuSeg dataset

In comparing the performance of various semantic segmen-
tation models, VGG-UNet stands out with the highest IoU
of 0.6929, indicating excellent object localization. It achieves
a high F1 score of 0.8452, showcasing a strong balance
between precision (0.8890) and recall (0.8110). Following
closely is VGG-SegNet, blending VGG16 with SegNet ar-
chitecture, with an IoU of 0.6745 and a well-balanced F1
score of 0.8373. ResNet-UNet outperforms ResNet-SegNet,
demonstrating improved object localization with an IoU of
0.6703 and a higher F1 score of 0.8213. DenseNet-UNet
achieves IoU values of 0.6497 and 0.6611, respectively, while
DenseNet-SegNet lags slightly with an IoU of 0.6426. SegNet
and UNet exhibit the lowest performance, achieving an IoU of
0.5653 and 0.6076, along with F1 scores of 0.7530 and 0.7545
respectively. Overall, these models exhibit varying strengths
in object localization, precision, and recall, highlighting the
importance of architectural choices in semantic segmentation
tasks. Additionally, the existing models - UCTransNet-pre, AT-
TransUNet, and CT-Net - also exhibit promising performance.



UCTransNet-pre and ATTransUNet demonstrate similar per-
formance with an IoU of around 65.50 and F1 scores of around
79.08-79.16. CT-Net showcases an IoU of 0.665 and an F1
score of 0.798. These models contribute to the spectrum of
available options for semantic segmentation on the MoNuSeg
dataset, displaying competitive performance in comparison to
the established architectures.

In summary, the discussion highlights that DenseNet-
SegNet, DenseNet-UNet, and ResNet-UNet exhibit robust
performance across various metrics, making them versatile
choices for a wide range of segmentation tasks on this dataset.
The VGG-UNet model emerges as the top performer on
the MoNuSeg dataset, boasting the highest IoU, F1 score,
precision, and a commendable recall rate. Figures in Fig. 4
showcase impressive scores, while Fig. 5 displays images with
lower scores. However, the optimal model choice depends
on specific task requirements and the desired precision-recall
trade-off. Each model exhibits unique strengths and areas
for improvement, offering valuable insights for selecting the
most suitable model for image segmentation tasks within the
MoNuSeg dataset.

IV. CONCLUSIONS

Segmenting nuclei is a demanding yet crucial task in
computer-assisted histopathological analysis. This paper con-
ducts a comparative analysis of deep learning models, forming
the foundation for advanced and intricate deep model net-
works. The objective of this experiment is to determine the
optimal deep-learning model for segmenting hematoxylin and
eosin (H&E) stain images. The model is trained and evaluated
using a publicly accessible dataset named MoNuSeg with
H&E stain. In terms of performance, VGG-UNet demonstrates
an F1 score of around 0.8452 and IoU of 0.6929. On the other
hand, ResNet-UNet attains an F1 score of 0.8213 and IoU
of 0.6703. These models hold potential for future endeavors
in developing segmentation algorithms catering to various
staining types and for real-time processing tasks such as cancer
case classification, scoring, and grading.
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