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Abstract—Political and practical challenges impede access to
primary healthcare in the Philippines, with approximately 50uti-
lizes Geographic Information System (GIS) tools and artificial
intelligence (AI) to thoroughly analyze hospital accessibility,
focusing on Olongapo City, Zambales, Philipines. Using QGIS,
current hospital distribution was mapped, and the spatial avail-
ability of healthcare services was evaluated through location-
allocation analysis. Land Use Semantic Segmentation Models
were developed to consider land suitability for establishing
healthcare infrastructure. The methodology involves data pre-
processing, shortest route analysis, and AI models for automatic
land-use categorization. This research provides insights for opti-
mizing resource allocation under the Universal Healthcare Act of
2019, aiming to enhance accessibility and potentially impact job
availability and the national gross domestic product positively.

Index Terms—artificial intelligence, geographic information
system, hospital facility accessibility, optimization, semantic seg-
mentation

I. INTRODUCTION

A. The Philippine Healthcare System

In the Philippines, political and practical factors influence
the selection of sites for primary care facilities, often leading
to suboptimal placements of healthcare institutions [1]. Con-
sequently, around 50% of the population needs primary care
facilities within a 30-minute travel radius [2]. The Universal
Healthcare (UHC) Act of 2019 allocates significant resources
to ensure social equity in accessing essential services and ad-
dress challenges in providing healthcare services. This republic
act acknowledges the pivotal role of well-planned healthcare
networks in improving public health and boosting employment
opportunities and GDP [3].

This study analyzes hospital facility accessibility in Olon-
gapo City, Zambales, Philippines. Leveraging Geographic In-
formation System (GIS) technology and Artificial Intelligence
(AI), the research aims to map the current distribution of
hospital facilities to assess spatial healthcare availability. The
study’s primary objective is to propose strategic locations for
new hospitals or expand existing facilities to bridge accessi-
bility gaps.

This research seeks to provide data-driven insights and
recommendations to enhance healthcare service accessibility
in Olongapo City, aligning with the broader objectives of
equitable access and resource optimization.

B. Facility Location Optimization

Facility location problems (FLPs) assume a fundamental
role in optimizing the allocation of resources and services in
various domains, including healthcare infrastructure planning.
These problems involve determining the most strategic loca-
tions for facilities while considering specific objectives and
constraints. Common optimization parameters in FLPs include
minimizing average travel time or maximizing coverage within
a predefined radius. Three widely used models in FLPs are the
P-median problem, the location set covering problem (LSCP),
and the maximal covering location problem (MCLP) [4].

The P-median problem focuses on identifying p facility
locations to efficiently allocate demand, often associated with
objectives such as minimizing travel distances [4]. This facility
location model is used in the Nearest Facility Analysis, which
aims to reduce the distance between users and the closest
facility.

In contrast, the location set covering problem (LSCP) seeks
to find the minimum number of facilities and their specific
locations to ensure the coverage of all demand points [4].
LSCP is employed in city planning scenarios where the
primary objective is to encompass all demand points within
a service area.

The maximal covering location problem (MCLP) entails
locating a predetermined number of facilities to maximize the
coverage within a specified service distance or time, often
applicable in situations where budget constraints limit the
number of facilities that can be established [4].

In the context of hospital facility location optimization,
Flores et al. have explored utilizing a Cooperative Maximal
Covering Model that prioritizes maximizing the coverage of
healthcare facility locations from a set of predefined candidate
sites [1]. In their approach, the authors introduced the concept
of distance decay to model the attractiveness of candidate
facilities. This method encompasses two key metrics: the
first metric considers the population residing within a 30-
minute travel time, aligning with the objectives outlined in
the Philippine Health Facility Development Plan (PHFDP),
while the second metric incorporates an equation that factors
in population, bed capacity, and travel time to estimate the
expected number of visitors to a healthcare facility.

Furthermore, Flores et al. introduced two distinct demand



assumptions: the zeroed demand assumption allocates zero
demand to areas within a 30-minute drive of an existing rural
health unit (RHU) since these regions are already adequately
covered by an existing healthcare facility. In contrast, in the
reduced demand assumption, demand is adjusted for areas
already served by an existing RHU, accounting for the unit’s
capacity [1].

It was observed that both the zeroed demand and reduced
demand methods identified candidate sites near existing RHUs,
implying that these rural health units are likely insufficient in
meeting the anticipated healthcare service demands.

Flores et al. recommended incorporating land use analysis
through satellite imagery to assess a candidate location’s
suitability for healthcare facility establishment [1]. Hence, this
research developed a land use semantic segmentation model
to identify locations appropriate for healthcare infrastructure
construction automatically.

II. RELATED WORK

A. Integration of GIS in Healthcare Facility Optimization

The application of GIS in healthcare has been pivotal
in spatial analysis and decision-making processes. In recent
years, studies have emphasized the role of GIS in optimizing
healthcare facility locations. Amoah-Nuamah et al. (2023)
demonstrated using GIS to analyze the spatial distribution of
healthcare services, identifying areas with inadequate health-
care coverage in rural communities in Ghana [5]. Their work
highlighted the potential of GIS in revealing geographical
disparities in healthcare access, thereby guiding policymakers
in resource allocation decisions. A similar study by Das et
al. (2021) extended this approach by incorporating population
density data, elevation, and road network information into
GIS models to identify optimal locations for new healthcare
facilities [6]. Their research underscored the importance of
considering demographic and geographical data in healthcare
planning.

B. Machine Learning in Healthcare Facility Location Opti-
mization

Machine learning (ML) has increasingly been adopted to
augment decision-making in healthcare facility location opti-
mization. A notable study by Vargas-Santiago et al in 2023
introduced two novel methods to enhance the effectiveness of
conventional problem-solving techniques like heuristics, meta-
heuristics, and genetic algorithms [7]. Their first method in-
volves leveraging collective intelligence through crowdsourc-
ing, offering a unique solution to bridge the research void in
utilizing crowdsourcing for Facility Location Problems (FLP).
The second method integrates machine learning, specifically
predictive modeling, to effectively navigate the solution space.
The study reveals that machine learning not only augments
existing problem-solving methods but also provides a more
holistic approach to addressing FLP, filling previously iden-
tified gaps. The predictive capabilities of machine learning
models proved to be instrumental in decision-making pro-
cesses, offering rapid insights into system dynamics. Their

research demonstrated how machine learning could be used
to forecast future healthcare needs, informing the strategic
placement of facilities. Furthermore, More et al delved into the
potential of machine learning as a solution for facility location
problems. They thoroughly analyzed different machine learn-
ing algorithms and techniques, assessing their performance
based on accuracy, computational speed, and scalability. The
findings from their study suggest that machine learning holds
significant promise as an effective approach to these problems,
especially when integrated with other optimization methods.
Nevertheless, the study also highlighted the need for further
investigation to comprehensively understand the constraints
and capabilities of machine learning in addressing facility
location issues [8]. The 2023 study of Salami et al. ex-
plored a comprehensive model for optimal placement and
allocation of healthcare facilities over multiple periods [9].
This model uniquely considers both referral between ser-
vices and equitable access. A practical example illustrates the
model’s effectiveness. Furthermore, they developed a hybrid
Genetic Algorithm-Sequential Quadratic Programming (GA-
SQP) technique to solve large-scale problems efficiently. The
GA-SQP’s performance was rigorously tested against various
randomly generated scenarios and benchmarked with exact
methods. The findings underscore the model’s robustness in
addressing healthcare facility location and service allocation
while prioritizing service shortage and equity across different
time frames.

C. Combining GIS and Machine Learning for Enhanced
Healthcare Facility Optimization

Recent research has focused on the synergy of GIS and
machine learning in healthcare optimization. In 2019, Kamel
Boulos et al. presented a comprehensive survey of GeoAI
technologies, encompassing a variety of methods, tools, and
software. They explored the present and prospective uses of
these technologies in numerous fields, including public health,
precision medicine, and smart healthy cities enhanced by
the Internet of Things [10]. Additionally, the paper briefly
addressed the existing challenges that GeoAI faces in its re-
search and application within the health and healthcare sectors.
Moreover, Noon and Hankins’ (2024) study presented the use
of spatial data visualization to aid in determining the location
and size of a new Neonatal Intensive Care Unit (NICU)
within a network of rural hospitals. Utilizing a Geographic
Information System (GIS), they analyzed both public and
specific system data. This analysis revealed patterns in the
healthcare system’s market share and patient travel behavior,
which were crucial in guiding decisions. Their application
serves as an effective demonstration of employing spatial data
mining as a vital component in the Knowledge Discovery in
Databases (KDD) process [11].

D. Implications for Policy and Planning

The research in this domain has significant implications
for healthcare policy and planning. These studies demonstrate
that integrating GIS and machine learning provides a robust



framework for optimizing healthcare facility locations. This
approach not only enhances accessibility but also ensures
efficient resource allocation, ultimately leading to improved
healthcare outcomes.

III. RESEARCH METHODOLOGY

The research methodology flowchart follows a systematic
approach to investigate hospital facility accessibility within
the study area.

Fig. 1: Flowchart of the research methodology.

The flowchart begins with data gathering, which includes
the acquisition of open-source national and subnational bound-
ary shapefiles, road networks, Philippine population density,
the national hospital facility list from the Department of Health
- National Health Facility Registry (DOH - NHFR), and the
semantic drone dataset provided by the Graz University of
Technology.

The subsequent mapping phase involves overlaying national
and subnational boundary shapefiles in QGIS and deriving a
local road network using an intersection algorithm. Simulta-
neously, geolocation of local hospitals was achieved through
a Python script utilizing the Google Geotagging API for
obtaining latitude and longitude values.

Two assumptions were made to represent local population
centers: the geometric centroid assumption and the population
density centroid assumption. For the geometric centroid as-
sumption, the local population center of each barangay was
assumed to be the geometric centroid of a barangay. On the
other hand, the population density centroid assumption deter-
mines local population centers by getting the mean coordinate
of an aggregate of points representing a barangay’s demand
points (i.e., its residents).

After mapping, the shortest route analysis was performed
to assess hospital utilization and determine the extent of
coverage for Barangays. Through shortest route analysis,
Hospital-Barangay Matrices were developed; these matrices
report the distances between barangays and their servicing
hospital and the utilization status of the local hospitals. To
summarize the Hospital-Barangay Matrices, a Hospital Profile
and Distance Metrics Summary were accomplished in order to
classify which hospitals are underutilized, normally utilized,
and heavily utilized.

The methodology proceeds to service coverage analysis,
which was done by generating 5-kilometer and 10-kilometer
radius buffer zones; these buffer zones highlight the spatial
reach of healthcare facilities.

Finally, U-Net-based land use semantic segmentation mod-
els were developed to obtain detailed land use information for
potential facility locations.

IV. GEOSPATIAL MAPPING

The geospatial mapping in QGIS was initiated by defining
the boundaries of Olongapo City using the Philippines -
Subnational Administrative Boundary Shapefile, obtained from
the Humanitarian Data Exchange. Subsequently, the national
road network data from OpenStreetMap (OSM) was imported
and processed through the QGIS Intersection Algorithm to
extract the local road network of Olongapo City.

An updated list of healthcare facilities in the Philippines was
obtained from the DOH - NHFR. After obtaining the updated
facility list, the comma-separated value (.csv) file was filtered
to retain only Zambales healthcare facilities. Automation of
the geotagging process for Zambales healthcare facilities was
accomplished by developing a Python script that accepts the
facility list in .csv format and generates a corresponding .csv
file containing facility names, longitude, and latitude values.

The resulting .csv file from the automated geotagging script
was subsequently imported into QGIS as a delimited text layer.
All layers were imported using EPSG:32651 - WGS 84 / UTM
zone 51N as the coordinate reference system (CRS) since this
CRS is suitable for the Philippines.

For the initial local population center assumption, the geo-
metric centroid of each barangay within Olongapo was deter-
mined using the Centroid function in QGIS. For the population
density centroid assumption, the Philippine population density
raster data was obtained from the Humanitarian Data Ex-
change; this raster data was then converted into vector points to
approximate demand point locations. These vector points were
subsequently clustered per barangay, with the QGIS mean
coordinate function employed to derive the population density
centroid for each barangay.

Using the QGIS Network Analysis Toolbox (QNEAT3),
Origin-Destination (OD) matrices were computed for both
local population center assumptions, with centroids serving
as Origin Points (O) and healthcare facilities as Destination
Points (D). Additionally, QNEAT3 was used to generate
shortest routes using the OD matrices and the localized road
network as inputs.

V. SHORTEST ROUTE ANALYSIS

Two sets of shortest routes for the geometric centroid
assumption and population density centroid assumption were
generated using the QNEAT3 plugin.

Hospital-Barangay Matrices were developed for both cen-
troid assumptions after completing the shortest route genera-
tion. These matrices report distances for every combination of
barangays and servicing hospitals and the number of barangays
each hospital serves.



Fig. 2: Shortest route generation for the geometric centroid
assumption.

Fig. 3: Shortest route generation for the population density
centroid assumption.

For the geometric centroid assumption, Alferos Hospital
services no barangay, while the Zambales Medical Mission
Group Coop Hospital services five barangays (see Appendix
A, Subsection A). In this assumption, the maximum distance
between a barangay and a hospital was 9.27 kilometers.

Similarly, Alferos Hospital serves no barangay, while Zam-
bales Medical Mission Group Coop Hospital serves six
barangays for the population density centroid assumption
(see Appendix A, Subsection B). Under this assumption, the
maximum distance between a barangay and a hospital was
determined to be 6.39 kilometers.

Subsequently, Hospital Profile and Distance Metrics Sum-
mary Table was constructed to assess the utilization status of
each hospital based on the number of barangays served, em-
ploying an arbitrary classification method. Hospitals serving
none to one barangay were categorized as underutilized, hos-
pitals serving two to three barangays were deemed sufficiently
utilized, and hospitals serving more than four barangays
were classified as heavily utilized. For both centroid assump-
tions, the mean and maximum distances in kilometers were
computed as these distance metrics are relevant parameters
in assessing hospital facility accessibility (See Appendix B,
Subsection A).

The analysis revealed that the Geometric Centroid As-
sumption results in a more balanced distribution of Hospital-

Barangay combinations than the Population Centroid Assump-
tion (See Appendix B, Subsection A). Under the Geometric
Centroid Assumption, two hospitals were classified as under-
utilized, while three were considered sufficiently utilized. In
contrast, three hospitals were classified as underutilized, and
two were classified as sufficiently utilized for the Population
Density Centroid Assumption.

It is important to note that for barangays characterized
by uneven population distributions, as is common in many
Olongapo City barangays due to the geographic profile of
some barangays, the Population Density Centroid Assumption
aligns more closely with the actual mean coordinates of a
local population center. Hence, it represents a more appropriate
framework for evaluating utilization status and assessing hos-
pital accessibility. Additionally, the distance metrics present
relatively better accessibility from local population centers
when population density, rather than geometric shape, was
considered. The Population Density Centroid Assumption has
mean and maximum distances of 1.71 and 6.39 kilometers,
respectively (See Appendix B, Subsection B). In comparison,
the Geometric Centroid Assumption resulted in mean and
maximum distances of 2.37 and 9.27 kilometers, respectively.
Table I presents a comparison of distance metrics, contrasting
the mean and maximum distances for both the geometric and
population density centroids.

TABLE I: Summary of Distance Metrics

Distance Metrics Geometric Centroid Pop. Density Centroid
Mean Distance 2.3655 km 1.7051 km
Max Distance 9.2686 km 6.3942 km

VI. SERVICE COVERAGE ANALYSIS

Local hospital coverage within Olongapo City was assessed
by generating two distinct sets of buffer zones: 5-kilometer
radius buffers and 10-kilometer radius buffers. These buffers
were produced using the Buffer tool of QGIS. The total area
enclosed by the buffer zones for each set was obtained through
the Dissolve tool in QGIS.

Fig. 4: 5-km hospital buffer zones.

Subsequently, the intersection between population density
vector points and buffer zones was determined using the in-
tersection algorithm. In this algorithm, the population density



Fig. 5: 10-km hospital buffer zones.

vector points were specified as the input layer, while the
generated hospital buffer zones served as the overlay layer.

Fig. 6: Intersection between vector points and the 5-km buffer
zones.

Fig. 7: Intersection between vector points and the 10-km buffer
zones.

After employing the intersection algorithm, the number of
population density vector points enclosed within both the 5-
kilometer and 10-kilometer radius buffers was obtained from
the attribute table. It was identified that 21,261 population
density vector points were enclosed within the 5-kilometer
radius buffers and 23,290 vector points within the 10-kilometer
radius buffers. Since the total number of barangay population

density vector points amounts to 23,290, it can be deduced
that for the 10-kilometer radius buffers, all population density
vector points were covered by the local hospitals.

The computation of hospital percent coverage was per-
formed using (1). With the 5-kilometer radius buffer zones,
the hospital percent coverage was calculated as 91.29%. On
the other hand, for the 10-kilometer radius buffer zones,
the hospital percent coverage was determined to be 100%.
These findings signify that 91.29% of the Olongapo population
resides within a 5-kilometer radius from a local hospital, while
the entire population of Olongapo is considered covered within
a 10-kilometer radius.

%covered =
vector points within n-km buffer

total vector points
× 100% (1)

VII. LAND USE SEMANTIC SEGMENTATION

A total of six semantic segmentation models were developed
using the Semantic Drone Dataset provided by Graz University
of Technology [12]. This dataset comprises 23 classes, such
as trees, grass, vegetation, gravel, dirt, water bodies, and
paved areas, among others. The dataset has 400 images for
both training and testing, each accompanied by corresponding
segmentation masks.

TensorFlow and ONNX were employed as deep learning
frameworks for the models. TensorFlow has a dedicated seg-
mentation models library, which was utilized for this project.
However, since most QGIS deep learning plugins exclusively
accept ONNX models, tf2onnx was used to convert the Keras
models into ONNX format.

The architecture selected for the models was U-Net, while
the encoders used were ResNet-34, ResNeXt-50, and VGG-
16. For each encoder, two models were developed: one with
augmented data and a learning rate scheduler and one with
only the original data and no learning rate scheduler.

The ResNet-34 U-Net model without data augmentation
demonstrated the most acceptable performance among the
developed models. It can be observed from the inference that
this model captured general details and patterns from the test
images. The model has a training loss of 18.37%, training
accuracy of 94.16%, validation loss of 91.14%, and validation
accuracy of 79.17%.

Fig. 8: Model inference for ResNet-34 U-Net model without
data augmentation.

The remaining five models exhibited suboptimal perfor-
mance, characterized by poor performance metrics.



(a) ResNet-34 U-Net
model with data aug-
mentation.

(b) ResNeXt-50 U-Net
model without data
augmentation.

(c) ResNeXt-50 U-Net
model with data aug-
mentation.

(d) VGG-16 U-Net
model without data
augmentation.

(e) VGG-16 U-Net
model with data
augmentation.

Fig. 9: Performance metrics of five semantic segmentation
models.

Model inference was conducted using the ResNet-34 U-Net
Keras model on a satellite image of Olongapo City. While the
results were not a precise representation of the test image, the
model was able to extract generic image features such as the
shape of the river.

Fig. 10: Model inference for ResNet-34 U-Net model without
data augmentation using a satellite image of Olongapo City,
Zambales.

VIII. CONCLUSIONS

This study employed geospatial analysis to assess the ac-
cessibility of existing hospital facilities in Olongapo City,
Zambales, Philippines. AI models were developed to obtain
essential land use information for potential facility locations.
The Population Density Centroid Assumption (PDCA) was
adopted as the framework for evaluating hospital utilization
and accessibility since it better represents local population
centers. Utilizing the PDCA, hospital utilization status was
evaluated: it was determined that three hospitals are underuti-
lized, two are sufficiently utilized, and two are heavily utilized.
The mean and maximum distances for PDCA were 1.71 and
6.39 kilometers, respectively. Service coverage analysis using
5-km and 10-km radius hospital buffer zones indicated high
hospital percent coverage (91.29% and 100%, respectively),

suggesting comprehensive city coverage by existing hospitals.
Six U-Net land use semantic segmentation models were de-
veloped; among these models, the ResNet-34 U-Net model
demonstrated the best performance. Training and validation
metrics for this model include a training loss of 18.37%,
training accuracy of 94.16%, validation loss of 91.14%, and
validation accuracy of 79.17%. For future studies, the ONNX-
converted Keras model may be utilized using QGIS in order to
automatically segment different land uses and select locations
that are suitable for healthcare infrastructure establishment.
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