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Abstract—Structure-texture decomposition refers to the de-
composition of an input image into three components: a structure
component consisting of edges and smooth surface, a texture
component consisting of local patterns. Most existing methods
do not take the existence of the noise into account, but in
practice, the noise is often included in the input image. In this
study, we propose a deep learning based structure-texture-noise
decomposition method that enables texture-noise separation using
the context of structure components by sequentially connected
two-stage network. Experimental results show that the proposed
method can decompose noisy images into structure, texture, and
noise components. Furthermore, we show that the proposed
method can be applied to the tone mapping application with
noisy input.

Index Terms—structure-texture-noise decomposition,
learning, edge preserving image smoothing, tone mapping

deep

I. INTRODUCTION

Structure-texture decomposition (or edge-preserving image
smoothing) from an image is an important inverse problem
in the image processing research field. It can be applied to
tone mapping and texture enhancement and is also useful
as preprocessing for high-level computer vision tasks. In
general, structure and texture are defined as piecewise smooth
component and local variation pattern component, respectively.
This definitional ambiguity leads to a large number of decom-
posed image pairs corresponding to a single input image and
makes structure-texture decomposition an inherently ill-posed
problem.

Existing optimization based methods for structure-texture
decomposition can be classified into those that try to represent
both structure and texture features [1], [2], and those that
extract only the structure component [3]—[5]. In the latter case,
the texture component is obtained by subtracting the structure
component from the input image. These optimization based
methods are required to solve the large scale optimization
problems by using iterative methods and thus require signifi-
cant computational time.

In recent years, deep learning based approaches have been
applied to structure-texture decomposition [6]-[9]. The advan-
tage of deep learning based methods is that their inference is
extremely fast compared to the optimization based methods.
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Most of these deep learning based methods use the definition
that the texture component is the difference between the input
image and the structure.

On the other hand, real images often contain noise that
is unavoidable during the image acquisition process, which
degrades the performance of the structure-texture decomposi-
tion. Optimization based methods can decompose such noise
relatively easily by incorporating the log-likelihood of the
probability distribution of the noise into their objective func-
tion. However, deep learning based methods cannot distinguish
between the noise and the texture because the texture is defined
as the difference between the input and the structure.

In this paper, we propose a structure-texture-noise decom-
position method using deep learning. By employing a two-
stage architecture and loss function, the proposed method is
extremely fast and accurate in decomposing the three com-
ponents. Experimental results show that the proposed method
can also be applied to tone mapping for noisy high dynamic
range (HDR) images.

II. PROPOSED METHOD

The existing structure-texture decomposition methods as-
sume that an input original image x € R”*WxC ig the sum of
s and t such that x = s+t, and finds s and t from x under this
constraint. Where H, W, and C are image height, width, and
number of channels. However, as we mentioned before, real
images are often contaminated by noise which is inevitable in
the image acquisition process. The noise component included
in the input image may degrade the performance of the image
decomposition methods.

We proposed a method for decomposing a noisy input image
into structure, texture, and noise components. We assume that
the input image is noisy observation y = x + n, which is the
addition of the original image x(= s+ t) and the instance of
i.i.d. Gaussian noise n with standard deviation o. Our objective
is to decompose y into the three intrinsic components s, t, and
n respectively.

A. Network architecture

We propose a two-stage, cascaded network architecture
for structure-texture-noise decomposition (Fig. 1). Each stage
(stage-1 and stage-2) consists of a very deep convolutional
neural network (VDCNN) [8] which is a deep learning based
edge-preserving image smoothing method.
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The kernel sizes of all convolutional layers of VDCNN are
3 x 3, with 64 output channels from the first to the 19th layers
and 3 output channels in the final layer.

The first stage (stage-1 in Fig, 1) takes an observed image
y containing noise as input and the output is the §. The neural
network @, : REXWxC _y REXWXC jg trajned to estimate
t + n which is the sum of two components, texture, and
noise, from the input image y. Then, the estimated structural
component § which is the output of stage-1 is obtained as
the difference between the input y and the output @4 (y), i.e.
s=y— ®u(y).

The second stage (stage-2 in Fig, 1) decomposes texture
and noise components. The estimated structure component §
obtained in the first stage and —®;(y), are stacked in the
channel direction. Thus stack(s, —®1(y)) is used as the input
of stage-2. Where stack(a,b) is an operator that stacks the
input tensors a, b in the channel direction. This is expected
to improve separation performance by enabling texture-noise
separation using the context of structural components.

Let @, : RAXWx2C _y RAXWXC pe the VDCNN(2)
process The output estimated texture component t is ob-
tained as the sum of —®;(y) and the VDCNN(2) output
®,(stack(s, — @ (y))). The estimated original image X = §+t
is obtained from the sum of the estimated structure and texture
components.

Fig. 1: Architecture of the proposed method.

B. Loss function

The loss function of the proposed method consists of four
terms.

L=Lnp (&) +als—sli+81IE—tlh +v [ &—x |,
A (1)
where S, t, and X are the estimated structure, texture and
image, respectively, and s, t, and x are the grandtruth of
each component and image. The «, 3, and ~y are arbitrary
parameters to be determined by the user. The term Lyp is the
neighborhood loss [8] is defined by the following equation.
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where IV; ; denotes the 5 x 5 neighborhood centered at the
pixel location (i, 5). The neighborhood loss is to encourage
the estimated structural component to have the same local
variation as the groundtruth structural component.

III. EXPERIMENTAL RESULTS

A. Dataset and Training

We used 400 selected images from the BSDS500
dataset [10] to train the proposed network. The remaining 100
images were used for testing. For comparison experiments,
train/test splitting was performed exactly as in Zhu et al [8].
Each clean image x were decomposed into t and s by
L1smooth [5]. We used these components as the groundtruth of
texture and structure components, respectively. The Gaussian
noise with standard deviation ¢ was added to the image x to
simulate the observed image y.

We use ADAM optimizer for the training. The hyperparam-
eters of the proposed method are shown in Table L.

TABLE I: Hyperparameters of the proposed method.

o « B oY epochs learning rate
0 1.0 [ 1.0 [ 1.0 | 2.0x 10* | 1.0 x 10~%
1510]1.0]10]20x10* | 1.0x 107
25 [ 1.0] 1.0 | 1.5 ] 40x10* | 5.0x10°°
50 [[ 1.0 ] 1.0 [ 20 | 1.0 x 10° | 2.5 x 10~°

B. Evaluation of Separation Performance

To evaluate the decomposition performance of the proposed
method, we compared it with VDCNN [8]. The proposed
method is trained by the input images without and with noise,
respectively. We evaluate the decomposed structure and texture
component compared with their grandtruth by using weighted
mean absolute error (WMAE) and weighted root mean squared
error (WRMSE) as evaluation criterion which are defined as
follows:
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where the parameter wy, € R are the weights based on the user
evaluated values of the components s* and t* obtained from
the top five structure-texture decomposition methods. Note that
the weights are normalized so that 22:1 wy, = 1 and depend
on the image. We used the weights published by Zhu et al. [8].

The averaged performance of VDCNN and our proposed
method are shown in Table II. There is no significant difference
in the estimation performance of the structure components
regardless of the presence or absence of noise. However, for
the estimation of texture components from the noisy images,
the proposed method outperforms the VDCNN. This result
suggests that the proposed method can successfully decompose
the texture component from the noise component by the
network in the second stage.

Figure 2 shows the example of the decomposition results.
While the VDCNN fails to separate the texture and noise
components, the proposed method can successfully separate
these components from the noisy input image.
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Fig. 2: Decomposition results with noise level o = 25: (a) original image x, (b) noisy input y, (c) structure S by VDCNN [8],
(d) texture t by VDCNN [8], (e) structure § by proposed method, (d) texture t by proposed method.

TABLE II: Evaluation of estimated structure and texture
components for each noise level.

The standard deviation of the Gaussian noise is o; the larger
the value, the stronger the noise. The best results for each
noise level and criteria are indicated in bold.

structure texture
o method wMAE | wRMSE | wMAE | wRMSE
0 VDCNN 6.20 9.78 6.20 9.78
Ours 6.21 9.87 6.21 9.87
15 VDCNN 7.00 10.55 15.02 19.17
Ours 7.03 10.57 7.21 10.65
25 VDCNN 7.98 11.74 20.90 26.35
Ours 7.85 11.51 7.87 11.26
50 VDCNN 9.26 13.55 40.76 51.66
Ours 9.18 13.45 8.25 11.71

C. Computational time

We compared the computational time of the proposed
method with that of L1 smoothing [5], an optimization-based
method. L1 smoothing is run on a CPU (Intel Corei7-11700
2.50GHz), while the proposed method is run on a CPU
and GPU (NVIDIA GeForce RTX3080ti), respectively. L1
smoothing was implemented in Matlab, and the proposed
method was implemented in Python.

Ten images were randomly selected from the dataset used
to evaluate the separation performance, and the processing
time for each image was measured. The table III shows the
processing time results. This table shows that the proposed
method takes less time than the optimization-based method for
both CPU and GPU. The proposed method can be executed in
tens of milliseconds when using a GPU, which is fast enough

for various applications.

TABLE III: The average computational time for 10 images for
each method.

method Processor | time [s]
L1 smoothing [5] CPU 85
Ours CPU 4.0
Ours GPU 0.08

D. Ablation Study

In the proposed method we use the estimated structure
component § stacked with the sum of the texture component
and noise —®(y) as input to stage-2. The table IV shows the
results when this input is changed to

o Only the sum of texture component and noise (-®1(y)))

o Further  stacked with the observed image
(stack(s, —P1(y)) ).

This result means that the input selected in this paper show

the best performance.

TABLE IV: Comparison of decomposition performance for
different inputs of the stage-2 network.

structure texture
input of ®o wMAE | wRMSE | wMAE | wRMSE
stack(s, —®1(y)) (ours) 7.98 11.51 7.87 11.26
D1 (y) 8.15 11.82 8.03 11.52
stack(s, —®1(y),y) 7.99 11.58 7.96 11.30
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IV. APPLICATION TO TONE MAPPING

Tone mapping is a technique for converting high dynamic
range (HDR) images to low dynamic range (LDR) images. In
this section, we apply our proposed method to tone mapping
from noisy HDR images. Our implementation is based on
the methods proposed in [11], [12]. We use tone mapped
image quality index (TMQI) [13] as the evaluation metric
and 14 HDR images from the subject-rated image database
for tone-mapped images [14] as the input images. Table V
shows the quantitative evaluation results. The table shows
that the proposed method outperforms WLS [11] when the
input image contains noise. Figure 3 shows the qualitative
results. These images show that the proposed method can
adequately distinguish the texture and noise, although artifacts
are observed at the high contrast edges.

TABLE V: Average TMQI of tone mappped 14 HDR images
for each noise level. The higher the value, the better the result.

o 0 15 25 50
WLS [11] | 0.920 | 0.787 | 0.739 | 0.681
Ours 0.908 | 0.875 | 0.870 | 0.865

V. CONCLUSION

We proposed a new two-staged structure-texture-noise de-
composition network for the noisy input images. The experi-
mental results show that the proposed method can decompose
the noisy input image into three components. We also show
that the proposed method can be applied to tone mapping for
noisy HDR images. Our future work includes the application
of the proposed method to other image processing tasks such
as texture enhancement.

(b)
Fig. 3: Tone mapping results with noise level ¢ = 25: (a) tone mapped noisy HDR image, (b) tone mapped result of WLS [11],
(c) tone mapped result by the proposed method.
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