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Abstract—In recent years, significant advancements have been
made in automated driving technology. To achieve fully auto-
mated driving, a vehicle must accurately acquire information
regarding objects in its surroundings by gathering large amounts
of data for machine learning. In many cases, data collected
from each vehicle is transmitted to a central server, which is
undesirable because of privacy concerns and traffic generation
to retrieve the data. Federated Learning (FL) is a promising
technology that addresses these concerns by enabling learning
while maintaining the data with the user. However, since the
local labeling accuracy for distant objects with existing models is
still low, quality of the model training is affected. To address this
issue, this paper proposes the use of Multiple object Tracking
(MoT) with multiple cameras to improve the labeling accuracy
for FL. Our method enables the application of the labeling
results of nearby objects to identify distant objects by tracking
time-series data from multiple cameras. The evaluation results
demonstrate that the proposed method effectively labels distant
objects without sending data to the central server.

Index Terms—Object Tracking, Labeling, Federated Learning

I. INTRODUCTION

The development of automated driving technologies has
been remarkable. To achieve fully automated driving, it is
crucial to accurately acquire information about the objects
around a vehicle, and machine learning is often used. To
realize accurate object recognition with machine learning, a
large amount of data is required, and a central server generally
creates a model by collecting data [1]. However, collecting
data generated by each vehicle to the central server is often
undesirable from the perspective of privacy and data collection
traffic.

Federated Learning (FL) has gained attention because of its
ability to enable each user to update a machine learning model
without transferring their private data to the central server [2].
In this procedure, a global model is created by the central
server and distributed to each client. Each client then creates
a local model by learning from its data and sends the difference
in parameters between the local and global models to the
central server. The server subsequently creates a new global
model incorporating the information received from the clients
and distributes the updated model to each client. Through this
process, the model is improved while maintaining privacy by

eliminating the need for clients to send their private data to
the central server.

In addition, annotation must be performed manually or
automatically on the obtained data before starting the training
process for supervised learning [3], [4]. However, since FL
does not allow data to be sent to the central server, the
annotation must also be performed locally. Therefore, three
problems must be solved to perform annotation for the object
recognition in the FL. The first problem is that manual labeling
is not feasible because of the high cost and lack of labelers in
the local environment [5]. The second problem is the accuracy
of the object recognition model. Although auto-annotation is
preferred, the accuracy of the current model is insufficient
for distant objects [6]. The third problem is occlusions. Some
objects in the images captured by the camera can have reduced
detection accuracy because of overlapping, which requires
additional information from different angles [7].

In this paper, we propose to realize auto annotation for
FL and improve the labeling accuracy to solve the first and
second problems by using Multiple object Tracking (MoT)
to label distant objects that cannot be labeled accurately by
object recognition in a local environment. We also use multiple
cameras to solve the third problem. We use data generated
by CARLA simulator [8] to evaluate the effectiveness of the
proposed method.

II. RELATED TECHNIQUES

This section discusses related technologies as part of our
proposed method.

A. Object detection

You Look Only Once (YOLO) is a real-time object detection
tool that labels objects in an image and calculates their
confidence level [9]. As shown in Figure 1, labeling in this
paper refers to defining a bounding box that indicates where
the object exists and a class that indicates what the object is, so
that we can determine where and what kind of object exists
in the image. The confidence level is a score that indicates
how accurate the labeling values are and is calculated from
“how accurately each bounding box contains an object and
how accurately the region is surrounded” and “the predicted
probability of each class.”



Fig. 1. Labeling.

B. Multiple object Tracking (MoT)

Multiple object Tracking (MoT) is a technique for identi-
fying the same object in sequential images by tracking their
movement. We used motpy [10] that performs object tracking
using the Kalman filter. Based on the information of the
current image, the object is estimated in the next image, and
the detected objects are compared to track them. In this paper,
MoT is performed on time-series images acquired from a
camera installed in a vehicle to determine whether a distant
object is the same object when the object approaches the
vehicle.

C. Mapping 2D objects to 3D object

PointPainting [11] is an improved object detection method
that maps 3D objects by extending the dimensions of point
cloud data obtained from LiDAR with scores obtained from
the semantic segmentation of 2D images. First, a segmentation
score is calculated for each pixel by performing semantic
segmentation on the 2D camera image. Next, the scores are
mapped to the point cloud data obtained from Lidar to expand
the dimension of the data. Finally, 3D object detection is
performed using the extended point cloud. Because an object
detected by cameras can be mapped to the same 3D object
detected by LiDAR, we can identify the same object in
different cameras.

Fig. 2. Proposed method procedure.

III. PROPOSED METHOD

To realize FL in actual data collection procedures, we
propose an auto annotation method with Multiple object
Tracking (MoT) using multiple cameras. In general, object
detection methods do not enable the identification of distant

Fig. 3. Tracking.

objects with high accuracy. However, if the object exists near
the camera, it can be detected with high accuracy. Thus,
we apply the detection result of high accuracy to the object
when the object is away from the camera if both objects are
identical. To determine whether both objects are identical, we
used the MoT. In addition, identifying the same object across
different cameras, we track an object using LiDAR information
when the object moves between cameras. By mapping objects
from different cameras to the same object in LiDAR, we can
accurately identify and track objects across multiple cameras.
Figure 2 shows the procedure of the proposed method. “1.
data collection by cameras,” “2. object detection” is performed
to assign labels and the confidence levels to all the detected
objects. After that “3. MoT for time-series data” generated
by cameras is done, and then “4. Tracking across different
cameras” assigns the same ID to the same object by using the
identified 3D object. “5. Update the result” is to update the
label by the label of the highest confidence level to the objects
identified as the same one. The details are as follows:
1. Data Collection

We collect image data from the Carla simulator [8] [12] and
use a vehicle equipped with cameras and LiDAR. The vehicle
moves on an urban map to capture data periodically. During
the data collection, correct labels for objects in the image data
are also obtained from the simulator environment to evaluate
the labeling accuracy.
2. Object Detection

We use YOLO to assign labels and confidence levels to
objects that exist in all the collected image data of the in-
vehicle cameras. Using this procedure, we can obtain the
object detection result with the highest confidence level in
the time-series data.
3. MoT for time-series data

The proposed method uses MoT to assign the same ID to
the same object in the acquired time-series data. The pseudo-
code for this process is shown in Algorithm 1, and an example
of object tracking is illustrated in Figure 3. By tracking the
object, we can identify that the distant object in the left image
is the same as the nearby vehicle in the right image. This
procedure enables the assignment of the same ID to a distant
object with the highest confidence level obtained at a close
range of the camera.
4. Tracking across cameras

The proposed method also assigns the same ID to objects
that exist simultaneously in multiple cameras. Figure 4 shows
an example of an object that exists across the cameras. The
pseudo-code for this procedure is shown in Algorithm 2. First,



Algorithm 1 MoT(Multiple object Tracking): Explain with front camera image.

1: ImageDataF ← [ ]
2: NumImage //Number of images to be used
3: num1← 0
4: for NumImage do
5: labels, confidence← Y OLOX(Image[num1]) //Object detection by YOLOX
6: ObjectData← [ ]
7: NumObject← numberofobject //Number of objects detected by YOLOX
8: num2← 0
9: for NumObject do

10: ID ← MoT (labels[num2], Image[num1], labels old, Image old) //Object Tracking with time-series
data

11: ObjectData APPEND((ID, labels[num2], confidence[num2]))
12: num2← num2 + 1
13: end for
14: ImageDataF APPEND(ObjectData)
15: num1← num1 + 1
16: end for

Algorithm 2 Tracking across cameras: Explain with data from front and left cameras.

1: SameObjectFL← [ ] //Location to store object IDs that are determined to be identical
2: NumImage //Number of images to be used
3: num1← 0
4: for NumImage do
5: 3DcoodinatesF, 3DbboxsF ← PointPainting(ImageF, LiDARF ) //Calculate 3D coordinates and 3D

bounding box from frontal data
6: 3DcoodinatesL, 3DbboxsL← PointPainting(ImageL,LiDARL)
7: Num3DobjectF ← numberof3DbboxsF //Number of objects detected by PointPainting from frontal data
8: num2← 0
9: for Num3DobjectF do

10: Num3DobjectL← numberof3DbboxsL
11: num3← 0
12: for Num3DobjectL do
13: //Compare 3D bounding boxes in the same location
14: if 3DcoodinatesF [num2] == 3DcoodinatesL[num3] then
15: Num2DobjectF //Get the number of ImageDataF[num1] from the result of Algorithm1
16: num4← 0
17: for Num2DobjectF do
18: if 3DbboxsF [num2] IN ImageDataF [num1][num4] then
19: Num2DobjectL← numberofImageDataL[num1]
20: num5← 0
21: for Num2DobjectL do
22: //Compare whether each bounding box exists in the same location
23: if 3DbboxsL[num3] IN ImageDataL[num1][num5] then
24: SameObjectFL APPEND(ImageDataF [num1][num4][ID],ImageDataL[num1][num5][ID])

//Save each ID of the same object
25: end if
26: end for
27: end if
28: num4← num4 + 1
29: end for
30: end if
31: num3← num3 + 1
32: end for
33: num2← num2 + 1
34: end for
35: num1← num1 + 1
36: end for



Algorithm 3 Update Results: Explain with data from front and left cameras.

1: {Get the ID with the highest confidence level and its confidence level and class from the MoT results}
2: HightScoreF = [ ] //Location to store the ID, confidence level, and class
3: NumImage //Number of images to be used
4: num1← 0
5: for NumImage do
6: NumObjectF //Get the number of ImageDataF[num1] from the result of Algorithm1
7: num2← 0
8: for NumObjectF do
9: //Determine if it exists within the HightScoreF

10: if NoT (ImageDataF [num1][num2][ID] IN HightScoreF ) then
11: HightScoreF APPEND(ImageDataF [num1][num2][ID]: ImageDataF [num1][num2][confidence],

ImageDataF [num1][num2][label][class])
12: //Compare the confidence level of stored objects with the same ID
13: else if ImageDataF [num1][num2][confidence] > HightScoreF [ImageDataF [num1][num2][ID]][confidence]

then
14: //Update HightScoreF
15: HightScoreF [ImageDataF [num1][num2][ID]][label][class]← ImageDataF [num1][num2][label][class]
16: HightScoreF [ImageDataF [num1][num2][ID]][confidence]← ImageDataF [num1][num2][confidence]
17: end if
18: num2← num2 + 1
19: end for
20: num1← num1 + 1
21: end for
22: NumHightScore //Number of elements in HightScoreF
23: num3← 0
24: for NumElementHight do
25: NumSameobjectFL //Get the number of SameObjectFL from the result of Algorithm2
26: num4← 0
27: for NumSameobjectFL do
28: if HightScoreF [num3][ID] == SameObjectFL[num4][FrontID] then
29: if HightScoreF [num3][confidence]<HightScoreL[SameObjectFL[num4][LeftID]][confidence]

then
30: //Update HightScoreF
31: HightScoreF [num3][label][class]← HightScoreL[SameObjectFL[num4][LeftID]][label][class]
32: HightScoreF [num3][confidence]← HightScore[SameObjectFL[num4][LeftID]][confidence]
33: end if
34: end if
35: num4← num4 + 1
36: end for
37: num3← num3 + 1
38: end for

PointPainting simultaneously obtains the 3D coordinates of
each object in the image acquired from each camera. Then, by
comparing the 3D coordinates obtained from the left camera
data with those obtained from the front camera data (Figure 4),
we determine whether the objects exist in the same location.
If they exist in the same location, the objects are identical
because they cannot exist in overlapping locations.
Next, we determine whether the object detected by PointPaint-
ing and the object detected by YOLO are the same by com-
paring the position of the 3D bounding box of PointPainting

and the position of the 2D bounding box of YOLO. We can
then assign the same ID to the same object existing in different
cameras by referring to the object determined to have the same
coordinates in PointPainting and in YOLO.

5. Update the results of object detection

To update the class of all data with the class of the object
with the highest confidence level, we compare the confidence
levels of the objects with the same ID. Because the same ID
is given to the same object by “3. MoT of time series data”
and “4. Tracking across cameras,” all objects with the same



Fig. 4. Objects straddling between cameras.

ID are considered to be in the same class. As the result for the
object with the highest confidence level is the most accurate
labeling result, this result can be applied to all objects with
the same ID to change the class of all the objects with the
same ID to the appropriate one.

This procedure is performed for all IDs in the acquired data,
as shown in Algorithm 3. In Figure 2, for example, among the
objects with ID A1, the object on the left image has the highest
confidence level of 0.8. By applying this result to objects
with the same ID in the center and right images, which also
have ID A1, the respective class values can be updated. This
approach corrects mislabeling and improves the accuracy of
object detection in multiple-camera environments.

IV. EVALUATION EXPERIMENTS

A. Evaluation setups and metrics

The experimental environment is listed in Table I. To
evaluate the proposed method, we used the automated driving
simulator Carla 0.9.12 and set up it for data acquisition
as shown in Table II. “The detection distance” is used to
determine the distance that an object must be detected from a
vehicle. We compare the results of the proposed method using
a single camera with and without an MoT.

As an evaluation metric in object detection, we use Intersec-
tion over Union (IoU), which represents the degree of overlap
between images, as shown in Figure 5. The IoU is calculated
as the overlap between the bounding box obtained by object
detection and the correct bounding box of the data. In this
metric, the larger the overlap between the bounding boxes, the
larger is the IoU value. If the IoU value exceeds the threshold,
we define that the position of the object is predicted correctly.
We change the IoU threshold for object detection with 0.25
and 0.50 as the evaluation condition.

TABLE I
EXPERIMENT ENVIRONMENT.

Item Setting condition
Learning model YOLOX-X [9]
MoT method motpy [10]
3D object detection model PointPainting [13]

To evaluate the object detection accuracy, we use the
following evaluation metrics:

• Precision: is expressed by the following equation:
Precision = TP

TP+FP
• Recall: is expressed by the following equation:

Recall = TP
TP+FN

TABLE II
CARLA’S SETTING.

Item Setting condition
Use map Town10
weather Clear
Generated object Vehicles only
Number of vehicles 60 vehicles
Number of vehicles with cameras installed 1 vehicle
Shooting interval 0.1 second
Image resolution 720 × 360
Number of data acquired 1000
Detection distance 80m
Driving path Random turn at intersection
Camera position Roof of a car
Camera direction Front, Rear, Left, Right

Fig. 5. Intersection over Union (IoU).

• True Positive (TP): Objects of the detected bounding box
class are correct, and whose the IoU value is higher than
the threshold.

• False Positive (FP): Detected objects whose class are
incorrect, or detected object class is correct but IoU value
is less than the threshold value.

• False Negative (FN): Objects are not detected.

B. Experimental results

Table III shows the detection results. In general, training
data should not be created with incorrect results. Therefore, we
set the confidence level sufficiently high and set it to 0.8. The
proposed method utilizes a 4-camera MoT in that cameras are
placed at the front, both sides, and rear. The MoT using only
the front camera is a single-camera MoT. “Without MoT” is
the results obtained when only object detection is performed
for each image. In the results, since both the Precision and
Recall of MoT are higher than those without MoT, we can say
that MoT can improve labeling accuracy. The reason for the
improvement in Precision is that the “MoT” methods update
the results of low-confidence level objects with the results of
the highest-confidence level object using the time-series data,
which reduces false positives and improves labeling accuracy.

The results for Recall show that the value of Recall with
MoT is higher than that of without MoT for both conditions
of IoU. This is because MoT enables the use of the highest
confidence level of the detection results in the time-series data
to distant objects with a low confidence level, which leads to
an increase in the number of detected objects, resulting in a
decrease in FN, and an increase in TP. These results show that
the methods of “MoT” are capable of enhancing the accuracy
of object detection by enabling the application of near results
to distant objects.



TABLE III
DETECTION RESULTS WITH A CONFIDENCE LEVEL OF 0.8 OR HIGHER.

IoU = 0.25 IoU = 0.50
Precision Recall TP FP FN Precision Recall TP FP FN

4-camera MoT 0.082 0.589 2332 311 1626 0.855 0.571 2261 382 1697
single-camera MoT 0.887 0.581 2302 292 1656 0.867 0.568 2248 346 1710

Without MoT 0.864 0.330 1307 206 2651 0.845 0.323 1278 235 2680

We focus on the differences between the 4-camera MoT and
the single-camera MoT for different IoU values in Table III. As
the IoU value decreases, the difficulty of detection decreases
and the number of objects judged to be successfully detected
increases. When the IoU is changed from 0.5 to 0.25, the
single-camera MoT shows a 0.02 increase in Precision and a
0.013 increase in Recall, whereas the 4-camera MoT shows a
larger rate of increase, with a precision of 0.027 and recall of
0.018. This is because the 4-camera MoT detects additional
objects owing to the lowering of the IoU criteria, resulting
in an increase in the number of successful detections. Thus,
4-camera MoT outperforms the single-camera MoT because
4-camera MoT can detect additional objects that could not
be detected by the single-camera MoT. These extra objects
are vehicles that are close to the vehicle and require high
labeling accuracy for fully automated driving. Although the
results of the two methods are similar, the 4-camera MoT plays
a significant role for the object detection.

We discuss the details of the detection metrics. Figure 6
shows the objects detected by the 4-camera MoT but not by
the single-camera MoT. The blue vehicle detected by the green
bounding box is an additional object detected by the 4-camera
MoT. In the left image, the entire vehicle is visible between
the two vehicles in the foreground; therefore, a bounding box
that surrounds the entire vehicle can be created. However, in
the right image, only part of the vehicle is visible because the
blue vehicle is hidden by two cars in the foreground. In this
case, because YOLOX creates a bounding box that surrounds
the visible area, it creates a bounding box that surrounds only
a portion of the vehicle. In contrast, the correct data obtained
from Carla creates a bounding box that surrounds the entire
vehicle, regardless of whether only a portion of the vehicle is
visible. Because of this difference, the performance of the 4-
camera MoT is degraded by the definition of the metrics. The
blue vehicle in the right image is a well-detected object, but
the bounding box surrounds only the visible part of the object
because of the YOLOX specification. Even if the results of
YOLOX indicate that the detection is successful, a small IoU
value causes detection failure.

V. SUMMARY AND FUTURE ISSUES

We proposed and evaluated an improved method for auto
annotation for FL in an automated driving environment. Our
method uses data from multiple cameras and LiDAR sensors
installed in a vehicle to perform the MoT and label objects.
YOLOX is used to detect objects and calculate their confidence
levels, and then MoT and PointPainting identify identical
objects and assign them identical IDs. We updated the labels

Fig. 6. Bounding box for additional objects. left: Entire object is visible,
right: Only a part of the object is visible.

based on the highest confidence levels for all objects with the
same ID, and the labeling accuracy was improved. In future
work, we plan to confirm the effectiveness of our proposed
method for FL.
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