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Abstract— In recent manufacturing processes, the escalation of 
sensors usage has led to the continuous collection of large volumes 
of data. This trends present the challenge of extracting significant 
patterns and rapidly identifying anomalies within this extensive 
time-series data. A major obstacle in this area is the scarcity of 
labeled data for anomaly detection, which limits the effective 
training of machine learning models. Existing research has mainly 
concentrated on utilizing the limited anomaly data with supervised 
learning or investigating unsupervised learning method. This 
study employs deep reinforcement learning to simultaneously 
utilize both the abundant unlabeled data and the minimal labeled 
data for anomaly detection. This paper aims to learn established 
anomaly patterns and actively explore potential anomalies in 
unlabeled data, thereby covering both known and undiscovered 
anomaly patterns. Experiments on multivariate time-series 
datasets have shown proposed method to outperform existing 
models in similar situations. The findings of this research are 
expected to significantly advance effective anomaly detection in 
manufacturing environments, particularly in contexts where 
labeled anomaly data is limited.  

Keywords—Anomaly Detection, Deep Learning, Reinforcement 
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I. INTRODUCTION  
Anomaly detection aims to identify data objects or behaviors 

that significantly deviate from the majority of data patterns. It is 
an essential practice in various domains, including financial 
fraud detection, cybersecurity attack detection, medical 
diagnostics, and manufacturing processes. In manufacturing, 
particularly, large-scale time-series data that changes over time 
is collected from numerous sensors. Identifying subtle 
anomalies in this data is critical, as they can lead to product 
defects or reduced process efficiency, making the technology for 
quickly and accurately detecting anomaly patterns in time-series 
data important for enhancing manufacturing quality and 
reducing costs. However, detecting accurate anomaly patterns in 
time-series data is a significant challenge due to the complex 
anomaly patterns that can be spatial or temporal depending on 
the context. And this data often exhibits periodicity or 
seasonality, adding to the complexity of accurate anomaly [1]. 

Moreover, these anomaly patterns can originate from various 
causes, resulting in different types of anomaly patterns with 
distinct characteristics. For example, in manufacturing 

processes, anomalies can exhibit entirely different patterns 
depending on their cause. Additionally, since anomalies occur 
infrequently and unpredictably, it is challenging to obtain 
labeled training data for all types of anomaly patterns. For these 
reasons, anomaly detection research has primarily focused on 
unsupervised learning. However, in practice, there often exists a 
small set of known anomaly data for significant patterns. 
Despite their small size, this data can provide crucial prior 
knowledge, and effectively utilizing it can lead to substantial 
performance improvements over unsupervised learning [2]. 
Therefore, a method is needed that can leverage this limited 
anomaly data without assuming it covers all types of anomaly 
patterns [3]. In this study, we propose a methodology capable of 
effectively learning both known and unknown types of 
anomalies, based on a combination of large-scale unlabeled data, 
predominantly composed of normal data, and a small set of 
labeled anomaly data that includes only some types of anomalies. 
Related works 

A. Time-Series Representation Learning 
Research on representation learning for time series is actively 

ongoing. Some approaches utilize pretext tasks to learn the 
representation of time series data. [8] learns the representation 
of time series by applying transformations to the original time 
series and then performing binary classification between the 
original and transformed data to recognize human behavior. [9] 
aimed to learn the representation of ECG data by applying six 
types of transformations to the original data and then 
classifying which transformation was used. Additionally, 
research leveraging contrastive learning for time series 
representation learning has been gaining attention, inspired by 
the success of contrastive learning. In [10], CPC achieved 
significant results in speech recognition by predicting the future 
in latent space. [11] expanded the application of the well-known 
contrastive learning methodology, SimCLR [12], to EEG data. 
The study most relevant to our research is TS2Vec [13], which 
proposed a methodology using contrastive learning to 
effectively capture the contextual information of time series. 

B. Reinforcement Learning 
Deep reinforcement learning has demonstrated human-level 

capabilities in various domains, including gaming [14]. Based 
on these successes, recent efforts have been made to apply deep 
reinforcement learning to solve real-world problems. The *Corresponding author—Tel: +82-2-3290-3396; Fax: +82-2-3290-4550 



 

research most relevant to our study is [3], which proposed an 
approach named DPLAN (Deep Q-learning with Partially 
Labeled ANomalies). DPLAN utilizes reinforcement learning 
to learn anomalies in data that partially contains labels. 
However, DPLAN is limited to data in tabular form and cannot 
accommodate the temporal and spatial characteristics of sensor 
data collected in time-series format. Furthermore, DPLAN 
shows significant differences from our methodology in aspects 
such as the reward function for learning anomaly from 
unlabeled data and the observation sampling function.  

II. PROPOSED METHOD 

A. Time-Series Representation Learning 
When given a time series 𝑋 = {𝑥!, 𝑥", … , 𝑥#}  in 𝐷 , 

composed of 𝑁  instances, each 𝑥$  is mapped to its most 
representative form 𝑧$ through a nonlinear embedding function. 
The inputted time series 𝑥$ is composed of dimensions	𝑇	 × 	𝐹, 
where 𝑇 denotes the length of the time series and 𝐹 represents 
the feature dimensions. The representation 𝑧$ =
/𝑧$,!, 𝑧$,", … , 𝑧$,&0 includes a representation vector 𝑧$,' ∈ ℝ(  at 
each time point 𝑡 , where 𝐾  is the dimension of the 
representation vector. 

For this representation of the time series, the nonlinear 
embedding function utilizes the framework proposed in 
TS2Vec [13]. This allows for measuring the extent of anomalies 
in unlabeled time series using representations that accurately 
reflect the characteristics of the original time series data. These 
representations can then be used as inputs for a reinforcement 
learning agent. 

B. Reinforcement Learning For Anomaly Detection 
Inspired by DPLAN [3], this study proposes a deep 

reinforcement learning approach for anomaly detection 

targeting time-series data. This approach aims to detect both 
known and unknown types of anomalies. The deep 
reinforcement learning approach comprises an anomaly 
detection agent, environment, action space, and reward system. 
The key is for the anomaly detection agent to explore 
information about known anomaly types from the labeled 
anomaly data 𝐷)  and simultaneously learn known and 
unknown anomalies in the unlabeled data 𝐷*. 

III. REINFORCEMENT LEARNING FOR ANOMALY DETECTION 

A. Observation Sampling Function 𝑔 
𝐸 refers to the collection of the agent's learning experiences, 

denoted as 𝑒' = (𝑠' , 𝑎' , 𝑟' , 𝑠'+!). The loss is computed using 
mini-batches that are uniformly and randomly sampled from 
these stored experiences. 𝑔*  samples 𝑠'+!  from 𝐷*  based on 
the action taken by the agent at the current observation. 
Specifically, 𝑔* is defined as follows:  

𝑆 ∈ 𝐷*  is a random subsample, and 𝜃,  represents the 
parameters of the TS2Vec encoder. The term 𝑑 refers to the 
Euclidean distance between 𝑠' and 𝑠'+!, indicating the distance 
in the representation space of time series as processed by the 
TS2Vec encoder. Specifically, if agent 𝐴 classifies the current 
observation	𝑠'  as an anomaly and takes action 𝑎! , 𝑔*  returns 
the next time series window in the sequence. This enables 𝐴 to 
actively search for data in the unlabeled set 𝐷* that resembles 
suspected anomalies. If 𝐴 deems the current data as normal and 
takes action 𝑎-, 𝑔* returns the data furthest away in the time 
series representation space. This approach leads 𝐴 to explore 

𝑔*(𝑠'+!|𝑠' , 𝑧$ , 𝑎'; θ,) 	

= 	 D
																	𝑧$+!																				if	𝑎' = 𝑎!

			argmax
.∈0

𝑑(𝑠' , 𝑠; 𝜃,)			 	if	𝑎' = 𝑎-  (1) 

Fig 1. The proposed DRL framework 



 

potential anomalies that are most distant from the current 
normal observation. In both scenarios, 𝐴  is encouraged to 
actively seek anomalies in the large set 𝐷* . Otherwise, 
𝑔)	samples randomly from the labeled anomaly dataset 𝐷). 

During the interaction between the agent and the 
environment, both 𝑔) and 𝑔* are used. In this study, 𝑔) and 𝑔* 
are selected with equal probability. This ensures that the agent 
sufficiently explores the small labeled anomaly data while also 
exploring the unlabeled data.  

B. R𝑒𝑤𝑎𝑟𝑑	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
The extrinsic reward function ℎ  is defined to provide a 

reward signal 𝑟', based on the known anomaly data and is the 
same as defined in DPLAN. 

 

  
According to the extrinsic reward function ℎ , the agent 

receives a positive reward only when it correctly identifies the 
data as an anomaly during its interaction with the known 
anomaly data. It incurs a penalty in cases of false positives or 
false negatives. Thus, 𝑟,  encourages the agent to actively 
explore the labeled data 𝐷).  

To maximize rewards, the agent learns to recognize known 
anomalies, accurately detecting known anomaly data while 

simultaneously avoiding false negatives and false positives. 
This approach enables proposed method to utilize known 
information more effectively than traditional semi-supervised 
learning methodologies [7], thereby enhancing its capability in 
anomaly detection. 

Unlike 𝑟,, which encourages the agent to explore the labeled 
data 𝐷), the intrinsic reward 𝑟$ motivates the agent to actively 
explore the unlabeled data 𝐷*. 

 
The function 𝑓  assesses the anomaly of 𝑠'  by using the 

cosine distance between the original latent representation 𝑧$* of 
the current observation 𝑠'  and its masked version at the end 
point 𝑧$1 as the anomaly score. TS2Vec learns the contextual 
consistency of instances at the same time point, allowing the 
detection of anomalies through the degree of discrepancy 
between representations extracted from original and masked 
data [13]. Cosine distance, commonly used in contrastive 
learning to measure similarity between two samples is 
employed for this purpose [12]. Additionally, since cosine 
distance ranges from 0 to 1, higher values of 𝑟$  indicating 
greater anomaly. Therefore, regardless of the agent's action, 
higher anomaly in the observation results in higher rewards for 
𝑟$, leading the agent to actively search for potential anomalies 
in 𝐷*. To balance exploration and exploitation, the reward at 
time 𝑡, 𝑟', is defined as follows. 

IV. EXPERIMENTS 

A. Datasets 
In this study, three datasets were used to evaluate the 

anomaly detection performance of the methodology and its 
individual components. Each dataset is labeled, comprising 
training data in normal state and test data containing anomalies. 
Detailed descriptions of each dataset are as follows. 

𝑟!" = ℎ(𝑠!, 𝑎!) = 	*
1								if	𝑎! = 𝑎#	and	𝑠! ∈ 𝐷$

0								if	𝑎! = 𝑎%	and	𝑠! ∈ 𝐷&
−1					otherwise																								

 (2) 

 
(a) 

 
(b) 

𝑟'$ = 𝑓(𝑠'; 𝜃,) = 𝑑cosine(𝑧$*, 𝑧$1) (3) 

𝑟' = 𝑟', + 𝑟'$ (4) 

Fig 2. Inference phase of proposed method 

TABLE I.     SUMMARY OF THE DATASET USED IN THE EXPERIMENT 

 SWaT MSL SMAP 

# of datasets 1 27 55 

Variables 52 55 25 

% of anomalies 12.14 10.48 12.82 

Training data points 495000 58317 138004 

Testing data points 449919 73729 435826 

 Fig 3. Operation of the observation sampling function 𝒈𝒖 



 

• Water Treatment (SWaT). This dataset contains water 
treatment data collected over 11 days. The data from the 
first 7 days represent normal conditions, while the last 4 
days include 36 different types of attacks, each with 
unique characteristics. 

• Mars Science Laboratory (MSL). This dataset 
comprises data collected from NASA's Curiosity Rover 
on Mars. It consists of multivariate time series data in 
55 dimensions, including 27 remote sensing signals. 

• Soil Moisture Active Passive dataset (SMAP). 
Similar in format to the MSL dataset, SMAP includes 
data received from the Soil Moisture Active Passive 
satellite. It consists of 53 signal data and is structured 
similarly to the MSL data. 

B. Evaluation Metrics 
The evaluation metrics used were precision, recall, and the 

F1-score. Point Adjustment, as proposed by [15] was applied. 
Point Adjustment considers the entire anomaly interval as 
detected if only a part of it is identified. This concept is based on 
the practical viewpoint that detecting a single point within an 
anomaly interval is effectively equivalent to detecting the entire 
anomaly. However, there is a concern that this approach may 
lead to an overestimation of detection performance [16]. 
Therefore, this study presents results both with and without the 
application of Point Adjustment. 

C. Comparisn Models 
In this paper, the proposed methodology was compared with 

six widely known unsupervised learning models. iForest [17] 
and OC-SVM [18] were selected as baseline models. Deep 
learning models like USAD [19], MemAE [20], DAGMM [21] 
and TS2Vec [13] used in this research were also compared. 
Notably, TS2Vec, the time series representation extraction 
method used in this study, was compared with the anomaly 

detection technique used in the paper proposing TS2Vec. The 
comparison aimed to demonstrate the effectiveness of the deep 
reinforcement learning-based anomaly detection model 
proposed in this research, especially when using the same 
representation learning model as TS2Vec. 

D. Experimental Results. 
Firstly, to evaluate the proposed method, comparative 

experiments were conducted with other models. All experiments 
were repeated five times to measure average performance. 
Models other than the proposed methodology were trained on 
training data with all labels removed and then evaluated on the 
test data. The proposed methodology assumes a scenario with a 
large amount of unlabeled data and a small amount of labeled 
anomaly data. Therefore, the data was restructured to use a part 
of the anomaly data as 𝐷) and the rest, along with normal data, 
as 𝐷*  with labels removed. The percentage alongside each 
model name indicates the proportion of anomaly data used for 
training. For example, proposed method (5%) means that 5% of 
all anomaly data were labeled and used as 𝐷), and the rest were 
used as 𝐷* without labels. 

Tables 2 and 3 show the performance of the comparison 
models and the proposed methodology on three benchmark 
datasets. Table 2 presents the performance with Point 
Adjustment applied, while Table 3 shows the performance 
without Point Adjustment. The results indicate that proposed 
method performed excellently across all datasets. Although 
some models had slightly higher recall than proposed method, 
their Precision was significantly lower, leading to proposed 
method having a much higher F1-Score. Additionally, the 
methodology used TS2Vec for extracting time series 
representations, and its performance was compared with 
TS2Vec without the application of reinforcement learning. The 
proposed methodology showed significantly higher 
performance compared to TS2Vec. This demonstrates the 
effectiveness of utilizing reinforcement learning to enhance 

TABLE II.     EXPERIMENTAL RESULTS WITH COMPARATIVE MODELS (WITHOUT POINT ADJUSTMENT)   
 

TABLE III.     EXPERIMENTAL RESULTS WITH COMPARATIVE MODELS (WITH POINT ADJUSTMENT)   
 

Model 
MSL SMAP SWaT 

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score 
ARIMA 0.31 1 0.47 0.18 0.96 0.30 0.13 1 0.23 
IForest 0.47 0.66 0.55 0.34 0.40 0.36 0.26 0.97 0.40 

MemAE 0.17 0.91 0.29 0.21 0.89 0.34 0.40 0.72 0.51 
USAD 0.22 0.99 0.36 0.26 0.95 0.41 0.32 0.89 0.47 

DAGMM 0.20 0.44 0.25 0.16 0.41 0.19 0.49 0.90 0.64 
TS2Vec 0.27 0.90 0.42 0.51 0.94 0.66 0.42 0.90 0.57 

Proposed method (5%) 0.60 0.96 0.74 0.61 0.94 0.74 0.86 0.93 0.89 
Proposed method (10%) 0.65 0.99 0.78 0.63 0.96 0.76 0.89 0.97 0.93 

 

Model 
MSL SMAP SWaT 

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score 
ARIMA 0.28 0.80 0.41 0.17 0.82 0.28 0.13 0.99 0.23 
IForest 0.18 0.16 0.17 0.10 0.04 0.08 0.23 0.83 0.36 

MemAE 0.13 0.40 0.20 0.19 0.46 0.27 0.34 0.72 0.46 
USAD 0.15 0.57 0.24 0.18 0.49 0.26 0.34 0.72 0.46 

DAGMM 0.12 0.19 0.12 0.11 0.17 0.10 0.43 0.71 0.54 
TS2Vec 0.23 0.62 0.34 0.47 0.76 0.58 0.37 0.88 0.52 

Proposed method (5%) 0.61 0.78 0.68 0.56 0.85 0.68 0.84 0.89 0.86 
Proposed method (10%) 0.60 0.81 0.69 0.60 0.89 0.72 0.87 0.91 0.89 

 



 

performance by effectively using the information from known 
anomaly data. Moreover, the use of 10% of the anomaly data as 
labeled data showed better performance than using only 5%. 
This suggests that the more and diverse information available 
about anomalies, the better the detection performance of the 
model.  

V. CONCLUSION 
In this research, the focus was on detecting known and 

unknown anomaly patterns within large-scale time-series data 
in manufacturing processes. To address this, the study proposed 
a deep reinforcement learning framework which utilizes 
partially labeled anomaly data. This model demonstrated the 
ability to learn known anomaly patterns while actively 
searching for potential anomalies in unlabeled data. 
Additionally, it addressed the complexity of data by applying a 
representation learning methodology to reflect the spatial and 
temporal characteristics of time-series data. 

The experimental results under various conditions showed 
that proposed method outperformed existing methodologies, 
especially in anomaly pattern detection in situations with 
limited labeled data. This finding is significant, as it 
demonstrates the considerable advantages of proposed method 
in practical applications within manufacturing processes. The 
results are expected to provide substantial value in real-world 
industrial applications, enhancing the efficiency and accuracy 
of anomaly detection in complex manufacturing environments. 
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