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Abstract—In vehicular edge computing, task offloading opti-
mization is crucial for balancing computational demands with
minimizing delays and costs. However, the dynamic nature of
the vehicular environment, including vehicle mobility, network
topology, and available computing resources, poses significant
challenges. This paper presents a task offloading scheme that
enables vehicles to dynamically decide between local task ex-
ecution and offloading to nearby vehicles, edge servers, or the
cloud. Our objective is to optimize task offloading by minimizing
cost and delay. We integrate graph convolutional networks with
deep reinforcement learning to optimize task offloading decisions
and achieve our goal. The Graph Convolutional Network is in-
tegrated with Deep Reinforcement Learning to enhance network
representation and decision efficiency of agent. The optimization
problem is formally formulated within the framework of a
Markov Decision Process. Simulation results demonstrate the
superiority of proposed scheme, which achieves cost-efficiency by
maximizing resource utilization, minimizing costs, and optimizing
task offloading while reducing task rejection.

Index Terms—Deep Q-Network, Edge cloud computing, Re-
source allocation, Markov decision process (MDP), IoT, 5G net-
work.

I. INTRODUCTION

As the Internet of Thongs (IoT) and artificial intelligence
(AI) advance, autonomous driving is a prominent topic in
academic and engineering fields, especially in intelligent trans-
portation. The Internet of Vehicles (IoV), an integral part of the
Internet of Things, plays a crucial role in Intelligent Transport
Systems by integrating vehicles, communication networks,
and cloud computing [1]. IoV aims to enhance traffic safety,
reduce congestion, and improve the overall user experience
through Vehicle Ad Hoc Networks and various communication
modes like Vehicle-to-Everything [2]. Nevertheless, the surge
of data and complex computational tasks due to intelligent
vehicles poses challenges such as limited network bandwidth,
high latency, and security concerns. Vehicular edge computing,
combining mobile edge computing and IoV, facilitates com-

puting offloading and interaction between vehicle and roadside
units via wireless access networks [3].

Task offloading is a key technique in vehicular edge-
cloud computing (VECC), essential for optimizing resource
utilization and minimizing latency [4]. Efficient offloading is
crucial due to strict latency requirements in many vehicular
applications. Research efforts have focused on developing task
offloading algorithms for VECC to make optimal offloading
decisions [5]–[8]. Edge cloud networks for vehicles play a
critical role in VECC task offloading, offering reduced latency,
improved resource utilization, and increased scalability. Chal-
lenges in deploying edge cloud networks for vehicles include
deployment cost, resource management, security, and privacy.

This paper introduces a novel task offloading scheme for
VECC networks. The proposed scheme, named GRLVTO
(Graph-powered Reinforcement Learning for Vehicular Task
Offloading). GRLVTO leveraging GCN layers in the DQN
framework enhances feature extraction from the network
graph, improving the deep Q-network (DQN) ability to iden-
tify optimal task offloading solutions. The optimization prob-
lem undergoes a formal formulation within the framework of
a Markov decision process (MDP). Simulations show the pro-
posed scheme outperforms the heuristic approach, achieving
minimal cost, processing delay, and reduced task rejection.

The remainder of the paper is organized as follows: Related
work is discussed in Section II. Section III provides the system
model in detail. Section IV presents the proposed scheme. The
performance evaluation is discussed in Section V. Section VI
presents the conclusions.

II. RELATED WORK

Recently, there has been a surge in research within the realm
of vehicular networks, focusing on leveraging the underutilized
resources inherent in vehicular systems. In the work of Luo
et al. [9], the objective was to minimize offloading delay. To
achieve this, they proposed a multi-objective particle swarm



optimization method that incorporates game theory analysis.
This method takes into account various aspects, including
communication protocols, offloading decision-making pro-
cesses, and the efficient allocation of computing resources. In a
related study, researchers in [10] advocated for a novel vehicle-
end-edge cloud architecture designed to offload task compu-
tations. To determine the optimal decision in this offloading
process, they employed an A3C-based offloading method,
aiming to enhance the overall efficiency of resource allocation.
Addressing the stringent low-latency requirements of vehicle-
to-vehicle communication links and striving to improve the
throughput of vehicle-to-infrastructure connections, Fu et al.
[11] proposed a DRL-based algorithm. This algorithm stands
out in its ability to intelligently allocate resources, contributing
to more efficient and effective utilization. In the pursuit of
maximizing the use of idle resources within vehicles, Wu et
al. [12] introduced a hybrid task offloading strategy. This strat-
egy involves a combination of Vehicle-to-Vehicle (V2V) and
Vehicle-to-Infrastructure (V2I) modes to achieve the highest
possible efficiency in resource utilization. Turning attention
to resource allocation schemes within wireless networks, [13]
proposed an intelligent DRL-based approach. This scheme
dynamically allocates computational and network resources to
minimize service time and achieve a balanced distribution of
resources, contributing to enhanced overall network perfor-
mance. Lai et al. [13] put forward a comprehensive three-
tier vehicular network model, encompassing the cloud layer,
the fog layer, and the network layer. Meanwhile, Feng et al.
[14] introduced a hybrid cloud computing infrastructure within
vehicular networks. In this infrastructure, tasks are intelligently
offloaded either to neighboring vehicles or to Roadside Units
(RSUs), depending on the specific requirements and condi-
tions. Adding to the spectrum of offloading schemes, Li et al.
[15] presented predictive combination-mode and load-aware
Mobile Edge Computing (MEC) strategies. These strategies
involve task offloading through either V2V relay transmission
to the MEC server or V2I uploading, considering the dynamic
nature of the vehicular environment and load conditions.

III. SYSTEM MODEL

In this section, we introduce the system model designed
for the efficient task offloading in vehicular edge computing,
incorporating a three-tier architecture (vehicle, edge (RSU),
and cloud layers). Following sections provide a detailed ex-
ploration of task, communication, and computation models.

A. Task Modeling

Assume the system encompasses a set of tasks generated
by vehicles vn. A task ti = (zi, τi) is a tuple of two variables,
where zi and τi represent the input data size (measured in
bytes) and the tolerated delay latency requirement, respec-
tively. A variable xi ∈ [0, 1] serves as the computation of-
floading decision of the vehicle, a binary variable that indicates
whether the task ti is offloaded or not. Specifically, xi = 0 if
vehicle vi decides to compute its task locally and xi = 1 if the
vehicle vi decides to offload the task to a neighbor vehicle,

Fig. 1. Three-tier computing architecture comprising end devices, and edge
and cloud layers

an RSU, or the cloud. The offloading decision is denoted
as oi ∈ [nvi, rsui, cloudi], such as oi ∈ [1, 0, 0] offloading
to a neighbor vehicle, oi ∈ [0, 1, 0] offloading to an RSU,
and oi ∈ [0, 0, 1] offloading to the cloud. We assume that ζ
represents the number of CPU cycle units for processing one
byte of data; then, ci indicates the total CPU cycles required
to process the task ti.

ci = ziζ. (1)

B. Communication Modeling

We consider a system that employs OFDMA as the multiple
access scheme. OFDMA is utilized in each base station (BS)
to mitigate intra-cell interference. The operational frequency
band Bm (MHz) owned by a BS m is divided into k orthogo-
nal sub-channels. The vehicle associated with the closest RSU
can use an available sub-channel to offload a task. The binary
variable ρ(i,j) ∈ {0, 1}, where ρ(i,j) = 1 indicates that the
sub-channel between the vehicle vi and the target for task
offloading can be either nvi, rsui, or cloudi. The efficiency of
the sub-channel, denoted as ηk(i,j), can be approximated using
Shannon’s formula as follows:

ηk(i,j) = log2(1 + φk
(i,j)), (2)

where φk
(i,j) represents the signal-to-noise ratio of the k-th

sub-channel used by vehicle vi, and it can be expressed as
follows:

φk
(i,j) =

e(i,j)h
k
(i,j)

σ2
. (3)

Here, e(i,j) denotes the transmission power between vehicle
vi, hk

(i,j) denotes the channel gain (dB), and σ2 represents the
power of the additive white Gaussian noise of a sub-channel.
The achievable transmission rate µk

(i,j) is given by:

µk
(i,j) = bk(i,j)η

k
(i,j), (4)

where bk(i,j) represents the bandwidth assigned to the sub-
channel.



C. Computational Framework

1) Local Processing: When the vehicle vi decides to pro-
cess the local task ti by itself, the processing delay can be
calculated as:

T exec
l =

ci
rvi

, (5)

where ci is the computational demand of task ti and rvi is the
computational capacity of vehicle vi.

2) Neighbor Vehicle Processing: When the agent decides
to offload the task ti to the neighbor vehicles, the processing
delay can be calculated as:

T exec
nv =

ci
rnvi

, (6)

where ci is the computational demand of task ti and rnvi
is

the computational capacity of the neighbor vehicle.
3) Edge Processing: Consider a set of the edge servers

represented by S = {s1, s2, ..., sP }. The time required for
task ti at server sp is:

T exec
edge =

ci
rp

, (7)

where ci is the computational demand of task ti and rp is the
computational capacity of the edge server where the task is
offloaded. The resource utilization US(t) of edge servers can
be calculated as:

US(t) =

∑P
p=1 rp(t)

Redge
, (8)

where Redge denotes the computation capacity of all ege
servers.

4) Cloud Processing: Consider the cloud server set M =
{m1,m2, ...,mQ}. The computational capability of server mq

is denoted by rq . The time taken for task ti at server mq is:

T exec
cloud =

ci
rq

, (9)

where ci is the computational demand of task ti and rq is the
computational capacity of the cloud server where the task is
offloaded. The resource utilization UC(t) for cloud servers is:

UC(t) =

∑Q
q=1 rq(t)

Rcloud
. (10)

D. Delay Model in Computation Offloading

The offloading process encompasses three major delay
types: transmission, propagation, and processing.

1) Transmission Delay: Data transmission occurs bidirec-
tionally: from the vehicle to the edge/cloud server (size zi)
and back to the vehicle (size yi). Transmission delays to
the neighbor vehicle T trans

nv , edge server, T trans
edge , and cloud

T trans
cloud , are given by:

T trans
nv =

zi
µk
(vi,nvi)

+
yi

µk
(vi,nvi)

, (11)

T trans
edge =

zi
µk
(vi,sp)

+
yi

µk
(vi,sp)

, (12)

T trans
cloud = T trans

edge +
zi

µk
(vi,mq)

+
yi

µk
(vi,mq)

. (13)

2) Propagation Delay: Propagation delays are assumed
constant. Specifically, T prop

nv = T prop
edge = 5 ms for the

neighbor vehicle and edge server, and T prop
cloud = 50 ms for

the cloud server. This assumption facilitates simpler analysis,
although real-world propagation may vary based on resource
positioning.

3) Processing Delay: Processing delays for task ti at
neighbor vehicle, edge server, and cloud server, can be denotes
T exec
nv , T exec

edge , and T exec
cloud, respectively.

4) Overall Task Completion Time: The total time for task
completion on the edge, rtten, and cloud, rttcn, sums up the
aforementioned delays:

rttnvvi = T trans
nv + T prop

nv + T exec
nv , (14)

rttedgevi = T trans
edge + T prop

edge + T exec
edge , (15)

rttcloudvi = T trans
cloud + T prop

cloud + T exec
cloud. (16)

The offloading decision is denoted as oi ∈ {nvi, rsui, cloudi}
where if we put oi = [1, 0, 0] , [0, 1, 0] and [0, 0, 1] in the
following equation, the decision is neighbor-vehicle, edge
(rsu), and cloud, respectively. The round-trip time equation
is given by:

rttvi =oirtt
nv
vi + oi(1− oi)rtt

edge
vi

+ (1− oi)(1− oi)rtt
cloud
vi .

(17)

IV. GRAPH-POWERED REINFORCEMENT LEARNING
SCHEME

Our integrated model incorporates a GCN layer within the
DQN framework, facilitating a more profound comprehension
of network dynamics and enabling dynamic allocation of
tasks. The network is represented as a directed graph, where
nodes correspond to vehicles, edge servers, and cloud servers.
GCN processes graph data by considering node features and
connections, creating a concise representation of the state
called embedding. The embedding layer is responsible for
creating low-dimensional representations of the nodes in the
graph by using GCN. In our integrated model, the DQN relies
on neural networks to estimate Q-values.

Q(st, at) = rt + γmax
a

Q(st+1, a) (18)

where st denotes the current state, at represents the current
action, rt is the reward received after taking action at in state
st, and γ is the discount factor.

The Q-network benefits from the insights provided by the
GCN layer and the Q-learning update is employed to refine Q-
values based on the integration of GCN insights: It first use the
GCN to learn a representation of the state of the environment
and then uses the DQN to learn a policy for taking actions
in the environment. it can be mathematically formulated as
follows:

hs = GCN(s), (19)
Q(s, a) = σ(W ∗ hs + ha), (20)

where hs is the representation of the state of the environment
also called embedding, ha is the representation of the action,



Fig. 2. Three-tier computing architecture comprising vehicles, and edge
(RSU), and cloud layers

GCN is the graph convolution operation, and W is the weight
matrix of the DQN.

A. Markov Decision Process

A MDP models sequential decision-making problems,
where an agent seeks to maximize reward through decisions.
It comprises elements like agent, state, action, policy, and
reward. We formulate task offloading and resource optimiza-
tion as an MDP to determine the optimal policy π∗. In
GRLVTO, the agent observes state st, selects an action at
via a deterministic policy for computing server selection, and
receives immediate reward rt. The agent uses action-value
function Q(st, at) to update its policy, aiming to maximize
long-term rewards through optimal resource allocation.

1) State Space: Let G = (V, E) represent the graph, where
V is the set of nodes (entities) and E is the set of edges
(relationships) in the graph. We define the state space as st,
where X ∈ RN×D is the node feature matrix, with N nodes
and D features. A ∈ {0, 1}N×N is the adjacency matrix,

representing connections between nodes. The combined state
space can be represented as follows:

st = (XTasks,XVehicles,XRSU,XCloud,A) . (21)

• XTasks ∈ RNTasks×DTasks represent the feature matrix for
tasks nodes, where NTasks is the number of tasks and
DTasks is the number of features.

• XVehicles ∈ RNVehicles×DVehicles represent the feature matrix
for vehicle nodes, where NVehicles is the number of
vehicles and DVehicles is the number of features.

• XRSU ∈ RNRSU×DRSU represent the feature matrix for RSU
nodes, where NRSU is the number of RSUs and DRSU is
the number of features.

• XCloud ∈ RNCloud×DCloud represent the features matrix for
cloud nodes, where NCloud is the number of cloud nodes
and DCloud is the number of features.

• A is the adjacency matrix representing connections be-
tween nodes in the graph.

2) Action: We can define an action space A that consists of
actions representing choices among vehicle nodes, RSU nodes,
or cloud nodes based on the state embedding obtained from
the GCN. In each time step t, the DQN agent selects an action
to offload the task ti and allocates resources to the task for
execution within the task deadline. In each time step, the DQN
agent makes a decision according to the task offloading policy
derived from the current state embedding obtained through the
GCN, and then it receives the reward from the environment at
time step t+ 1.

3) Reward: In our optimization framework, the reward
function Rt captures the primary objective of maximizing
resource utilization and minimizing cost while adhering to a
specified delay. The cost ξ values, set at 0 for local, 1 for a
neighboring vehicle, 2 for the edge, and 3 for the cloud, can be
adjusted according to environmental and system configurations
The reward is computed differently based on the success or
failure of the task:

Rt =

{
10−max[0, (rttvi − τi)] + ξ if successful
−1.0 if unsuccessful

(22)

The term max[0, (rttvi
− τi)] represents the extent to which

the round-trip time (rttvi ) exceeds the given delay threshold
(τi). This value is subtracted from 10, ensuring that a positive
contribution is added to the reward when the delay constraint is
satisfied. The cost term (cost) is also factored in, contributing
to the overall optimization goal. The task unsuccessful case,
a fixed penalty of -1.0 is applied.

V. PERFORMANCE EVALUATION

In this section, we use a computer simulation to evaluate
our scheme’s performance in terms of resource utilization,
task acceptance, rejection, and cost. Our simulation runs on
hardware with an i9-10900K CPU, 64GB RAM, an RTX 3090
GPU, and uses Linux Ubuntu 20.04.02 LTS with Python 3.8
and PyTorch 1.9.0. We compare our scheme with two heuris-
tics: Heuristic1 (prioritizing high-resource-demand tasks) and
Heuristic2 (pbest match server).



Algorithm 1 Training Stage of the DQN algorithm with GCN
1: Input: Complete information on the vehicular network,

including tasks and the edge-cloud network
2: Output: Selection of a server at the edge or cloud for

offloading tasks, considering resource constraints and task
requirements.

3: Initialize two neural networks as Q-networks Qπ and Qπ

with random weights (and biases) or parameters θ and θ.
4: Initialize GCN with parameters ϕ.
5: Initialize replay memory M .
6: for episode = 1 to e do
7: Initialize the first state s0.
8: for t = 1 to T do
9: Gather the state st from the environment contains,

current task nodes and link (graph).
10: Apply GCN to obtain the graph embedding ht.
11: if random value < ϵ then
12: Select a random action at.
13: else
14: Select at = argmaxa Q(ht, a|θ).
15: end if
16: Execute action at, receive reward rt, and obtain

the next state st+1.
17: Store (st, at, rt, st+1) in M .
18: end for
19: Get a mini-batch of size b: (si, ai, ri, si+1) from M .
20: for i = 1 to b do
21: if si+1 is terminal then
22: yi = ri.
23: else
24: Apply GCN to obtain the graph embedding

hi+1 for the next state.
25: yi = ri + γ ·maxa Qπ(hi+1, a|θ).
26: end if
27: qi = Q(hi, ai|θ).
28: end for
29: θ = θ − α∆θ

∑b
i=1(qi − yi)

2/b ▷ Gradient descent
30: if episode is a multiple of K then
31: Copy θ to θ.
32: end if
33: end for

In Figure 3, we compare three schemes based on their
task rejection ratios. As the number of tasks increases, all
three schemes experience higher rejection rates. Nevertheless,
the efficiency of the GRLVTO scheme in server selection
through agent learning enables it to accept more tasks, con-
serving resources for future use. This heightened acceptance
rate enhances resource utilization and reduces system idle
time. Consequently, GRLVTO outperforms other algorithms,
underscoring the success of integrating GCN with DQN in
improving the vehicle network’s performance in the edge-
cloud system

Figure 4 depicts a cost analysis of three schemes. The
GRLVTO scheme exhibits a minimal cost increase compared

Fig. 3. The comparison of task rejection rates for three different schemes
concerning various tasks

Fig. 4. The comparison of cost for three different schemes concerning various
tasks

to the other two schemes, highlighting its cost-effectiveness.
Notably, GRLVTO maintains a significantly lower task rejec-
tion rate compared to heuristic1 and heuristic2. Despite costs,
GRLVTO’s intelligent matching of tasks to servers based on
resource requirements, latency, and cost contributes to efficient
cost management

Figure 5 illustrates the comparison of average resource
utilization among the proposed scheme and two other schemes,
heuristic1 and heuristic2. GRLVTO consistently exhibits
higher resource utilization than the other two algorithms, con-
firming the findings in Figure 3. Task rejection rates directly
impact resource utilization, with lower rejections leading to
higher efficiency. Our scheme’s ability to select optimal servers
based on task requirements enhances system efficiency through
intelligent resource allocation. GRLVTO outperforms heuristic
algorithms due to the effective feature extraction capabilities
of GCN from the entire network and its integration with
DQN. Moreover, the integration of GCN effectively manages
resource demands across vehicle, edge, and cloud networks,
thereby improving the performance of the vehicle edge-cloud
system

VI. CONCLUSION

In the context of vehicle edge cloud network environments,
the optimization challenge of task offloading and resource



Fig. 5. The comparison of respource utilization for three different schemes
concerning various tasks

allocation stands as a fundamental and formidable issue. To
address this, we formulated the problem as a MDP and
employed a powerful combination of GCN with the DQN
algorithm to seek an optimal solution. The GRLVTO model
intelligently manages vehicular tasks, optimizing performance
by efficiently handling computation in edge or cloud servers.
It shows improved cost, resource utilization, and reduced task
rejection rates, as validated by simulations.

The GRLVTO scheme will leverage advanced machine
learning and AI techniques to optimize its potential. A thor-
ough analysis of the vehicular network will enhance realism
for managing diverse IoT devices. This forward-looking ap-
proach aims to continuously improve efficiency and adaptabil-
ity to evolving challenges in vehicular edge cloud networks.
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