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Abstract—The green vehicle routing problem (GVRP) is 

a trendy variant of the well-known vehicle routing 

problem that incorporates environmental considerations 

such as minimized fuel consumption or emissions. This 

study introduces a new hybrid approach combining 

variable neighborhood search (VNS) with the 

reinforcement learning (RL) paradigm to effectively 

resolve the GVRP. VNS is a metaheuristic optimization 

technique that explores numerous neighborhoods of a 

solution to improve it, whereas RL is an agent-based 

machine learning algorithm. Thus, integrated with VNS, 

the RL may find competitive solutions for the GVRP. Our 

numerical results and analysis prove the effectiveness of 

the proposed hybrid methodology for resolving the GVRP. 

This new hybrid strategy benefits from the combination of 

VNS as an evolutionary optimizer and RL as a machine 

learning methodology to effectively resolve the GVRP. 
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I. INTRODUCTION 
The vehicle routing problem (VRP) represents a 

combinatorial problem aiming to determine the 
optimal configuration for distributing merchandise or 
services from a central location (depot) to numerous 
geographically dispersed locations via a fleet of 
vehicles [1]. The main aim of the VRP is to reduce 
the overall cost, which can be achieved in various 
ways, such as minimizing the total traveled distance, 
the number of involved vehicles, and/or the overall 
required time.  

The problem typically includes the following key 
elements: 
• Depot: The central location where all vehicles 

start and return from deliveries. It serves as the 
point of origin for all deliveries. 

• Customers (or nodes): The positions to which 
merchandise or services should be delivered. 
Each customer has a specific demand that needs 
to be met. 

• Vehicles: The fleet of vehicles available for 
making deliveries. Each one has a limited 
quantity of items to transport. 
The VRP mainly determines which customers 

each vehicle should visit, in what sequence, and how 
much to deliver to each customer while respecting 
capacity constraints and minimizing the total cost. 

The following are the relevant categories of the 
VRP: 
• Capacitated VRP (CVRP) [2]: It is the most 

common form of the VRP, where vehicles have 
limited capacities, and the goal is to meet the 
demands of all customers while not exceeding 
these capacities. 

• VRP including time windows (VRPTW) [3]: 
In addition to capacity constraints, this version 
adds time windows within which each customer 
must be serviced. 

• VRP with pickup and delivery (VRPPD) [4]: 
This category involves picking up items from 
certain customers and delivering them to others. 
It is common in applications such as waste 
collection and public transportation. 

• Green VRP (GVRP) [5]: The GVRP focuses on 
optimizing routes while considering 
environmental factors such as fuel consumption 
and emissions. 

The GVRP focuses on making the routing and 
distribution process more environmentally friendly. 
This process may involve reducing fuel consumption, 
minimizing emissions, or using alternative energy 
sources, such as electric vehicles. GVRP is an 
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important research area owing to its practical 
applications, as companies and governments seek to 
reduce their carbon footprint and ensure sustainable 
operations. 

Solving the GVRP may involve optimizing 
routes and schedules to minimize greenhouse gas 
emissions by considering factors such as vehicle 
type, fuel consumption, and alternative energy 
sources in addition to factors related to traffic and 
congestion that affect fuel efficiency. Considering 
these factors aligns with the broader goals of 
sustainable logistics and transportation. 

The GVRP is a challenging problem with 
numerous real-world applications in logistics, such as 
package delivery, garbage collection, and school bus 
routing. Finding optimal solutions to VRPs can be 
computationally intensive, and many advanced 
algorithms and heuristics have been proposed to 
efficiently address these problems. 

Variable neighborhood search (VNS) [6] is a 
metaheuristic optimization algorithm introduced by 
Mladenovic and Hansen in 1997. It is a local search–
based approach that aims to efficiently explore 
different neighborhoods or regions in the search 
space of a problem to find high-quality solutions. 

Reinforcement learning (RL) [7] is another 
methodology for the VRP. It is a machine learning 
(ML) paradigm in which an actor, called an agent, 
learns to make sequences of decisions by interacting 
with an environment. RL is a subfield of artificial 
intelligence that is particularly well-suited for solving 
problems where the optimal decision-making strategy 
is not known in advance. In RL, an agent learns 
through a process of trial and error—the same as how 
humans learn. 

Hybridization can be a powerful approach to 
solving complex optimization problems in different 
research fields, such as Internet of Things (IoT) 
networking [8] [9] [10], pattern recognition [11], and 
healthcare monitoring [12][13], especially those that 
involve sequential decision-making, such as 
augmented reality [14] or financial prediction [15] 
problems. Hybridizing VNS with RL for efficiently 
and effectively solving the GVRP is an innovative 
approach that leverages the strengths of both 
methods.  

The following research questions about the 
GVRP are addressed here: What novel hybrid 
optimization algorithms and heuristics can be 
developed to efficiently solve GVRPs considering 
different factors? How can environmental (e.g., 
emission reduction and improved fuel efficiency) and 
economic objectives (e.g., cost minimization) be 
simultaneously achieved, and how can they be 
balanced in GVRPs? 

Indeed, in the optimization field, some 
algorithms may look similar to each other, but each 
one has its own innovations and differences. New 
scientific research draws from extant literature to 
advance research progress and overcome existing 
drawbacks. Therefore, regardless of whether the 
names and mechanisms of the algorithms are similar 
or different, the final goal is to efficiently solve 
various optimization problems, especially transport 
problems. 

II. CONTRIBUTION OF THE STUDY 

In this study, a novel hybrid optimization 
strategy is established to resolve the GVRP while 
mitigating environmental impacts and considering 
conflictual multi-objectives such as maximizing the 
quantity of delivered products and reducing the 
distance traveled, emissions, and fuel consumption. 

This study does not represent a collection of 
existing works. Indeed, several hybridizations have 
been proposed in the extant literature for different 
variants of the VRP. Our hybrid model is well 
justified and leverages the benefits of both VNS and 
RL for enhancing, as evidenced by our study results 
via different metrics, the quality of the VRP solution. 
Thus, our study makes a significant contribution to 
the VRP literature by presenting a hybrid model that 
enhances the VRP solution, especially considering 
that the recent variants of the problem, such as the 
GVRP, are still not well studied. 

In the remainder of this paper, Section III 
investigates the recent related state-of-the-art studies. 
Section IV details the hybrid RL–VNS. Section V 
presents the numerical tests. Section VI presents the 
deductions, and Section VII concludes the study. 

III. STATE-OF-THE-ART RESEARCH 

This section discusses recent studies on the 
multi-objective and VNS paradigms for VRP. Next, 
RL and LSTM-based studies for VRP are 
investigated. Then, hybrid RL–VNS-based studies 
and other related methods are discussed. Finally, 
Table 1 presents the surveys of VRP variants. 

A. Optimization-based Studies for VRP 

In [16], the CVRP is resolved by combining the 
ant colony optimizer (ACO) with the fireworks 
algorithm for better diversity. In this ACO, the local 
search process is enhanced by an ant strategy. Test 
results of execution on the Augerat benchmark 
instances highlight the performance of the suggested 
algorithm compared with the best-found results in the 
literature for five new solutions. The authors in [17] 
propose a two-stage algorithm (TSA) combined with 
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a multi-objective evolutionary strategy (HMOEA) to 
resolve the time window multi-depot heterogeneous 
VRP. The results of execution on Solomon instances 
illustrate that HMOEA has better performance in 
terms of diversity and convergence than known 
optimizers, such as SPEA2 and NSGA-II. 

B. RL and LSTM for VRP 

In [18], a deep RL platform was introduced for 
the dynamic uncertain VRP (DU-VRP). Then, an RL 

cutting-edge–based method was proposed to train the 
uncertainty of the routing process. The authors in 

[19] introduce a multi-agent–based RL system for the 
scheduling and routing of electric vehicles. In [20], 
an attention-based deep RL learning strategy for 
electrical time window VRP has been proposed. This 
model is efficient for large-size instances of VRP. 
Other studies have suggested solutions for the VRP 
using neural networks [21] and RL [22]. 

 
TABLE I  

RECENT SURVEYS OF VRP VARIANTS 
Survey Previously proposed VRP 

variant(s) and its constraint(s) 

Resolution methodologies Recommendations 

[34] Dynamic VRP;  
CVRP considering the capacity of 
vehicles; 
VRPTW considering time 
durations for collecting and 
delivering items; 
Stochastic VRP (probabilistic);  
Workload balance VRP 
  

ML; 
Local search; 
Heuristics;  
Metaheuristics  
 

Categorize vehicle routing heuristics into 
metaheuristics, improvement heuristics, and 
constructive heuristics. 
Recent related research topics include ML-assisted 
heuristics, unified heuristics, and automatic heuristic 
design.  

[35]  Standard VRP;  
Urban vehicle routing (in the 
city); 
Multi-objective routing problem 
(having multiple objectives)  
 

ML 
Multi-objective algorithms (MOA) 

Routing services are considered (green routing, 
transport costs, time window, fleet management, 
travel time, and travel distance) 

[36] Standard VRP;  
Electric vehicles;  
VRPTW; 
Homogenous and heterogeneous 
vehicles; 
Single depot / multiple depot 

Neighborhood search; 
Push-forward insertion heuristic; 
Improved artificial fish swarm;  
Tabu search 

Heuristics and meta-heuristics remain the mainstream 
strategies for VRP. 
Complex VRP instances will be increasingly resolved 
owing to the rapid advances in hardware resources. 

[37]  
GVRP  

Data-driven ML and RL strategies 
(forecasting methods) were not 
appropriately studied for GVRP.  
Owing to their acceptable time and 
precision, these optimization 
algorithms are the most used for the 
GVRP. 

The GVRP considers environmental sustainability 
issues in logistics and transportation. 
The application of emergent paradigms for the VRP, 
such as RL, quantum computing, deep Q-learning, 
and chaos theory, remains under-researched. 

[38] GVRP Optimizers (GA, NSGA-II, ACO, 
PSO, DEA, SA) 

The study highlights future research directions for 
GVRPs: dynamic electric vehicle charging, variation 
in energy consumption, and real-time transportation.  
 

C. Hybrid RL–VNS-based Studies for VRP  

Stemming from the multi-armed bandit, a single-
state RL paradigm, a heuristic named bandit for the 
VNS has been proposed in [23]. In another study 
[24], the authors have proposed an approximate 
dynamic programming strategy with a Markov 
decision process for the multi-depot stochastic road 
capacity dynamic VRP. [25] shows the application of 
the multi-agent deep RL to the dynamic and 
stochastic variant of the VRP considering the 
numerous operational specifications of this problem. 
Another combination of RL and VNS was introduced 
in [26] for the time window OPVRP, Wherein RL 
was employed during the local search phase to 
control the search by adjusting the probabilities of 

adaptive operators. Moreover, the thesis in [27] 
suggests an adaptive heuristic using an offline 
learning algorithm with a local search method. 

D. Other Paradigms for VRP 

This subsection discusses previous studies that 
use other paradigms to resolve the VRP. Multi-agent 
systems (MAS) and heuristic-based algorithms [28]–
[30] are widely used in different optimization 
problems.  
 

In [31], a sampling strategy is suggested for the 
capacitated DSVRP modeled as a two-stage 
stochastic program. In contrast, [32] illustrates the 
resolution of the time-dependent VRP in which a 
weight function is employed. Further, in [33], an 
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asynchronous multi-agent tool (A-teams) is used to 
resolve the heterogeneous cooperative VRP. Agents 
in A-teams were used locally and globally to create, 
enhance, or remove solutions. 

Table 1 below presents an investigation of the 
numerous recent surveys of VRP variants. 

IV. METHODOLOGY 

This section introduces the RL, VNS, and hybrid 
RL–VNS strategy. 

A. RL for GVRP 

RL is widely used for solving sequential 
decision-making problems and transport problems, 
such as the VRP. It can be applied to solve the GVRP 
as an ML approach where an agent learns to make a 
sequence of decisions by interacting with an 
environment.  

 
Fig. 1. The application of the RL algorithm to the GVRP. 

 
This agent aims to maximize a cumulative 

reward signal by selecting actions that lead to 
favorable outcomes. Fig. 1 illustrates the application 
of RL for transport problems, such as the GVRP.  

First, the problem must be formulated as an RL 
task. In the case of the GVRP, the state space 
determines the current route configuration; the action 
space represents the possible modifications to the 
routes; and the reward signal identifies the cost 
reduction achieved by the agent. 

Then, the state space is designed. In the GVRP, 
the state space comprises information about the 
positions/locations of unvisited cities/customers, 
current routes, remaining capacity of the vehicles, 
and distance matrix between locations. 

Using RL for transport problems, such as the 
GVRP, allows the development of adaptive, 
intelligent, and data-driven decision-making systems. 

B. VNS for GVRP 

VNS is a metaheuristic optimization technique 
applicable to complex optimization problems, such as 
the VRP. As illustrated in Fig. 2, VNS iteratively 
explores several neighborhoods or regions in the 
search space of a problem to find high-quality 
solutions. This algorithm first generates an initial 
VRP solution either randomly or using heuristics. 
Then, the neighborhoods are defined. In the context 
of the VRP, neighborhoods represent the different 
ways to modify or rearrange the routes or 
assignments of customers to vehicles. Common 
neighborhood structures include swap (swapping 
customers between different routes), 2-opt (reversing 
the order of customers within a single route), and Or-
opt (reassigning a customer from one route to 
another). 

 
Fig. 2. The application of the VNS algorithm to the GVRP. 

 
Therefore, VNS can be used as a standalone 

optimization method or as part of a hybrid 
approach—such as combining it with RL or any other 
metaheuristic algorithm—to enhance the efficiency 
of the solution. 

C. VNS–RL for GVRP 

Combining VNS with RL for solving the GVRP 
can be an efficient method to address sustainability 
issues in logistics and transportation.  
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Fig. 3. The application of the hybrid RL–VNS to the GVRP. 

 
Fig. 3 illustrates the application of the RL–VNS 

for solving the GVRP by leveraging the efficient 
VNS generation of initial solutions and exploiting the 
RL capacity for learning adaptive and 
environmentally conscious policies. This hybrid 
approach offers the potential for additional 
sustainable and efficient routing solutions. 

V.  NUMERICAL RESULTS 
This section presents the performance 

assessment of the proposed RL–VNS on known 
datasets. The experimental tests were conducted 
using an Intel© CoreTM i9 CPU, 3.2 GHz, 24-GB 
memory under a Windows 11 operating system. 

The parameter settings of the VNS algorithm are 
as follows: rn = 0.1, rm = 0.25, MaxTolerance = 0.04, 
and iterations = 1000. Here, rn and rm indicate the 
minimum and maximum rate of changing the 
neighborhood of the solutions, respectively. 
MaxTolerance indicates the limit of the tolerance 
dimension in the VNS algorithm. 

The GA algorithm relies on the following 
probabilities: 0.8 and 0.1 for the crossover and 
mutation, respectively. 

For the VRP, the instances of Solomon [39] are 
used, and the following setting is applied: 
 

Number of generations = 350 
Individuals per generation = 300 
Number of cities = 100 

 
After a certain period, the search becomes 

sensible if the search solutions do not improve. Using 

a set of neighborhood operators to define the action 
space (Table 2), the VNS algorithm can concentrate 
the search on a specific region to retrieve optimal 
solutions from the neighborhood. Then, the best 
solutions from the neighborhood are selected.  
 

TABLE 2  
NEIGHBORHOOD LOCAL SEARCH OPERATORS 

 Complexity Space index 
Cross-insertion O(m2n3) 0 
2-opt O(mn2) 2 
3-opt O(mn2) 1 
3-cross-exchange O(m2n3) 3 

 
Table 3 compares the needed distance and the 

number of vehicles suggested by each algorithm (TS, 
GA, VNS, and RL–VNS) executed on test problem 
instances. The test results (Table 3) indicate the 
effectiveness of the RL–VNS approach. 
 

TABLE 3  
COMPARISON OF THE OBTAINED NUMBER OF VEHICLES 

AND DISTANCE FOR EACH ALGORITHM 
 TS GA VNS RL–VNS 

 No. 

of 

Vehic

les 

Dista

nce 
No. 

of 

Vehic

les 

Dista

nce 
No. 

of 

Vehic

les 

Dista

nce 
No. 

of 

Vehic

les 

Dista

nce 

R1

01 
21 1692.

39 
16 1823

.53 
17 1835

.23 
14 1588

.03 
R1

03 
19 1239.

72 
15 1739

.34 
16 1678

.38 
14 1448

.48 
R1

05 
17 1428.

56 
15 1579

.36 
15 1542

.21 
13 1356

.68 
R1

07 
16 1109.

43 
14 1452

.14 
14 1387

.82 
12 1128

.44 
R1

09 
15 1087.

15 
12 1322

.76 
14 1235

.60 
11 1029

.36 
R1

11 
12 1065.

24 
11 1236

.17 
13 1194

.25 
9 980.

59 

Fig. 4 presents the proposed traveled distances 
obtained by the algorithms. For non-electric vehicles, 
the emission values for each solution proposed by a 
specific algorithm provide an estimate of the 
pollution.  
 

 
Fig. 4. Measure of traveled distances. 

 
In contrast, Table 4 presents the needed execution 

time, in minutes, of the implemented algorithms. TS 
is executed once, Whereas GA, VNS, and RL–VNS 
are executed 20 times. Table 4 highlights that the 

800

1300

1800

R101 R103 R105 R107 R109 R111

TS

GA

VNS

RL-VNS

Test problem 
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RL–VNS requires only slightly more time despite its 
efficiency. The results also show that TS and GA 
have comparable execution times. 
 

TABLE 4  
EXECUTION TIME OF THE ALGORITHMS 

 TS GA VNS RL–VNS 
R101 77 78 82 86 
R103 74 72 76 81 
R105 69 69 68 73 
R107 54 56 61 67 
R109 43 48 53 53 
R111 39 42 44 48 

 
Regarding the convergence rate, VNS shows 

better objective values than the other algorithms for 
different numbers of iterations, as depicted in Fig. 5.  
 

 
Fig. 5. Objective value of the tested algorithms for different 

numbers of iterations. 

VI. DISCUSSIONS 
The presented results and the analysis in the 

previous sections (Table 3, Table 4, Fig. 4, and Fig. 
5) clearly demonstrate the advantages of hybridizing 
an optimization method such as VNS with a learning 
algorithm such as RL. 

A hybrid approach combining VNS with RL for 
solving the VRP offers various potential benefits. 
VNS is a powerful optimization method for finding 
high-quality initial solutions in combinatorial 
problems such as the VRP. It can appropriately 
improve existing solutions and explore 
neighborhoods. RL is suitable for refining solutions 
through sequential decision-making and learning 
from interactions with the environment. 

VNS immediately generates good initial 
solutions, which are used as a starting point for RL. 
Accordingly, the search space iteratively explored by 
the RL to refine the solutions is reduced. 

Moreover, the dynamic aspect of the VNS, 
which allows the changing of neighborhoods during 

the search, enhances the capability of RL to avoid 
suboptimal solutions and local optima. 

VII. CONCLUSION 
Resolving the GVRP by simultaneously 

employing VNS and RL is a cutting-edge, complex 
research approach. This hybrid approach aims to 
optimize the routing of green vehicles, such as 
electric or hybrid vehicles, in a cost-effective and 
environmentally friendly manner.  

In this regard, the success of a hybrid RL–VNS 
approach depends on various factors, such as the 
selected algorithms, the quality of the RL model, and 
the problem instance. Several perspectives and 
potential research directions exist for the use of RL 
and VNS for resolving the GVRP, such as their 
hybridization and complementarity with other 
paradigms and the scalability of large-scale transport 
problems. 
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