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Abstract—The accurate detection and analysis of chemicals
have become increasingly important for security and environ-
mental monitoring with the integration of artificial intelligence
(AI) methods gaining traction. However, the scarcity of certain
chemicals poses significant challenges to the Al learning process.
This paper presents a comprehensive AI approach and strategic
direction for generating synthetic gas chromatography-mass spec-
trometry (GC-MS) data for such limited-availability chemicals.
We conduct exploratory data analysis (EDA) on GC-MS data and
apply advanced Al-driven generative algorithms, with a focus
on Variational Autoencoder (VAE) and Generative Adversarial
Network (GAN), acknowledging the challenges faced by current
Al technologies in learning from chemical data. Additionally, we
introduce a secondary contribution by developing custom Python-
based tools for 3D visualization of GC-MS data, enhancing
intuitive understanding and analysis precision. Our findings offer
new possibilities and directions for the expansive application of
Al in chemical analysis.

Index Terms—Data generation, Deep learning, Chemical data,
Generative model

I. INTRODUCTION

The application of chemical fields for tasks such as detec-
tion and analysis of substances in artificial intelligence (AI)
has achieved many conveniences and developments [1]. In
particular, gas chromatography mass spectrometry (GC-MS)
has strong quantification and sensitivity to identification and
analysis, and Al is also studied for GC-MS data analysis [2, 3].
However, comprehensive training datasets, which are essential
for effective application of Al methodologies for GC-MS, can
be challenging if they are data from limited chemicals.

Al for capabilities such as pattern recognition and predictive
analysis requires rich and diverse dataset-based learning for
guaranteed performance. Data generation can improve the
quantity and quality of training data, thereby developing more
accurate and generalizable Al models [4]. In view of this,
we aim to explore and evaluate Al-driven data generation
techniques to enrich GC-MS datasets for data with limited
acquisition. In addition, exploratory data analysis (EDA) is
conducted to analyze the complexity and characteristics of
actual experimental GC-MS data.

In addition, this paper focuses on the use of Varia-
tional Autoencoder (VAE) and generative adversarial network
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(a) GC data of DMMP and ethanol solvent. The retention
time of the DMMP is 6.525-6.595 min.
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(b) MS data of DMMP and ethanol solvent at 6.526-6.595
min.

Fig. 1: GC-MS experimental data measured by mixing 2-CEES
with ethanol solvent.

(GAN), which have shown the possibility of generating one-
dimensional time series data similar to GC-MS data based on
previous studies [5].

Additionally, we address another subtle but important chal-
lenge in this field: visualization of GC-MS data. We develop
a tool that enables 3D visualization of GC-MS data in a more
intuitive and insightful way of mass spectrometry peaks and
their respective retention times. We evaluate the performance
of existing models through these qualitative visualization
evaluations and quantitative evaluations, and discuss appropri-
ate improvements to the characteristics of GC-MS identified
through EDA.

The remainder of this paper is organized as follows: Section
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Fig. 2: Using the elbow method to find the optimal number of
k-mean clusters.

2 provides a comprehensive literature review pertinent to our
study. Section 3 describes the data preparation process and
our exploratory data analysis methodology for GC-MS data.
Section 4 presents the metrics for evaluating the quality of Al-
generated data and includes a performance evaluation using
3D visualization tools. Finally, Section 5 concludes the paper
by discussing the implications and future directions for the
application of Al in stone chemistry.

II. PRELIMINARY
A. GC-MS Data Analysis for CWAs

Gas chromatography-mass spectrometry (GC-MS) has
played a major role in chemical warfare agent (CWA) analysis
due to its unparalleled ability to separate complex mixtures
and identify individual substances. Many studies have utilized
GC-MS for qualitative and quantitative analysis of CWA
using high resolution and sensitivity. For example, studies
have shown that GC-MS can effectively identify CWA in
environmental samples at trace levels that are essential for
early detection and threat mitigation [6].

However, despite its capabilities, the use of GC-MS in CWA
detection faces challenges such as the diversity of agents,
the potential presence of interfering substances, and the need
for rapid and accurate identification under varied conditions.
To address these challenges, recent studies have focused on
enhancing data processing and analysis methods, incorporating
advanced algorithms for peak detection, deconvolution, and
substance identification. These efforts aim to improve the
reliability and efficiency of CWA detection, particularly in
scenarios where rapid decision-making is critical [7, 8].

In this paper, we use experimental GC-MS data of Dimethyl
methylphosphonate (DMMP), a simulant of a nerve agent, as
shown in Fig.1. In addition, the characteristic retention time
peaks in GC and MS data significantly differ in scale and
magnitude compared to other peaks as shown in Fig.1a and
Fig.1b. Moreover, the MS corresponding to the large peak in
GC presents visual analysis challenges as shown in Fig.la.
We use models and preprocessing methods described later to
demonstrate how these features work on generative Al.
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Fig. 3: Visualize K-means clustering on the original GC data
feature space.
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Fig. 4: Architecture of VAE.

B. Generative AI Models

Al-based generation models evolve into various architec-
tures and paradigms according to the development and purpose
of technology. Since GC data is time series data, while MS
data is not time-series data, it can be represented in a 1D
format analogous to time series. According to previous studies,
we apply VAE and GAN, which emerge as potent tools for
time series data generation [5].
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Fig. 5: Architecture of LSTM-GAN.

(b) Discriminator of LSTM-GAN.

VAE is a probabilistic model that can generate new data
points by learning the distribution of existing data [9]. In the
context of GC-MS, VAE can generate a data distribution that
maintains the statistical properties of real samples, thereby
enriching the dataset and enhancing model training of Al

On the other hand, GAN produce high-fidelity synthetic
data because they involve competitive learning in which one
network generates data and the other evaluates it [10]. Recent
studies have successfully applied GAN to generate realistic
time series data, which allows for extensive model training and
enhanced robustness against data variability and noise [11].
Both VAE and GAN have shown promise in different time
series regions, suggesting potential applicability for GC-MS
data generation for CWA detection.

Improving Al performance through data generation not only
helps overcome data scarcity, but can also take advantage of
the combined strengths of GC-MS and AI to lead the big
development of analytical chemistry.

III. METHODOLOGY
A. Exploratory Data Analysis

Before applying complex Al algorithms, we perform ex-
ploratory data analysis (EDA) on the GC-MS data to uncover
underlying patterns, detect outliers, and understand the data’s
structure. The EDA encompasses various statistical and ma-
chine learning techniques as follows:

« K-means clustering: K-means clustering effectively seg-

ments data into groups based on similarities as an un-
supervised learning algorithm. It identifies patterns or

GAN.
Fig. 6: Architecture of LSTM-CNN GAN.

GAN.

groups in chemical signatures, which may correspond
to interactions with various types of CWA or different
solvents [12]. Utilizing the elbow method as shown in
Fig.2, we determine the optimal number of clusters to be
K = 3. These clusters allow us to explore data patterns
without prior labeling, which is crucial in analyzing the
unstructured nature of GC-MS data.

e Cluster Interpretation: The clusters are identified as
shown in Fig.3. Cluster O corresponds to baseline values
in zones characterized by pronounced peaks, suggesting
regions of lower chemical activity or baseline noise.
Cluster 1 consists of data points with intensity values
significantly above the baseline, indicative of prominent
chemical peaks. Cluster 2 comprises baseline values
where no significant peaks are identified, representing
areas of no or minimal chemical activity.

Our proposed EDA phase lays the foundation for subsequent
application of Al-driven generative models, providing an inte-
grated understanding of the structure and peak discrimination
of GC-MS data. The insights at this stage suggest a direction
to move forward through the selection of Al algorithms and
techniques such as appropriate preprocessing.

B. Al-based Generative Models

We apply a preprocessing technique to address the inherent
scaler deviation of GC-MS data identified through EDA before
models suitable for time series data augmentation based on
previous studies [5]. The normalization preprocessing tech-
nique of peak to overcome the deviation of GC-MS data scale



is as follows Eq. (1), and we use it for all generative models
that are applied later.

Peak_value — Peak_min

Peak_normalized =

)]

Peak_max — Peak_min °
C. Variational Autoencoders (VAE)

We utilize the preprocessing as Eq. (1) and fully connected
layer to apply the VAE which is known to be effective in
learning time series data to GC-MS and construct it as shown
in Fig.4 [13]. The model also balances the possibility of data
with the complexity of latent representation and uses the Evi-
dence Lower Bound (ELBO), which combines reconstruction
loss with Kullback-Leibler divergence as follows:

Lvag = —Ey(z)a) [log p(z[2)] + KL(g(2|2)||p(2)).
D. Generative Adversarial Network (GAN)

To learn GC-MS data effectively, we design LSTM-CNN
GAN and LSTM-GAN with the same preprocessing technique
as Eq. (1). For both LSTM-CNN GAN and LSTM-GAN,
the following minimax loss functions of generator G and

discriminator D are used for adversarial learning as follows
[10]:

2)

LGAN = mci;n max Eg o pua () [l0g D()]
+ E.vp, (»)llog(1 — D(G(2)))].

e LSTM-GAN: We design LSTM-GAN using LSTM into
the GAN architecture as shown in Fig.5, particularly
suitable for time-series data where understanding long-
term dependencies is crucial [14]. This is essential for
GC-MS data, which exhibits complex temporal dynamics.
The LSTM layers in both the generator and discriminator
allow the model to capture these dynamics effectively:

h;, ¢

= LSTM(x¢, hy_1,¢—1). 3)

In Eq. (3), h; and c; represent the hidden state and cell
state of the LSTM at time ¢, respectively, and x; is the
input at time ¢. The hidden state h;_; and cell state ¢;_
are from the previous time step, enabling the network to
propagate information over longer periods. The LSTM-
GAN uses these states to generate new synthetic GC-
MS data that mimic the long-range temporal correlations
present in the experimental data.

e LSTM-CNN GAN: We design the LSTM-CNN GAN
using a bidirectional LSTM and 1D convolutional layer
that have been studied to be effective for ECG data, which
is similar in shape to GC-MS data as shown in Fig.6
[15]. We extend the LSTM used in Eq. (3) to be learned
in both directions, and modify the proposed LSTM-CNN
GAN model to be used for learning GC-MS data. The
convolution operation in the 1D CNN layer applies a filter
to the input sequence to capture the local features of GC-
MS data as follows:

3D Analysis of Augmented Synthetic GC-MS Data
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Fig. 7: Visualization of mixed GC-MS data of ethanol solvent
and DMMP using 3D tool.

Parameter  Value
latent_dim 100
batch_size 32
epochs 1000

TABLE I: Parameters of Al-based generation models.

K-1
out fm 7/ + k]
k=0

[k] + 0. @
In Eq. (4), fou[é] represents the output feature at position
1, fiy is the input feature sequence, w denotes the weights
of the convolutional filter of size K, and b is the bias
term. The LSTM-CNN GAN leverages this convolutional
feature extraction to analyze and generate the complex
chromatographic patterns in the GC-MS data.

1V. EVALUATION
A. GC-MS Experimental Setup

In this paper, data obtained by GC-MS analysis with an
ethanol solvent are used for dimethyl methylphosphonate
(DMMP), a similar agent of CWAs with limited acquisition.
We conduct GC-MS experiments using standard protocols
optimized for detection of CWA. We develop a customized 3D
visualization tool to enhance interpretability of GC-MS data
as an additional contribution to this study as shown in Fig.7.
This facilitates the identification of patterns and correlations
in GC-MS data that may not appear clearly in existing two-
dimensional images as shown in Fig.1.

Visual qualitative evaluation with these tools is comple-
mented by quantitative measurements such as the time it
takes to identify the peak and the accuracy of the analysis,
which shows a significant improvement over traditional 2D
visualization methods.
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Fig. 8: Visualization results of learning DMMP data using
VAE.
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(d) Generated synthetic data
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Fig. 9: Visualization results of learning DMMP data using
LSTM-GAN.

Data PCC Jacquard | PD
o Dm0 |
LSTMGAN (41| s | gosor | oo0s | 410
LSTMCNN GAN 151 | Wis | 00575 | o0 | 413

TABLE 1II: Experimental Results of VAE, LSTM-GAN, and
LSTM-CNN GAN Models

B. Performance evaluations

We implement the proposed generative models to learn the
dataset composed of GC and MS data using parameters as
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(c) In the epoch 900.

(d) Generated synthetic data
using LSTM-CNN GAN.

Fig. 10: Visualization results of learning DMMP data using
LSTM-CNN GAN.

shown in Table I. Synthetic data generated through learning is
compared with the original GC-MS data using the following
metrics.

o Pearson Correlation Coefficient (PCC) The PCC mea-
sures the linear relationship between the composite
dataset and the features of the original dataset. It ranges
from -1 to +1, and the closer to zero, the less correlation.

o Jaccard Similarity (Jaccard) Jacquard similarity evalu-
ates the similarity between two sets. This metric provides
insight into how well the synthetic data captures the
overall structure and pattern found in the original data.

o Peak Difference (PD) The peak difference evaluates
the diversity of spectral peaks using local maxima by
comparing adjacent values [16].

When evaluating the generated synthetic datasets for GC
and MS data, PCC recorded values close to zero for all
models. This represents a weak linear relationship between
the generated synthetic data and the original data as shown in
Fig.8d, Fig.9d, Fig.10d. An increase in the number of peaks
was observed in the synthetic dataset compared to the original
data for all models. This trend suggests the propensity of
models to generate new chemical signal peaks. This suggests
that new features can be introduced into the data synthesized
by Al-based generation models to secure diversity of data
different from simple modulation. Overall, low PCC and
Jaccard, and the process by which models have significantly
difficulty learning GC-MS data, as shown in Fig.8, Fig.9,
Fig.10, indicate that the generative models studied for similar
data forms are inadequate for the GC-MS field. Therefore,
we propose an approach that fits the characteristics of the
data, as shown in Fig.3, for the progress of GC-MS data
generation beyond the limitations of these existing models. In
order to properly learn GC-MS data analyzed through EDA,



it is necessary to focus the input data on a specific part of
the data. We implement and apply an attention mechanism
layer for each model to selectively focus on important parts
of GC-MS data [17]. As a result, it is confirmed that the
performance is improved by 2% to 5%, but the influence of
the attention mechanism on the model is insignificant. Through
this evaluation, we propose that an innovative approach that
goes beyond the paradigm of previously studied models is
needed for successful generation of GC-MS data.

V. CONCLUSION

This work proposes an urgent need for generative model
studies for limited data such as CWA and represents a compre-
hensive approach to artificial intelligence utilization, especially
for generating GC-MS data. Machine learning-based EDA is
conducted using a similar agent of actual experimental CWA
to analyze the inherent characteristics. We also demonstrate
the ability to create new synthetic instances using previously
studied generative models aimed at GC-MS data and similar
data, but experimentally reveal that training is challenged by
complex patterns and large deviations of real GC-MS data.
Ultimately, this work presents the need for a new approach
tailored to GC-MS characteristics demonstrated by machine
learning-based EDA for future research. It also marks an
important step towards scalable integration, where Al-based
generative models can be widely applied to chemical data
synthesis.
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