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Abstract—In this paper, we propose an optimization tool for 
local customized object detector which has a light weight deep 
learning model and operates on the inexpensive and low-
performance edge devices. We focused on the edge devices which 
provide video analysis services on a CCTV camera that monitors 
a specific area. The pre-trained object detection model needs 
customizing processes such as re-learning depending on the 
camera location in order to reduce false alarm and miss detection. 
That requires additional time and energy to create a training DB 
from the video of the CCTV camera and to train the detection 
model using the created DB. In order to reduce this effort, we 
developed a web-based optimization tool for a local customized 
object detector. The proposed tool provides the automatic DB 
generation and re-learning functions with user friendly interfaces. 
We can see that the proposed tool is very simple and efficient 
which only requires a video file from the local camera and the 
pre-trained detection model, while automatic DB generation and 
re-learning processes are done internally.  

Keywords—Local customization; DB generation tool; light 
weight detector  

I. INTRODUCTION 
The demand for intelligent video analysis services on edge 

devices is increasing. Edge devices need an accurate and 
lightweight object detector to provide video analysis services 
on low-cost, low-performance devices[1]. Lightweight object 
detectors have poor detection accuracy depending on camera 
specifications, installation location, and weather conditions. In 
general, to solve this problem, an optimization process is 
performed by creating a learning DB from CCTV camera 
images and re-training the object detector using the created DB. 
Figure 1 shows the comparison of object detection results 
before and after object detector optimization. The right side of 
Figure 1 shows the detection result of the object detector using 
the pre-trained model based on Open DB. There are many false 
detections and miss detections when object detection is 
performed with a pre-trained model. However, when the object 
detector is optimized with CCTV camera images, false 
detection and miss-detection are reduced as shown on the right 
side of Figure 1. 

 

Fig. 1. An example of the result of optimizing the object detector 

We focused on an edge device that receives videos from the  
CCTV camera, which monitors a fixed area, and provides 
intelligent video analysis services. Since the edge device only 
needs to detect objects on the fixed monitored area, there is no 
need for a detection model with high generalization 
performance that detects well in surveillance areas of almost all 
of the cameras. Even if a lightweight model is used in the edge 
devices, it is possible to provide a high-accuracy object 
detection for the fixed monitored area by optimizing the 
detector with the images from the local camera. However, in 
order to optimize the object detector of edge devices, it takes 
additional time and energy to create a training DB and re-learn 
a detection model for each CCTV camera. In particular, it is 
very cumbersome and difficult for a person to create a learning 
DB from CCTV camera images. 

In order to solve these problems, we propose a tool for 
optimizing a local customized object detector. The proposed 
tool automatically creates a learning DB using video streams 
acquired from a camera installed in the field, and optimizes the 
local customized object detector by re-training the object 
detector based on the created DB. The our previous research 
proposed an automatic database generation algorithm, which 
creates a learning DB by extracting the background from the 
field image and synthesizing the extracted background and the 
detection results of the pre-trained object detector[2]. The 
proposed tool uses the previous researched algorithm for DB 
generation. In our proposed tool, a high-quality learning DB 
can be created by adjusting the object detection threshold. The 
created training DB includes a composite of an image and a 
annotation file for the target object. Then, the object detector is 



re-trained based on the created learning DB. At this time, the 
object detector is learned by extracting the feature map from 
the existing pre-learning model and using it as an initial value, 
and the generated DB path is used as an input. After re-training, 
the detection result image before/after object detector 
optimization can be compared by the tool. The tool can be 
installed and used on a local personal PC, or can be used by 
several people at the same time remotely in the form of a web 
service by accessing a server. 

II. OPTIMIZATION TOOL 
Figure 2 shows the configuration of the optimization tool 

for a local customized object detector. The optimization tool 
consists of a DB generation module and a training module 
which learns an object detector using the generated DB. For 
DB generation, the optimization tool receives the video images 
of a CCTV camera and the pre-trained model as input file. The 
DB generation module automatically creates a DB consisting 
of a pair of an image and a tagging file. The training module 
relearns the object detector using  the automatically generated 
DB. The DB generation and training processes can be repeated 
several times depending on the degree of optimization of the 
object detector. Finally, we can obtain the optimized detection 
model for the local surveillance area.  

 

 

Fig. 2. The configuration of the optimization tool for a local customized 
object detector 

Figure 3 shows the processes for DB generation. The DB 
generation module consists of the three processes which are a 
background modeling process, an object detection process, and 
a synthesizing process. The background modeling process 
extracts the background images from the input video images. 
The object detection process detects the target objects on image 
frame from CCTV video with a pre-trained detection model. 
The synthesizing process combines the background image and 
detected object regions, and generates the annotation files. The 
input video images can be video files (.avi, .mp4, etc) or video 
streaming URL address (rtsp://xxx.xxx.xxx).  

 

Fig. 3. Automatic DB generation processes 

Automatic DB generation processes create an image by 
synthesizing objects detected by the pre-learning model in the 
background, and create annotation files (object class, object 
area) for target objects. At this time, the class of detection 
object to be reflected in DB generation can be selected. For 
example, in the case of a 4-class (person, car, bicycle, 
motorcycle) detector, only 2-class (person, car) of detection 
results can be reflected in DB generation. Therefore, it is 
possible to create training DBs for only wanted target objects. 
In addition, the object detector with the pre-trained model may 
have false detections in the background image. In this case, it 
should be removed in the tagging file, so the tool can set an 
ignore region where detection results are not reflected in DB 
creation. The case where the ignore area and IoU (intersection 
over union) is over a certain threshold is excluded. Also, the 
proposed tool can collectively remove falsely detected objects 
in the background part from the entire tagging files. 

 

 

  
(a) Background modeling and selection 

  
(b) Object Detection with Pre-trained Model 

  
(c) Synthesizing a background and target objects 

Fig. 4. An example of the results of automatic DB generationp processes 



Figure 4 shows an example of the results of automatic DB 
generation processes. Our tool creates a project for the 
optimization of the local customized object detector. When a 
project is created, a pre-trained detector model and a video file 
from the target camera are loaded. And then, background 
modeling is performed, and we can select the background 
image from the results of the background modeling. The DB 
generation are performed automatically with synthesizing the 
background image and the objects detected by pre-trained 
model. At this time, the tagging files, which contain the class 
and location information of the object, are generated 
simultaneously. The tagging files are generated with yolo 
annotation format [3,4]. In this example, we used the yolov4-
tiny [5] model that is pre-trained using COCO[6] and  visdrone 
database[7].  

When the automatic DB generation is completed, re-
learning processes proceed. Figure 5 shows the configuration 
for the re-learning processes. The generated DB paths are used 
as inputs for training and validation. And the partial pre-trained 
model can be used for the re-learning as the initial value for 
optimization. The re-learning is very fast because the light 
weight network model is used, and the target area DB is much 
smaller than the open DB such as COCO. The tool provides a 
graph image of learning progress (Loss, mAP). When learning 
is completed, an optimized object detector model is created. 

  

Fig. 5. Re-learning Processe 

Using our tool, we can easily confirm the result of the 
optimized object detection model. Also, we can compare and 
display detection results before/after optimization for field 
images. Figure 6 shows an example of before and after of the 
optimization of the local customized object detector. We can 
see that false alarms and miss detections are reduced after the 
optimization. Additionally, we installed edge cameras in an 
actual test area and tested field-customized object detector 
optimization technology (Fig. 7). It was applied to vehicle 
speed detection and unexpected situation detection applications. 
It was confirmed that application performance improved due to 
improved object detection rate. 

 

Fig. 6. Berfore and after of the optimization of the local customized object 
dectector 

 

 

Fig. 7. Real test environment for local customized object detector of vehicle 
speed and abnormal events detection applications on edge devices 

ACKNOWLEDGMENT 
This work was supported by the Commercialization 

Promotion Agency for R&D Outcomes(COMPA) grant funded 
by the Korean Government(Ministry of Science and ICT). (RS-
2023-RS-2023-00304776) 

REFERENCES 
[1] Chan Yung Kim, Kwi Seob Um, Seo Weon Heo “A novel MobileNet 

with selective depth multiplier to compromise complexity and 
accuracy,” ETRI Journal, Oct. 2022.  

[2] Lee, J. G., and Baek, J. W. "An Automatic Database Generation 
Algorithm for Local Optimization of CNN Object Detector for Edge 
Devices," 2020 IEEE International Conference on Consumer 
Electronics - Asia (ICCE-Asia), Nov. 2020. 

[3] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, "You 
Only Look Once: Unified, Real-Time Object Detection," 
arXiv:1506.02640 [cs.CV] 

[4] Joseph Redmon, Ali Farhadi, "YOLO9000: Better, Faster, Stronger," 
 arXiv:1612.08242 [cs.CV] 

[5] Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao, 
"YOLOv4: Optimal Speed and Accuracy of Object Detection," 
arXiv:2004.10934 [cs.CV] 

[6] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, 
Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. 
Lawrence Zitnick, Piotr Dollár, "Microsoft COCO: Common Objects 
in Context,"  arXiv:1405.0312 [cs.CV] 

[7] Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and 
Fan, Heng and Hu, Qinghua and Ling, Haibin, “Detection and 
Tracking Meet Drones Challenge,” IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 2021


