
An Optimization Tool for Local Customized Object
Detector in Edge Devices

Jang Woon Baek, Yun Won Choi, Jinhong Kim, Joon-Goo Lee
Daegu-Gyeongbuk Research Center

Electronics and Telecommunications Research Institute
Daegu, Korea

{jwbaek98, yunwon.choi, jinhong, leejg01679}@etri.re.kr

Abstract—In this paper, we propose an optimization tool for
local customized object detector which has a light weight deep
learning model and operates on the inexpensive and low-
performance edge devices. We focused on the edge devices which
provide video analysis services on a CCTV camera that monitors
a specific area. The pre-trained object detection model needs
customizing processes such as re-learning depending on the
camera location in order to reduce false alarm and miss detection.
That requires additional time and energy to create a training DB
from the video of the CCTV camera and to train the detection
model using the created DB. In order to reduce this effort, we
developed a web-based optimization tool for a local customized
object detector. The proposed tool provides the automatic DB
generation and re-learning functions with user friendly interfaces.
We can see that the proposed tool is very simple and efficient
which only requires a video file from the local camera and the
pre-trained detection model, while automatic DB generation and
re-learning processes are done internally.

Keywords—Local customization; DB generation tool; light
weight detector

I. INTRODUCTION
The demand for intelligent video analysis services on edge

devices is increasing. Edge devices need an accurate and
lightweight object detector to provide video analysis services
on low-cost, low-performance devices[1]. Lightweight object
detectors have poor detection accuracy depending on camera
specifications, installation location, and weather conditions. In
general, to solve this problem, an optimization process is
performed by creating a learning DB from CCTV camera
images and re-training the object detector using the created DB.
Figure 1 shows the comparison of object detection results
before and after object detector optimization. The right side of
Figure 1 shows the detection result of the object detector using
the pre-trained model based on Open DB. There are many false
detections and miss detections when object detection is
performed with a pre-trained model. However, when the object
detector is optimized with CCTV camera images, false
detection and miss-detection are reduced as shown on the right
side of Figure 1.

Fig. 1. An example of the result of optimizing the object detector

We focused on an edge device that receives videos from the
CCTV camera, which monitors a fixed area, and provides
intelligent video analysis services. Since the edge device only
needs to detect objects on the fixed monitored area, there is no
need for a detection model with high generalization
performance that detects well in surveillance areas of almost all
of the cameras. Even if a lightweight model is used in the edge
devices, it is possible to provide a high-accuracy object
detection for the fixed monitored area by optimizing the
detector with the images from the local camera. However, in
order to optimize the object detector of edge devices, it takes
additional time and energy to create a training DB and re-learn
a detection model for each CCTV camera. In particular, it is
very cumbersome and difficult for a person to create a learning
DB from CCTV camera images.

In order to solve these problems, we propose a tool for
optimizing a local customized object detector. The proposed
tool automatically creates a learning DB using video streams
acquired from a camera installed in the field, and optimizes the
local customized object detector by re-training the object
detector based on the created DB. The our previous research
proposed an automatic database generation algorithm, which
creates a learning DB by extracting the background from the
field image and synthesizing the extracted background and the
detection results of the pre-trained object detector[2]. The
proposed tool uses the previous researched algorithm for DB
generation. In our proposed tool, a high-quality learning DB
can be created by adjusting the object detection threshold. The
created training DB includes a composite of an image and a
annotation file for the target object. Then, the object detector is

re-trained based on the created learning DB. At this time, the
object detector is learned by extracting the feature map from
the existing pre-learning model and using it as an initial value,
and the generated DB path is used as an input. After re-training,
the detection result image before/after object detector
optimization can be compared by the tool. The tool can be
installed and used on a local personal PC, or can be used by
several people at the same time remotely in the form of a web
service by accessing a server.

II. OPTIMIZATION TOOL
Figure 2 shows the configuration of the optimization tool

for a local customized object detector. The optimization tool
consists of a DB generation module and a training module
which learns an object detector using the generated DB. For
DB generation, the optimization tool receives the video images
of a CCTV camera and the pre-trained model as input file. The
DB generation module automatically creates a DB consisting
of a pair of an image and a tagging file. The training module
relearns the object detector using the automatically generated
DB. The DB generation and training processes can be repeated
several times depending on the degree of optimization of the
object detector. Finally, we can obtain the optimized detection
model for the local surveillance area.

Fig. 2. The configuration of the optimization tool for a local customized
object detector

Figure 3 shows the processes for DB generation. The DB
generation module consists of the three processes which are a
background modeling process, an object detection process, and
a synthesizing process. The background modeling process
extracts the background images from the input video images.
The object detection process detects the target objects on image
frame from CCTV video with a pre-trained detection model.
The synthesizing process combines the background image and
detected object regions, and generates the annotation files. The
input video images can be video files (.avi, .mp4, etc) or video
streaming URL address (rtsp://xxx.xxx.xxx).

Fig. 3. Automatic DB generation processes

Automatic DB generation processes create an image by
synthesizing objects detected by the pre-learning model in the
background, and create annotation files (object class, object
area) for target objects. At this time, the class of detection
object to be reflected in DB generation can be selected. For
example, in the case of a 4-class (person, car, bicycle,
motorcycle) detector, only 2-class (person, car) of detection
results can be reflected in DB generation. Therefore, it is
possible to create training DBs for only wanted target objects.
In addition, the object detector with the pre-trained model may
have false detections in the background image. In this case, it
should be removed in the tagging file, so the tool can set an
ignore region where detection results are not reflected in DB
creation. The case where the ignore area and IoU (intersection
over union) is over a certain threshold is excluded. Also, the
proposed tool can collectively remove falsely detected objects
in the background part from the entire tagging files.

(a) Background modeling and selection

(b) Object Detection with Pre-trained Model

(c) Synthesizing a background and target objects

Fig. 4. An example of the results of automatic DB generationp processes

Figure 4 shows an example of the results of automatic DB
generation processes. Our tool creates a project for the
optimization of the local customized object detector. When a
project is created, a pre-trained detector model and a video file
from the target camera are loaded. And then, background
modeling is performed, and we can select the background
image from the results of the background modeling. The DB
generation are performed automatically with synthesizing the
background image and the objects detected by pre-trained
model. At this time, the tagging files, which contain the class
and location information of the object, are generated
simultaneously. The tagging files are generated with yolo
annotation format [3,4]. In this example, we used the yolov4-
tiny [5] model that is pre-trained using COCO[6] and visdrone
database[7].

When the automatic DB generation is completed, re-
learning processes proceed. Figure 5 shows the configuration
for the re-learning processes. The generated DB paths are used
as inputs for training and validation. And the partial pre-trained
model can be used for the re-learning as the initial value for
optimization. The re-learning is very fast because the light
weight network model is used, and the target area DB is much
smaller than the open DB such as COCO. The tool provides a
graph image of learning progress (Loss, mAP). When learning
is completed, an optimized object detector model is created.

Fig. 5. Re-learning Processe

Using our tool, we can easily confirm the result of the
optimized object detection model. Also, we can compare and
display detection results before/after optimization for field
images. Figure 6 shows an example of before and after of the
optimization of the local customized object detector. We can
see that false alarms and miss detections are reduced after the
optimization. Additionally, we installed edge cameras in an
actual test area and tested field-customized object detector
optimization technology (Fig. 7). It was applied to vehicle
speed detection and unexpected situation detection applications.
It was confirmed that application performance improved due to
improved object detection rate.

Fig. 6. Berfore and after of the optimization of the local customized object
dectector

Fig. 7. Real test environment for local customized object detector of vehicle
speed and abnormal events detection applications on edge devices

ACKNOWLEDGMENT
This work was supported by the Commercialization

Promotion Agency for R&D Outcomes(COMPA) grant funded
by the Korean Government(Ministry of Science and ICT). (RS-
2023-RS-2023-00304776)

REFERENCES
[1] Chan Yung Kim, Kwi Seob Um, Seo Weon Heo “A novel MobileNet

with selective depth multiplier to compromise complexity and
accuracy,” ETRI Journal, Oct. 2022.

[2] Lee, J. G., and Baek, J. W. "An Automatic Database Generation
Algorithm for Local Optimization of CNN Object Detector for Edge
Devices," 2020 IEEE International Conference on Consumer
Electronics - Asia (ICCE-Asia), Nov. 2020.

[3] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, "You
Only Look Once: Unified, Real-Time Object Detection,"
arXiv:1506.02640 [cs.CV]

[4] Joseph Redmon, Ali Farhadi, "YOLO9000: Better, Faster, Stronger,"
 arXiv:1612.08242 [cs.CV]

[5] Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao,
"YOLOv4: Optimal Speed and Accuracy of Object Detection,"
arXiv:2004.10934 [cs.CV]

[6] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev,
Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C.
Lawrence Zitnick, Piotr Dollár, "Microsoft COCO: Common Objects
in Context," arXiv:1405.0312 [cs.CV]

[7] Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and
Fan, Heng and Hu, Qinghua and Ling, Haibin, “Detection and
Tracking Meet Drones Challenge,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021

