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Abstract—In this paper, we propose to use StarGAN, a pow-
erful Generative Adversarial Network (GAN), to improve the
quality of dysarthric speech. Through extensive experiments, we
demonstrate the effectiveness of StarGANv2-VC in converting
dysarthric speech and significantly improving its intelligibility
and naturalness. In addition, this research contributes to the field
by conducting a comparative study between StarGANv2-VC and
MaskCycleGAN-VC, another well-established GAN architecture,
recently used in dysarthric speech conversion tasks. The results
show that StarGANv2-VC performs the best, making it a promis-
ing solution for improving the speech quality of people suffering
from dysarthria.

Index Terms—Dysarthric speech, voice conversion, generative
adversarial networks

I. INTRODUCTION

DYSARTHRIA encompasses several speech issues caused
by brain or nerve damage, affecting the control of mus-

cles necessary for speech production. This muscular imbalance
originates from factors such as paralysis or weakening of
the muscles. Unlike other speech disorders, dysarthria is not
related to difficulties in comprehension or movement planning.
It can affect aspects such as volume, tone, and speech speed,
making speech unclear, hard to understand, or irregular [1].
Different types of dysarthria exist, each with its distinct
characteristics impacting speech differently, as mentioned in
[2]. Flaccid dysarthria exhibits hyperreflexia and muscle flac-
cidity, resulting in hypernasality and imprecise consonants.
Spastic dysarthria involves imprecise consonants, monotonous
pitch, and reduced stress in speech. Ataxic dysarthria affects
timing and movement direction, causing imprecise consonants
and distorted vowel sounds. Hypokinetic dysarthria, asso-
ciated with parkinsonism, includes symptoms like tremors
and limited movements, resulting in monotonous speech and
imprecise consonants. Hyperkinetic dysarthria, seen in dysto-
nia and chorea, presents with imprecise consonants, variable
speed rate, and distorted vowels, influenced by the nature
of hyperkinesia in each condition. Understanding these traits
is crucial for interpreting the results, especially in dysarthric
voice conversion studies.

Having explored dysarthria as a speech disorder, our
focus shifts to strategies for improving voice recognition
among dysarthric individuals afflicted by dysarthria. This
challenge is commonly tackled through two main methods.
The first method performs a data augmentation [3], involving
the enhancement of recognition capabilities by training
Automatic Speech Recognition (ASR) models with synthetic
data replicating dysarthric speech; the second method focuses
on the enhancement of dysarthric speech itself. The latter
approach, known as Voice Conversion (VC) [4], focuses
on transforming a voice to sound like another person’s
voice without altering the linguistic content. In the context
of converting dysarthric speech to normal speech, it aims
to modify the dysarthric speech so that it becomes more
intelligible, while preserving the words originally spoken.

A VC task is categorized as either parallel or nonparallel.
Most voice conversion systems use parallel data, where the
model is trained to convert audio between two speakers using
the same set of prompts for both speakers. However, when
dealing with speakers with dysarthria, finding high-quality
healthy speech data from them is often challenging. This
difficulty arises because people with dysarthria usually do not
record themselves frequently, leading to a lack of clear speech
samples [5]. Consequently, the voice conversion model needs
to be trained on two different speakers: the dysarthric speaker
and a different, healthy speaker. This situation induces and
increases the need for a non-parallel voice conversion system.

This is where GANs come in opening up exciting possibil-
ities for creating realistic artificial voices. Essentially, a GAN
comprises two concurrently trained models: a generator and a
discriminator. The generator is tasked with generating novel
content, while the discriminator aims to differentiate between
original data and that provided by the generator. Recent
research has shown the effectiveness of MaskCycleGAN-VC
when compared to other models, particularly when incorpo-
rating techniques like time stretching to enhance dysarthric
speech quality [4]. Additionally, another approach proposed
in [6] introduces a data augmentation-based VC system, DVC
3.1, designed to alleviate the recording burden on speakers.



This system utilizes text-to-speech and the StarGAN-VC ar-
chitecture to synthesize a large target and patient-like corpus,
aiming to reduce the challenges associated with recordings.

This paper presents an approach based on StarGANv2-
VC [7] to refine dysarthric speech and therefore to enhance
dysarthric speech recognition. The proposed approach is com-
pared with the one using MaskCycleGAN-VC [8], a well-
known voice conversion method, to identify the most effective
strategy for enhancing the intelligibility of dysarthric speech.
Through rigorous evaluation and comparison, our research
aims to contribute to the development of advanced speech
enhancement techniques, specifically tailored to address the
communication challenge posed by dysarthric speech. Our
findings have the potential to significantly impact assistive
technology by helping individuals with speech disorders in
their everyday communication.

II. METHODOLOGY

A. Datasets and Experimental Setup

In this study, we used the UASpeech [9] and Nemours [10]
datasets.

The UASpeech dataset comprises 15 dysarthric speakers
aged between 18 and 58, including 4 females and 11 males,
along with 13 healthy speakers of the same age group. The
dysarthric speakers present a diverse range of characteristics
related to their specific speech disorders, revealing variations
in speech intelligibility with severity levels spanning from
very low to high percentages. Diagnosed types of dysarthria
include spastic, athetoid, and mixed, highlighting diverse
motor control issues affecting speech production. Notably,
athetoid dysarthria is synonymous with dyskinetic cerebral
palsy, characterized by gradual and unregulated movements,
placing it within the hyperkinetic dysarthria category [5].
The broad age range of the speakers adds further complexity
to their dysarthric profiles. Ongoing assessments of speech
intelligibility underscore the dynamic nature of their commu-
nication abilities. Recordings were made using a 7-channel
microphone with a sampling frequency of 16KHz, resulting
in 7 recordings per prompt, along with a digital video camera.
Each speaker in the database recorded a set of 765 isolated
words, which serve as the speech materials for our experiments
and analyses. Thus, there are a total of 5355 recordings per
speaker. Speakers read three blocks of words: B1, B2, and B3,
each containing 255 words. In these blocks:

• 155 words are repeated, including 10 digits (D0, D1, ...,
D9), 26 radio-alphabet letters (LA, LB, LC, ..., LZ), 19
computer commands (C1, C2, ..., C19), and 100 common
words (CW1, CW2, ..., CW100).

• 100 unique words that differ between the blocks (UW1,
UW2, ..., UW100).

Blocks B1 and B3 are used for model training, while block
B2 is reserved for testing purposes.

The Nemours database comprises 11 male speakers, each
presenting unique speech characteristics assessed in terms of

tongue, laryngeal, and respiratory functions, as well as con-
versational intelligibility. These evaluations collectively con-
tribute to a thorough comprehension of the diverse dysarthria
profiles observed within the speaker group. They accentuate
variations in proficiency across various aspects of speech pro-
duction, enhancing our understanding of the nuanced features
inherent in each speaker’s dysarthric expression. In terms of
the recording setup, each speaker recorded 74 nonsensical
short phrases and two continuous speech paragraphs, with a
sampling frequency of 16 KHz. Each phrase in the database
follows a specific structure: ”The X is Ying the Z”. X and Z (X
̸= Z) were selected randomly and without replacement from
a set of 74 monosyllabic nouns, while Y was chosen without
replacement from a set of 37 disyllabic verbs. This process
resulted in 37 phrases, from which another 37 phrases were
generated by swapping the tokens X and Z. Thus, across the
entire set of 74 phrases, each noun and verb were pronounced
twice by each speaker. Furthermore, all utterances are uttered
by a healthy speaker JP. For the training, 70% of vocals were
used leaving the remaining 30% for evaluation purposes.

For the VC process, we chose three speakers from the
Nemours and UASpeech databases. BB, with moderate in-
telligibility, and KS, exhibiting very low intelligibility, were
trained with the healthy speaker JP in the Nemours dataset.
Additionally, we selected M05, who possesses an average level
of intelligibility, trained along with the healthy speaker CM01
from the UASpeech database. These selections were carefully
made to provide a diverse representation of the dataset’s
common characteristics.

B. Experimental Design
In this section, we outline the detailed steps we took

to achieve voice conversion using the StarGANv2 model
[7]. Our goal was to adapt the pre-trained StarGANv2 VC1

model, originally designed for normal voice processing, to be
capable of converting dysarthric voices. Concurrently, we also
conducted conversions using the pre-trained MaskCycleGAN-
VC model to assess the performance of our StarGANv2-VC
through comparison.

Throughout our experiments, we worked with a sampling
frequency of 24 KHz for the StarGANv2-VC model which
operates alongside the Parallel WaveGAN [11] vocoder. For
MaskCycleGAN-VC, the MelGAN [12] vocoder, trained at
22050 Hz, was used. The training process lasted for 150
epochs for each model, enabling them to converge toward
better performance.

C. GAN Architectures
1) MaskCycleGAN-VC: MaskCycleGAN-VC is a non-

parallel voice conversion technique that employs a MelGAN
vocoder and incorporates a two-step adversarial loss mecha-
nism to counteract the excessive smoothing effects induced by
the cycle-consistency loss. It transforms acoustic features from
a source domain x ∈ X to a target domain y ∈ Y through the

1https://github.com/yl4579/StarGANv2-VC



Fig. 1: StarGANv2 architecture for dysarthric speech voice conversion

use of a neural network F as a forward-generator (X → Y ),
and G as the backward-generator (Y → X). Additionally, this
model incorporates two extra discriminators, D’X and D’Y,
specifically for a secondary adversarial loss concerning bi-
directionally converted features.

LGAN2(G,F,D′, X) = Ex∼pdata(x)[log(0−D′(x))]

+ Ex∼pdata(x)[log(1−D′(F (G(x))))]
(1)

However, in 2021, MaskCycleGAN-VC underwent signifi-
cant improvements, extending its capabilities to include mel-
spectrogram conversion. It effectively introduces a frame in-
painting task. This self-supervised learning method enabled
the model to master temporal structures without the need
for excessive parameters. Furthermore, MaskCycleGAN-VC
introduced a novel data augmentation technique called fill-
in-the-frame data augmentation (FIF DA). Through FIF, a
temporal mask was applied to the input mel-spectrogram,
stimulating the converter to fill in missing frames based on
surrounding frames. These advancements resulted in superior
performance, confirming MaskCycleGAN-VC’s effectiveness
over its previous versions [8].

We implemented MaskCycleGAN-VC2 using the provided
implementation with identical parameters [5]. Training seg-
ments, each consisting of only 64 frames, are randomly
selected from the training samples. The MaskCycleGAN-VC
model is initially trained for 25 epochs, although we opted to
extend the training duration to a maximum of 150 epochs.

2) StarGANv2-VC: StarGANv2-VC is a non-supervised,
non-parallel many-to-many voice conversion method that uses
a GAN.

The architecture of StarGANv2-VC, as shown in Figure 1,
is composed of the following components:

2https://github.com/GANtastic3/MaskCycleGAN-VC

Generator: The generator G processes an input audio
recording presented as a mel-spectrogram Xsrc along with a
randomly chosen style vector s, signifying particular traits to
be infused into the voice to generate a new mel-spectrogram
G(X,s) by employing an adversarial loss function Ladv. This
function encourages the generator G to generate realistic mel-
spectrograms by converting a sample X from the source
domain ysrc to a sample X̂ in the target domain ytrg, attempting
to deceive a discriminator D that is trained to differentiate
between real and generated mel-spectrograms. Here, D(.; y)
represents the output of the real/fake classifier for the domain
y in the set Y.

Ladv = EX;ysrc [logD(X; ysrc)]

+ EX;ytrg;s[log(1−D(G(X; s); ytrg))]
(2)

An additional adversarial loss function denoted as Ladvcls with
a source classifier C uses the cross-entropy loss function,
denoted as CE(.). It encourages the model to generate samples
that both deceive the discriminator in the target domain and
exhibit unique features from the source domain, as identified
by the source classifier C.

Ladvcls = EX;ytrg;s[CE(C(G(X; s)); ytrg)] (3)

F0 network: The F0 network is a pre-trained Joint Detec-
tion and Classification (JDC) network [13] designed to extract
the fundamental frequency from a given mel-spectrogram
input. However, The F0 consistency loss function Lf0 ensures
that the generated results are consistent with the normalized
F0 curve obtained from the F0 network.

ASR model: The ASR model is a pre-trained system
designed to transcribe speech into text. This model is essential
for the training and evaluation processes, allowing the system
to convert spoken language into written form. To ensure that
the converted speech retains the identical linguistic content as



the source, we apply a speech consistency loss function Lasr
using convolutional features extracted from a pre-trained joint
CTC-attention VGG-BLSTM network [14].

Mapping network: The mapping network M generates a
style vector. This process ensures diverse style representations
across different domains by utilizing random latent codes
sampled from a Gaussian distribution.

Style encoder: The style encoder S transforms an ordinary
voice into various styles. To ensure that the style code hsty can
be accurately reconstructed from the generated samples, a style
reconstruction loss function Lsty is implemented. However, to
force the generator to generate different samples with different
style codes, a style diversification loss function Lsdis needed.

Lsty = EX,ytrg,s [∥s− S(G(X, s), ytrg)∥1] (4)

Discriminator: The discriminator D has shared layers that
recognize common features between real and fake samples
across all domains. It uses a domain-specific binary classifier
C to verify samples in each domain. However, the single-
layer domain classifier might miss important domain-specific
details. To address this issue, an additional classifier that
recognizes original domain features in converted samples was
added. This information helps the generator to capture unique
domain traits, improving sample accuracy.

Additionally, to maintain the speech/silence intervals in the
generated samples, StarGANv2 VC uses a norm consistency
loss function Lnorm. It employs also a cycle consistency loss
function cyc to preserve all other features of the input.

Otherwise, the full objective functions for the generator
can be summarized as follows where λ represents the hyper-
parameter:

min
G,S,M

Ladv + λadvclsLadvcls + λstyLsty − λdsLds

+λf0Lf0 + λasrLasr + λnormLnorm + λcycLcyc

(5)

The full objective for the discriminators is articulated as
follows, where λcls denotes the hyperparameter for the source
classifier loss Lcls, as detailed below:

min
C,D

− Ladv + λclsLcls (6)

Lcls = EX;ysrc;s[CE(C(G(X, s)), ysrc)] (7)

Moreover, the StarGANv2-VC model is entirely convolu-
tional. When coupled with a high-speed vocoder like Parallel
WaveGAN, it can execute voice conversions in real-time,
meaning it operates at a speed comparable to natural speech
[7].

D. Evaluation

To assess how voice conversion impacts dysarthric speech
quality, we chose to investigate its effects on Automatic
Speech Recognition (ASR) systems. This involves converting
speech into text and then analyzing the results using important
metrics like Word Error Rate (WER) and Character Error Rate
(CER).

1) Automatic Speech Recognition (ASR): After the con-
version of dysarthric speech, the converted audio files need
to pass through an ASR system to evaluate the effects of
this conversion. These outcomes will be compared with the
reference model that showcases the ASR results of the original,
non-converted files. To carry out this evaluation, two state-of-
the-art ASR systems, namely Wav2Vec 2.0 [15] and OpenAI
[16], have been chosen.

Wav2Vec 2.0 by Facebook AI employs self-supervised
learning with non-transcribed audio data for speech recogni-
tion. It transforms audio into phonemes to enhance recognition
with contextual information. On the other hand, OpenAI’s
Whisper uses weak supervised learning, and pre-training mod-
els to predict words directly from audio. Whisper refines its
predictions by considering the overall context of the sentence.
However, it shows that training on a broad supervised dataset
and prioritizing zero-shot transfer can greatly enhance the
strength of a speech recognition system [16].

In summary, both approaches use context to enhance speech
recognition, but they do so in their unique ways. Wav2Vec 2.0
achieves this by transforming audio into phonemes for better
context, while Whisper examines the entire sentence to ensure
words fit appropriately within the global context.

2) Word Error Rate (WER) and Caracter Error Rate
(CER): To evaluate the effectiveness of voice conversion
methods on ASR systems, it’s important to use specific
measures like WER and CER. These measures help us to
understand how accurately the transformation is done by
counting errors in words and characters.

The WER determines the difference between two texts in
terms of words. The distance between two text strings is cal-
culated by the Levenshtein distance [17] which represents the
minimum number of simple operations (insertions, deletions,
or substitutions of a single character) needed to transform one
word into another.

For instance, the Levenshtein distance between ”kitten” and
”sitting” is 3. This means it takes 3 operations to change one
into the other, and there’s no way to do it with fewer than 3
modifications: kitten → sitten (substituting ”s” for ”k”), sitten
→ sittin (substituting ”i” for ”e”) and sittin → sitting (adding
”g” at the end).

To calculate the WER, various operations are involved: S
denotes the count of substitutions, D represents the count of
deletions, I stands for the count of insertions, and N signifies
the total number of words in the reference text. The calculation
of WER is done according to the following formula:

WER =
S +D + I

N
(8)

In simple terms, this expression encapsulates the measure of
accuracy in terms of modifications needed to align the words
in the generated text with those in the reference text. A WER
of 0% is achieved when all predictions perfectly match the
reference text. However, the number of steps needed can be
larger than the number of words in the reference, resulting in
a WER greater than 100%.



TABLE I: WER and CER in percentage for voice conversion using StarGANv2 and MaskCycleGAN on dysarthric speakers
BB, KS, and M05

Speaker StarGANv2-VC MaskCycleGAN-VC
WER(%) CER(%) WER(%) CER(%)

BB JP

ParallelWave GAN 61,36 39,8 MelGAN 58,33 34,06
25 epoch 75 49.07 25 epoch 84.85 61.21
50 epoch 57.58 37.27 50 epoch 87.12 57.84
75 epoch 65.15 39.97 75 epoch 73.48 45.87

150 epoch 90.91 60.54 150 epoch 61.36 38.95

KS JP

ParallelWave GAN 100 82,27 MelGAN 102,27 84,62
25 epoch 100 80.17 25 epoch 152.27 132.11
50 epoch 95.45 74.79 50 epoch 141.67 123.08
75 epoch 104.55 80.5 75 epoch 137.88 130.1

150 epoch 104.55 79.5 150 epoch 133.33 116.72

M05 CM01

ParallelWave GAN 202,18 166,85 MelGAN 208,74 123,45
25 epochs 294.51 258.69 25 epochs 270.76 178.55
50 epochs 283.87 262.36 50 epochs 243.64 171.75
75 epochs 190.03 178.26 75 epochs 230.25 156.45

150 epochs 262,24 249,42 150 epochs 226,11 150,6

The CER takes character-level errors into account and
provides a more detailed evaluation. The calculation of CER
is based on the same function as WER. However, instead of
using a list of words as input for the edit distance function,
a single character string is used. This approach allows for a
better capture of character-level errors and provides a more
nuanced evaluation of the model’s performance.

III. RESULTS AND DISCUSSION

In this study, we thoroughly analyzed how the StarGANv2-
VC model transforms dysarthric speech, highlighting specific
performance metrics for each speaker.

To determine the impact of voice conversion on dysarthric
audio quality and the Wav2vec 2.0 system, we used a reference
model. The reference model consists of the dysarthric original
audio files processed by the appropriate vocoder, MelGAN for
MaskCycleGAN-VC, and ParallelWave GAN for StarGANv2-
VC.

The results of voice conversion for dysarthric speech using
StarGANv2 and MaskCycleGAN are presented in Table I
where values in bold represent the best results compared to
the reference model.

For all speakers, StarGANv2-VC demonstrates a positive
impact on voice quality. This observation is noted by the
lower WER compared to the reference model. On the other
side, MaskCycleGAN-VC degrades the quality of dysarthric
speech, resulting in a much higher WER compared to that of
the reference model.

The distinct dysarthria profiles of speakers BB and KS, shed
light on the differences observed in the voice conversion re-
sults using StarGANv2-VC and MaskCycleGAN-VC. Speaker
BB, with strong articulatory proficiency and sporadic articula-
tion, exhibits relatively lower WER and CER across both voice
conversion models. In contrast, speaker KS, characterized by
hyperkinetic dysarthria and challenges in tongue and laryngeal
functions, presents higher WER and CER percentages in both
models. The disparities in dysarthric speech characteristics,
such as the ability to maintain control over speech-related
motor functions, likely contribute to the varied performance

in voice conversion between the two speakers. These findings
emphasize the impact of individualized dysarthria traits on the
effectiveness of voice conversion techniques. However, M05
shows notably higher WER and CER compared to speakers BB
and KS across both StarGANv2-VC and MaskCycleGAN-VC.
The increased WER and CER percentages for M05 suggest
that the voice conversion models face greater challenges in
accurately converting the dysarthric speech of M05, potentially
due to the specific characteristics associated with spastic
dysarthria, such as variations in muscle tone and control affect-
ing speech production. This discrepancy can be also attributed
to the nature of the database. BB is part of the Nemours
database, where Wav2Vec 2.0 is tasked with predicting 22
phrases. In contrast, M05 belongs to the UASpeech database,
where predictions are made for 1785 words.

Furthermore, the CER is always as low as the WER, this is
because the Wav2Vec 2.0 system predicts a lot of words almost
correctly. For example, it predicted the word ”backspace” as
”bekspace”, which is a large error according to the WER, but
a reasonably small error according to the CER.

It is important to note that the performance of StarGANv2-
VC varies depending on the individual characteristics of
each speaker. Speakers from Nemours and UASpeech exhibit
unique dysarthria traits, which have influenced the outcomes.

Moreover, the results are even more significant when com-
paring the performance of StarGANv2-VC with that of its
competitor, MaskCycleGAN-VC. Indeed, the WER and CER
rates conclusively demonstrate that StarGANv2-VC stands out
as a more effective solution for dysarthric voice conversion.
This observation suggests that StarGANv2-VC can signifi-
cantly improve dysarthric voice conversion compared to other
approaches such as MaskCycleGAN-VC.

Additionally, the importance of these results is emphasized
by the spectrograms presented in Figures 2, 3, and 4. Figure
2 illustrates the original pathological voice of speaker BB,
while Figures 3 and 4 show the voice converted using
MaskCycleGAN-VC and StarGANv2-VC, respectively. The
spectrogram reveals notable enhancements, such as a clearer
distinction of the four formants and a significant reduction in



Fig. 2: Original pathological voice spectrogram
of speaker BB

Fig. 3: MaskCycleGAN-VC spectrogram of
speaker BB

Fig. 4: StarGANv2-VC spectrogram of speaker
BB

signal noise. A direct comparison with MaskCycleGAN-VC
highlights that StarGANv2-VC achieves optimal clarity and
quality improvement results.

To identify which ASR system performs best in conjunction
with StarGANv2-VC for dysarthric speech conversion, a com-
parison was conducted between OpenAI’s ASR and Wav2Vec
2.0 ASR, on dysarthric speakers BB, KS, and M05, as shown
in Table II. This evaluation was based on calculating the WER
and CER in percentage, considering the prediction outcomes
of StarGANv2 VC with 50 epochs for both BB JP and KS JP,
and 75 epochs for M05 CM01.

After examining the outcomes of each ASR system, it is
clear that OpenAI demonstrates superior performance for the
speaker BB. There is a noticeable difference in the lower WER
and CER rates when compared to those generated by Wav2Vec
2.0. However, it appears that Wav2Vec 2.0 performs better
overall, as evidenced by its performance with speakers KS
and M05. Moreover, the OpenAI ASR system performs better
in predicting sentences rather than individual words. This is

TABLE II: A comparative study between Wav2Vec 2.0 and
OpenAI ASR with StarGANv2-VC on dysarthric speakers

Wav2Vec 2.0 OpenAi
Speaker WER(%) CER(%) WER(%) CER(%)
BB JP 57,58 37,27 42,42 30,69
KS JP 95,45 74,79 100 98,16

M05 CM01 190,03 178,26 335,35 258,03

demonstrated by the increasing WER and CER rates for the
speaker M05 from UASpeech.

It is crucial to emphasize that integrating the StarGANv2-
VC model with the Parallel WaveGAN vocoder and the
Wav2Vec 2.0 ASR system resulted in significantly better
outcomes compared to combining MaskCycleGAN with the
MelGAN vocoder and Wav2Vec 2.0 ASR system. Notably,
MaskCycleGAN demonstrates remarkable performance only
when time stretching is added [4]. During our experiments,
we also attempted to apply time stretching to StarGANv2’s
output files. Unfortunately, this approach led to a significant
deterioration in vocal quality when converted by the Parallel
WaveGAN vocoder. This underscores that this vocoder is not
suitable for satisfactory time stretching.

These results cannot be generalized to the broader popula-
tion of individuals with dysarthria. Even when individuals are
categorized as having the same type of dysarthria, there exists
considerable variability in their speech characteristics. Other
speakers may exhibit different levels of improvement, ranging
from worse to better outcomes.

IV. CONCLUSION

In this paper, we proposed a novel dysarthric voice con-
version method using StarGANv2-VC, which was originally
designed for normal voice conversion. The obtained results
demonstrate the efficacy of the StarGANv2-VC model in
enhancing the quality of dysarthric speech, particularly for
speakers with moderate to severe dysarthria. When compared
to the MaskCycleGAN model, StarGANv2 showed superior
conversion performance.

As a limitation, our attempts to apply time stretching to
the output files of StarGANv2 revealed a significant dete-
rioration in vocal quality when processed by the Parallel
WaveGAN vocoder. This demonstrates the inadequacy of the
current vocoder for satisfactory time-stretching applications.
In future work, addressing this limitation will be a focal
point, involving the exploration of additional adjustments to
the StarGANv2 model and investigating alternative vocoders
that can better accommodate and enhance the effectiveness
of time stretching in voice conversion. As a notable point
of comparison, it is worth mentioning that MaskCycleGAN,
in contrast to StarGANv2, demonstrated success in imple-
menting time stretching. Specifically, when time stretching
was applied to the output files of MaskCycleGAN and pro-
cessed with the MelGAN vocoder, satisfactory results were
achieved. This highlights a capability of MaskCycleGAN that
contrasts with the limitations encountered in the context of
StarGANv2 and Parallel WaveGAN vocoder. However, it is



essential to acknowledge a limitation within the architecture
of MaskCycleGAN. Unlike StarGANv2, which incorporates
ASR in its architecture, MaskCycleGAN lacks this feature.
The absence of an ASR component in MaskCycleGAN may
pose constraints when leveraging linguistic information during
voice conversion.
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