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Abstract—Transmission lines experience the most faults out
of all elements in the smart grid. Identifying the type of
fault and where it occurs allow for faster response time and
higher reliability for the overall system, however smart grids
also experience cyber-physical attacks on data security. This
study develops TLFed, a federated learning-based fault location
and classification algorithm, utilizing 1-dimensional convolutional
neural network (1D-CNN) and long-short term memory (LSTM)
for the local client system architecture. With the use of TLFed,
the system data are decentralized increasing security. The per-
formance of TLFed is evaluated on accuracy, precision, recall,
f1-score, and time-cost and is compared to a centralized set-up.
The results of the evaluation show that TLFed’s fault location
and detection inference have relatively high performance with
relatively cheap time-cost. Future works of this research aims
for blockchain integration and smart contract deployment.

Index Terms—Fault classification, fault location, federated
learning, power system, transmission line fault

I. INTRODUCTION

Power system infrastructure requires the power grid to be
in continuous operations. Various events affect the electric
network to experience failure [1]. Among these instances,
the most affected which experiences failures or outages are
the power system transmission lines (TLs) due to their large
accessibility and scale [2]. Situations when the TLs experience
failure are considered faults, particularly short-circuit faults
which causes the line voltages and line currents to exceed their
rated capacities. When these events happen, system operators
and emergency response must be able to resolve the problem
as soon as possible [3].

In the analysis of contingencies in three-phase power sys-
tems, various types of faults can affect transmission lines. The
following list represents the categories of these faults, along
with their labels used in this paper: single-line fault, single-
line-to-ground (SLG) fault, line-to-line fault (L-L), double
line-to-ground (DLG) fault, three-phase short circuit fault (L-
L-L), and three-phase-to-ground fault (L-L-L-G).

Furthermore, TL faults have the potential to cause signif-
icant harm, including the destruction of valuable equipment,
leading to extended service disruptions and substantial finan-
cial losses. The swift identification and isolation of these

faults, coupled with the implementation of effective protective
measures, are of paramount importance to mitigate the impact
of transmission line faults and ensure a dependable and un-
interrupted electricity supply [4]. Hence, identifying the type
of fault as well as finding where it happened is required for
faster response.

To deal with this, power system operations monitor grid
situations by means of supervisory control and data acquisition
(SCADA) networks being connected in existing infrastruc-
tures. These networks send fault occurrences using relays and
are sent to the nearest base station which then informs the
control center that a fault has been experienced by the system.
In attempts to improve reliability and academic advancement
in smart grid and electrical engineering, methods to detect
faults have been explored using machine learning methods as
performed in [5], however there is no classification of fault
performed yet, development in this research is seen in [6],
where transmission line fault of multiple datasets are classified
using CatBoost classifier. In development of these studies,
combination of fault detection and classification emerged [7].
As real-time systems emerged, close to sensor devices, edge
nodes have come to arise, as was implemented in [8]. Along
with the fast growth of electrical engineering technologies in
the convergence of information technologies, security concerns
of smart grids are also increasing [9], cyberattacks are being
done on distributed generation and aims to affect transmission
line congestions in smart grids [10]. Similar issues for different
cyber-physical systems (CPS) are also experience, wherein
Zainudin [11] made use of federated learning in order to
decentralize the data and increase security by detecting and
classifying intrusion for an industrial CPS. Attempts to use
federated learning in power system technologies have also
been done, however it was done using image analysis and
visual recognition of images of the power system to determine
if there are defects in elements of the transmission line [12].
This work is motivated by the problem of fault detection and
classification and the data security problem that is experienced
by smart grids.

From the existing works discussed, the main goals of this
study are drawn out to be the following:



Fig. 1. TLFed System Model - with local clients relationship with federated server and global outputs

1) To develop TLFed: federated learning-based model for
secure identification of transmission line fault type and
location

2) Evaluate the model and compare with a centralized set-up
of the system.

II. PROPOSED SCHEME

This section discusses the proposed methodology adopted
in this study. It consists of (i) problem formulation, (ii) dataset
generation, and (iii) TLFed. The overall system model is
illustrated in Fig. 1.

A. Problem Formulation

With the intention of securing data privacy of smart grids,
due to cyber-physical attacks being done in electric power
systems [9], with the use of decentralizing data while being
able to assist system operators for faster response time, this
work aims to utilize federated learning with fault detection
and classification to assist in power system operations.

B. Dataset Utilized

To capture the dynamics of the smart grid in a practical
simulation, this work used the dataset from [13]. This dataset
utilized MATLAB Simulink to implement a representative
model of the IEEE 5-Bus Test Case, as referenced in [14].
A single-line diagram of the model is shown in Fig. 2;
comprising of five buses, two synchronous generators, and
seven transmission lines.

Fig. 2. IEEE 5-Bus System

1) Features Definition: The features of the dataset used
are the line voltages with the line currents of each phase of
each TL in the system, there are forty-two (42) total features,
six features per TL which are Va, Vb, Vc, Ia, Ib, and Ic,
respectively.

2) Output Labels: The two output classes of the dataset
are the fault class and the fault location experience by the
system. The total number of instances of the dataset used in
both output labels are shown in Tables I and II.

Using this set-up, two datasets are created:

1) Labeled dataset according to the fault-type experienced
with the phase voltages and line currents of each TL of
the system;

2) Labeled dataset according to location of experienced
fault.



TABLE I
FAULT TYPE DATASET INSTANCES

Type of Fault Instances

L-L-L-G 4504
L-L-L 5792
DLG 14149
L-L 13741
SLG 10966

Line fault 6318
No Fault 407668

TABLE II
FAULT LOCATION DATASET INSTANCES

Fault Location Instances

Bus 1 to Bus 2 (L12) 4440
Bus 1 to Bus 3 (L13) 7582
Bus 2 to Bus 3 (L23) 7477
Bus 2 to Bus 4 (L24) 10063
Bus 2 to Bus 5 (L25) 5747
Bus 3 to Bus 4 (L34) 10043
Bus 4 to Bus 5 (L45) 10118

No fault 407668

C. TLFed

This section discusses the system methodology of TLFed,
The system flow of TLFed is as seen in Algorithm 1, this
utilized two functions: the updating of the local server and
the aggregation of the model at the federated server. The
simulation made use of the flwr framework [15], in order
to develop a federated learning-based system. This section
discusses in detail the methodology used for the federated
learning system TLFed.

1) Partitioning of Data: In this proposed scheme, the data
is split equally across all clients in a random manner, in order
to keep the data decentralized even at the local level.

2) Local Client Model Architecture: The individual local
client models make use of deep learning methods for their
inference of fault class and fault location, the system archi-
tecture utilized 1-Dimensional Convolutional Neural Network
(1D-CNN)in series with a long short-term memory (LSTM)
algorithm for main framework. The whole sequential model is
as seen in Fig. 3. This model is composed of the input layer for
the forty-two features, followed by the 1D-CNN with sixteen
filters with Rectified Linear Unit (ReLU) as the activation
function, connected to the LSTM with thirty-two (32) units,
the output of the LSTM is sent to a dense layer with thirty-two
(32) neurons utilizing ReLU as its activation before sending
it to the output layer uses softmax for classification. For the
output, fault type classifier has seven (7) classes, while the
fault location classifier has eight (8) classes. This sequential
model is compiled using the Adam optimizer.

3) Global Model Aggregation: In the process of training
local clients, each client contributes a weighted model without
transmitting their data. These models are then aggregated
using the FedAVG method as performed in [11] to update

Fig. 3. Local Client Architecture

Algorithm 1: TLFed Algorithm based on FedAvg
Federated Server executes:

initialize global model weight w0

for each communication round t = 1,2 .. do
St ← (random set of m local server)
for each local server k ∈ St in parallel do

if clientValidated(kcrt) then
wk

t+1, losst, acct ←LocalServerUpdate(k,wt)
end

end
wt+1 ←

∑K
k=1

η k
η wk

t+1

end

LocalServerUpdate(k,w) : //local server k; weight w
Pk ← (collect data from local clients)
β ← (split Pk into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ β do
w ← w − η▽ℓ(w; b)

end
end
loss, acc = model(w).evaluate()
return w, loss, acc to server

the federated model. This updated federated model is then
employed globally and distributed to all clients. This iterative
process continues until the set communication round at which
the model was evaluated.

4) Simulation Set-up: The experiment configuration em-
ployed a user-friendly federated learning framework known as
flwr [15], in which virtual client operations were carried out.
The flwr instance was used to generate and connect all clients,
while Ray was utilized for virtual simulations and modelling
of multiple virtual clients along with the network set-up. These
simulations were run on a server system featuring an Intel(R)
Core(TM) i9-10940X CPU with a clock speed of 3.30GHz,
three NVIDIA GeForce RTX 3090 GPUs, and 128 GB of
RAM.



III. PERFORMANCE EVALUATION

The evaluation of the model was determined based on five
parameters: accuracy, precision, recall, f1-score, and time-cost.
In which this section is sub-divided into the different cases of
performance comparisons:

1) Different number of overall clients;
2) Performance across various communication rounds;
3) Performance against the centralized model.

A. Performance Comparison: Number of Clients

For evaluation of the proposed method, it was run with
three set-ups with different number of overall total clients.
The number of clients is based on the number of transmission
lines in the system, hence simulations were set to the following
cases: seven (7) clients, fourteen (14) clients, and twenty-one
(21) clients. Fig. 4 and 5 shows the accuracy graph comparison
of the different clients which shows increasing trend with
increase of the clients. Overall performance metrics at the
100th communication round is shown in Tables III and IV.

Fig. 4. Accuracy graph of fault class with different number of total clients

TABLE III
TLFED (FAULT CLASS) WITH CLIENT VARIATION

(BASED ON 100TH COMMUNICATION ROUNDS RESULTS)

Clients Metrics

(K) Accuracy Precision Recall F1-Score Time-cost

7 94.78% 94.54% 96.07% 95.25% 4.756 ms

14 94.84% 94.55% 96.13% 95.16% 4.914 ms

21 94.84% 94.57% 96.13% 95.21% 4.867 ms

Fig. 5. Accuracy graph of fault location with different number of total clients

TABLE IV
TLFED (FAULT LOCATION) WITH CLIENT VARIATION

(BASED ON 100TH COMMUNICATION ROUNDS RESULTS)

Clients Metrics

(K) Accuracy Precision Recall F1-Score Time-cost

7 92.20% 90.66% 92.20% 90.98% 4.842 ms

14 92.56% 91.30% 92.56% 91.55% 4.939 ms

21 92.50% 91.40% 93.42% 92.18% 4.747 ms

B. Performance Comparison: Number of Rounds

Based on the simulation of 21-client set-up in Fig. 4, as
the rounds increase, the increase of performance also increase.
From communication rounds 1 to 60 it can be seen to increase
very drastically, while the improvement of the model slows
down but still continues to perform better. The 1st, 10th, 40th,
70th and 100th communication round performance results
is shown in Table V uses the 21-client set-up, where best
performance is observed at the last round with an increasing
trend, except time-cost at the 10th round which is faster,
having a computation speed of 4.795 ms.

For the effect in fault location, 5 also show that regardless of
the number of clients used for the TLFed process, the overall
increase in performance can be seen, especially before the 40th
communication round, followed by a gradual increase from
then onwards. It can be noted that there are situations wherein
the accuracy drops, however the overall increase is still greater
and provides better performance. The data shown is that of the
experiment with 21 clients, as this had well-rounded metrics
overall having the best accuracy, precision and f1-score at the
last round being 92.20%, 90.66%, and 90.98%, respectively,
while recall has performed best at the 40th round with 92.41%



and time-cost at the first round is the fastest with 4.727 ms,
with all the metrics seen in VI.

TABLE V
TLFED WITH ROUND VARIATION (21 CLIENTS)

FAULT CLASS

Rounds Metrics

Accuracy Precision Recall F1-Score Time-cost

1 90.82% 82.49% 90.86% 85.80% 4.850 ms

10 92.34% 91.29% 93.60% 92.14% 4.795 ms

40 94.32% 94.00% 95.61% 94.70% 4.816 ms

70 94.52% 94.20% 95.81% 94.91% 4.885 ms

100 94.84% 94.57% 96.13% 95.21% 4.867 ms

TABLE VI
TLFED WITH ROUND VARIATION (21 CLIENTS)

FAULT LOCATION

Rounds Metrics

Accuracy Precision Recall F1-Score Time-cost

1 87.56% 83.74% 89.50% 86.24% 4.727 ms

10 90.20% 88.52% 91.10% 89.35% 4.849 ms

40 91.53% 89.88% 92.41% 90.93% 4.732 ms

70 91.78% 89.69% 91.78% 90.44% 4.851 ms

100 92.20% 90.66% 92.20% 90.98% 4.842 ms

C. Performance Comparison: Centralized Classifier Model

Finally, a comparison is done against the local client. The
centralized is evaluated at 100 epochs compared with the 100
rounds of the proposed model. The graphs in Fig. 6 and 7 show
the accuracy of the proposed model versus the centralized
model across all rounds. Comparison of the other parameters
may be seen in Tables VII and VIII.

TABLE VII
COMPARISON VS CENTRALIZED MODEL
FAULT CLASS AT 100TH ROUND/EPOCH

Model Metrics

Accuracy Precision Recall F1-Score Time-cost

Central 94.30% 94.02% 95.59% 94.65% 4.551 ms

TLFed 94.84% 94.57% 96.13% 95.21% 4.867 ms

TABLE VIII
COMPARISON VS CENTRALIZED MODEL

FAULT LOCATION AT 100TH ROUND/EPOCH

Model Metrics

Accuracy Precision Recall F1-Score Time-cost

Central 90.45% 88.50% 91.35% 89.45% 4.946 ms

TLFed 92.50% 91.40% 93.42% 92.18% 4.747 ms

Fig. 6. TLFed vs Centralized Model - Fault Class

Fig. 7. TLFed vs Centralized Model - Fault Location



IV. CONCLUSION

This research work was able to develop a federated learning-
based classifier and location identifier for power system trans-
mission lines fault. The use of 1D-CNN with LSTM was
deployed on the local clients and performance evaluation on
different metrics and case set-ups were tested. Analysis of
the results show the proposed model is able to identify fault
type and location with relatively high accuracy, precision,
recall, and f1-score. Real-time inference is also attained by
TLFed. The effect of decentralizing the data not only gave
security to the system, it also gave higher performance results
compared to a centralized application of the model deployed
on the system. As such, the objectives of this research work
are deemed to have been met. Future works of this research
include blockchain integration for fault occurence and smart
contract deployment in smart grid applications.
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