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Abstract— The use of Artificial Intelligence (AI) in Internet 

of Things (IoT) ecosystem has been growing exponentially, 

enabling various Computer Vision (CV) applications. These 

applications must handle large image data demanding reliable 

communication systems that retain image quality for 

downstream Deep Learning (DL) tasks. Existing 

communication systems, such as Orthogonal Frequency 

Division Multiplexing (OFDM), promise improvements in data 

rate, spectral efficiency, and mitigation of multipath fading; 

however, these systems often distort the received images due to 

complex channel environments and impairments from various 

physical layer (PHY) blocks. Source Coding is one such PHY 

block, which aims for compression savings at the expense of 

image quality. Therefore, in this study, we evaluate the 

performance of a DL model for downstream image recognition 

tasks, where images are transmitted over communication 

systems utilizing various source coding schemes over complex 

channels. Experimental analysis shows that Variable-Length 

Coding (VLC) retains superior image quality, which results in 

over 95% DL model accuracy throughout the experiment.  
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I. INTRODUCTION 

 Image communication system is at the center of Internet 
of Things (IoT) ecosystem to enable Computer Vision (CV) 
applications such as traffic sign recognition, event monitoring, 
medical image analysis, and surveillance systems.  With the 
recent advancements in Artificial Intelligence (AI), many of 
these applications are AI-driven which demands for robust 
communication systems ensuring high data rates and 
bandwidth efficiency while retaining image quality. This is 
essential for reliable transmission of vast amounts of image 
data generated by end devices in real-time, and effectively 
carrying out downstream Deep Learning (DL)-based IoT 
applications. The emergence of Fifth Generation (5G) 
communication systems aims to cater to these requirements, 
with potential advancements in network capacity, spectral 
efficiency and infrastructure evolution compared to previous 
generations [1]. One such innovation is the Orthogonal 
Frequency Division Multiplexing (OFDM) system, which is 
recognized to mitigate multipath fading, and provide high data 
rate with high order modulation and parallel transmission 
schemes [2]. Since its inception, it has become popular and 
has been adapted in many practical wireless communication 
systems and standards such as WiMAX, IEEE 802.11, Wi-Fi, 
and LTE. However, in OFDM-based image communication 
systems, there are multiple factors that can degrade signal 
quality, such as complex channel models, data transformation 
methods, modulation techniques, the number of antennas, as 
well as interferences such as Inter-symbol Interferences (ISI) 
and Inter-carrier Interferences (ICI). These factors can 
introduce heavy distortions in the recovered images, and 
severely hinder DL performance for downstream IoT 
applications [2]. Table 1 of [3] provides a comprehensive 
summary of several studies that have investigated the 
implementation of various OFDM communication systems, 
and evaluated the quality of recovered images under the 
influence of these systems.  

The performance of DL models under the influence of 
various communication impairments needs to be well-studied 
to improve existing systems or develop new ones in the field 
of wireless communication and network. Several studies have 
evaluated the performance of DL models on images recovered 
from various OFDM-based communication systems 
considering factors such as channel correction [4], modulation 
schemes, and channel models. The authors in [2] conducted 
an extensive analysis of OFDM-based image communication 
systems and the DL performance on recovered images 
considering complex channel models, various channel 
estimation techniques, and high-order modulation schemes. 
Additionally, they evaluated the performance of multiple DL 
models and utilized various augmentation techniques to 
achieve better inference accuracy. However, the authors have 
considered only Variable-Length Coding (VLC) for source 
coding and do not evaluate other schemes. Therefore, in this 
study we consider OFDM-based image communication 
systems using various source coding schemes over different 
channel models. Specifically, we have considered VLC and 
Fixed-Length Coding (FLC) for source coding of image data. 
These coding schemes are often utilized in practical systems 
to enhance transmission quality and efficiency. For the 
channel model, AWGN and Rayleigh fading channel are used 
to replicate real world scenario. Performance of DL models on 
images transmitted over these systems are evaluated. 

The rest of the paper is organized as follows. Section II 
presents the system model of the study; section III presents the 
results and discussion. Finally the conclusion and future work. 

II. SYSTEM MODEL 

A. Physical layer (PHY) of OFDM Communciation system 

Orthogonal Frequency Division Multiplexing (OFDM) is 
a digital modulation technique used in numerous high-speed 
communication systems. It converts serial high-speed data 
stream into multiple parallel lower-rate data streams, which 
improves spectral efficiency, and minimize multipath 
interferences [1]. In OFDM, bitstream are first coded using a 
specific source coding, which may include data compression, 
error correction, and interleaving. The encoded data are then 
mapped onto subcarriers and represented on In-phase and 
Quadrature (IQ) plane based on modulation techniques such 
as M-ary Quadrature Amplitude Modulation (M-QAM). Data 
is then converted from serial to parallel symbols, and 
subsequently pilot symbols are inserted in the data stream for 
channel correction at the receiver. Comb-type pilot insertion 
with linear interpolation is used in the experiment, which is a 
common pilot insertion technique, particularly in fast fading 
channels [1]. These parallel symbols then undergo the Inverse 
Discrete Fourier Transform (IDFT) to convert from 
frequency-domain to time-domain OFDM symbols.  

Adjacent symbols and multipath carriers can overlap 
during transmission due to channel time spread, causing ISI 
and ICI. To mitigate this, a guard interval, often called the 
cyclic prefix (CP), is added to the signal. After adding the CP, 



the signal is then amplified to radio frequency (RF) and 
wirelessly transmitted. During wireless transmission, the 
signal experiences multi-path effects, fading, and variations in 
delays, phase shifts, and signal strengths. Different channel 
models can be used to simulate these effects. For the 
experiment, both simple AWGN channel and complex 
Rayleigh fading channel is considered for evaluation. At the 
receiving end, the signal is converted back to IQ samples. The 
OFDM symbols are recovered, and the CP is removed. The 
symbols are then converted to the frequency domain using 
DFT. In the frequency domain, symbols are adjusted using 
channel correction, which includes both channel estimation 
and equalization to recover the original IQ data. During 
channel estimation the received pilots are compared with the 
previously known ones to find the channel impulse response. 
This process counteracts signal attenuation by estimating the 
channel through the least squares (LS) method and linear 
interpolation. This interpolation method uses two neighboring 
pilots to predict the signal response. The estimated channel 
then recovers the modulated data using zero-forcing channel 
equalization. The parallel data then gets serialized, 
demodulated into soft bits (log-likelihood ratios), and turned 
into a binary stream by the decoder. To recover the transmitted 
image, the binary data is reverted to decimal and resized to 
match the original image dimensions. Fig. 1. illustrates the 
PHY of the OFDM system. 

To summarize the parameters in the experiment, FLC and 
VLC are utilized for source coding. The modulation technique 
used is 16-QAM (rectangular constellation) with a symbol 
length of 4. The data stream for the system comprises 64 
subcarriers, 16 CP, and 4 pilots (using comb-type pilot 
insertion). IDFT and DFT are used for the transformation 
techniques. LS with linear interpolation is employed for 
channel estimation, and zero-forcing is applied for channel 
equalization. For the channel model, AWGN and a Rayleigh 
fading channel are considered for wireless transmission. 

B. Source Coding for OFDM System 

Source coding is the process of assigning binary 
sequences, known as codewords, to elements of a specific 
alphabet comprised of symbols or letters. This collection of 
codewords is termed as code [5]. FLC is a source coding 
scheme where every symbol from the source alphabet gets an 
equal length of bits. For example, in an RGB image with pixel 
values from 0 to 255, each pixel value has a fixed length of 8 
bits (as 28 = 256  possible values). While FLC coding is 
simple and straightforward, it is not efficient. Lower pixel 
values are assigned with fixed length even when they have 
shorter codeword compared to higher pixel values [1], [5]. 
Additionally, redundant bits are added to the codewords with 
smaller code lengths to make them same as the assigned fixed 

length. Errors in these redundant bits, especially in the most 
significant ones, from the communication channel can 
drastically alter pixel values and heavily distort the recovered 
images. In practice, image formats usually incorporate 
advanced techniques, such as compression and VLC, to 
minimize the data size, especially for intricate or large images. 
Standards like JPEG combine transformations, quantization, 
and VLC techniques (Huffman coding) to attain notable 
compression ratios. Techniques like Huffman coding are often 
preferred due to their ability to exploit varying symbol 
probabilities for better compression. There are challenges 
such as synchronization issues that persist in Huffman coding 
as well. Furthermore, the probabilities of occurrence for the 
source symbols or their block lengths should be known which 
is impractical in real world scenarios and can leads to less-
than-optimal compression [1], [5]. In such cases, transmitting 
the Huffman tree alongside the compressed data might be 
necessary leading to additional overhead. 

Images can be compressed using either lossless or lossy 
methods. While lossless compression aims to preserve image 
quality, lossy compression ensures higher compression 
savings [6]. However, increased compression savings have 
adverse effects on DL performance [6]. Therefore, instead of 
compression savings, this study mainly focuses on evaluating 
the image quality recovered from OFDM systems using FLC 
and VLC, and how it affects the performance of DL models. 
In the experiment, for FLC, the corresponding decimal values 
of each pixel are coded to a fixed 8-bit length codeword. On 
the other hand, for VLC, the decimal values are coded as 
variable length according to the length of their respective 
codewords. The information about the length of each 
codeword for every pixel is transmitted as side information to 
the receiver for successful decoding. Although transmitting 
side information may increase the overall system overhead, it 
avoids the synchronization problems commonly experienced 
in VLC coding, such as the standard Huffman coding. 

III. RESULT AND DISCUSSION 

This section discusses the simulation analysis of the 
experiment. Fig. 2. presents sample images recovered from 
various systems for visual analysis. Based on visual 
inspection, VLC retains better image quality compared to 
FLC, especially over the Rayleigh fading channel. Using FLC 
over Rayleigh fading channel, the information in the Region 
of Interest (ROI) is invisible at lower Eb/N0 regions. Following 
section quantifying the performance of communication 
system and image quality in terms of Bit Error Rate (BER) 
and Peak Signal to Noise Ratio (PSNR), respectively. The 
BER measures the number of error bits due to system 
impairments, and PSNR measures quality of received image. 

 
Fig. 1. Illustration of PHY in legacy OFDM.  

Modulation S/P
Pilot 

Insertion
IDFT

Digital−to−Analog 

Conversion

Demodulation P/S
Channel 

Equalization
DFT

Analog−to−Digital 

Conversion

Channel Model

Channel 

Estimation AWGN

… … … CP 

Insertion

… … CP 

Removal

Channel 

Coding

Channel 

Decoding

Source 

Coding

Source 

Decoding

…

Bit Stream IQ Data Frequency Domain Symbol (S) Time Domain Symbol (N)

P/S

S/P



A. Image Quality Analysis 

The BER analysis (on a logarithmic scale) for the 
proposed OFDM-based image communication system over 
both AWGN and Rayleigh fading channels is shown on Fig. 
3. (a). Over the AWGN channel, there is a significant drop in 
BER as Eb/N0 increases. At an Eb/N0 of 10dB, the system 
achieved the lowest BER of 0.03. Throughout the experiment, 
FCL and VLC achieved identical BER. In contrast, for the 
system over the Rayleigh fading channel, the BER does not 
decrease as significantly at higher Eb/N0 values compared to 
the AWGN channel. The lowest BER recorded was 0.32 at 
Eb/N0 10dB. Similar to AWGN channel, both FLC and VLC 
yield identical BER values throughout the experiment. The 
reason for that could be multifold. Firstly, BER is the rate of 
number of bits in error, which remain consistent regardless of 
the number of bits transmitted using the different source 
coding scheme. Secondly, although FLC and VLC inherently 
differ in terms of average code length, their efficiencies is 
comparable over the given channel conditions, which did not 
particularly favor one coding scheme over the other. Lastly, 
the inherent characteristics of the AWGN and Rayleigh fading 
channels did not differentiate for the two different coding 
techniques, resulting in identical values. 

The quality of the recovered images in terms of PSNR 
from the proposed systems over AWGN and Rayleigh fading 
channels is presented in Fig. 3. (b). Images recovered from the 
AWGN channel exhibit high quality, which further improves 
with an increase in Eb/N0. Using VLC, as the Eb/N0 increased, 
the PSNR improved by 41%, reaching a peak of 28.78dB at 
an Eb/N0 of 10dB. Similar trend is observed with system using 
FLC, where the PSNR improved by 67%, attaining a 
maximum of 24.62dB at the same Eb/N0. However, there is a 
significant difference between the image qualities from 

systems using FLC and VLC. Though the BER remain 
consistent between the two source coding schemes as 
observed previously, the error in the bits can drastically 
change a pixel value depending on its codeword position as 
discussed in in Section II(B), resulting in difference in image 
quality. Throughout the experiment, VLC consistently 
achieved better image quality compared to FLC, with 
improvement of highest 39% and lowest 17% observed at 0 
dB and 10dB, respectively. Images from the communications 
system over a Rayleigh fading channel were heavily distorted 
with noise, which was observed in the PSNR analysis as well. 
At Eb/N0 10dB, the highest PSNR of 18dB and 11dB was 
observed by the system using VLC and FLC, respectively. 
There were no significant improvement in image quality even 
with the increase in Eb/N0. Throughout the experiment, the 
PSNR value improved only by 1dB and 2dB for VLC and 
FLC, respectively. Similar to the AWGN channel, there was a 
significant difference in image quality between FLC and VLC 
schemes. VLC achieved the highest improvement of 98% at 
Eb/N0 0dB and lowest 64% at Eb/N0 10dB, compared to FLC. 

B. DL-based Downstream Application 

The primary objective of this study is to evaluate the 
performance of a DL model on reconstructed images from 
systems using FLC and VLC over the two channels. For the 
experiment we consider DL-based traffic sign recognition 
(TSR) as the downstream IoT application deployed in an 
Intelligent Transport System (ITS) environment. Given the 
power and computational constraints of IoT devices, AI tasks 
are often offloaded to edge or cloud computing platforms. 
While cloud computing meets high computational and storage 
needs, primarily for training and testing DL models, it can be 
costly for larger capacities. As a solution, edge computing can 
bring cloud resources closer to the devices, allowing the DL 
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Fig. 3. Performance analysis in terms of (a) BER, (b) PSNR, and (c) DL model accuracy.  
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Fig. 2. Sample images from communication systems at various Eb/N0 using FLC (top) and VLC (bottom) over the channels. 



model to serve as an inference engine in an edge-cloud 
collaborative framework, which enables real-time CV 
applications such as the TSR in ITS.  In this scenario, the 
images are initially transmitted to an edge server through 
OFDM-based image communication systems, exposing them 
to noise and distortion. The edge server processes these 
distorted images using a model trained on a public dataset in 
a cloud server. The cloud center offers multiple task-specific 
models to provide Machine Learning as a Service (MLaaS) 
[7]. Specifically, the edge server requests a model for TSR, 
which had been initially trained and tested on pristine traffic 
sign images from local database in cloud server. The DL 
model and training parameters are mentioned in Table. I. 

 The performance of the DL model in terms of accuracy 
(correctly classifying the reconstructed images) from 
communication systems using VLC and FLC over the 
different channels is shown in Fig. 3. (c). The accuracy of the 
DL model corresponds to the mean value calculated across all 
inferencing images for a specific Eb/N0. From the graph, we 
can observe that at lower Eb/N0 region (0dB-4dB), the model 
performance on images were distinct across the different 
communication systems. However, in higher Eb/N0 regions 
(6dB-10dB), the DL model achieve high accuracy ranging 
between 97%-99% on images from different systems, 
demonstrating high DL model generalizability. An exception 
to this trend is the DL performance on images from 
communication system using FLC over the Rayleigh fading 
channel. This system has achieved poor DL performance, with 
the highest accuracy of only 57% at Eb/N0 10dB. Such 
accuracy is not suitable for downstream DL applications. 
Additionally, while the BER and PSNR analysis of the 
communication systems indicates that the AWGN channel 
outperforms the Rayleigh fading channel significantly, it is not 
the case for the DL model accuracy. Specifically, the DL 
performance on images from systems using VLC over the 
Rayleigh fading channel outperforms system using FLC over 
the AWGN channel through Eb/N0 0dB to 6dB. This indicates 
that for downstream DL applications, a system utilizing VLC 
scheme can achieve high accuracy, even on complex and 
noisy channels. The reason for that is VLC has high image 
quality retention compared to FLC, as mentioned in Section. 
II(B), even over the noisy channel. Fig. 4. shows the Grad-
CAM visualization of model predictions for images retrieved 
from systems using FLC and VLC over the Rayleigh fading 
channel. Two incorrect predictions on images from system 
using FLC at Eb/N0 0dB and 2dB show the heat map outside 
the ROI, indicating that the model is unable to extract essential 
features for accurate TSR due to the noise on the images. 

IV. CONCLUSION AND FUTURE WORK 

In this study, we evaluated the quality fo recovered images 
and the DL performance on these images from various 
OFDM-based communication systems. Specifically, we 
examined different source coding schemes and channel 
models for the PHY of the OFDM-based image 
communication system. The primary objctive was to assess 
the quality of the recovered images using various source 
codings and determine their suitability for downstream DL 
tasks. Analysis have shown that VLC outperformed FLC in 
terms of both image quality and DL performance. While VLC 
require the transmission of side information, that may lead to 
additional overhead, it retains superior image quality and 
proves more suitable for downstream DL applications. As a 
future direction, we aim to explore different DL algorithms in 
the PHY of the OFDM system to enhance the reliability and 
robustness of downstream DL applications. 
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Fig. 4. Grad-CAM visualization on sample image from 

system over Rayleigh fading channel at  𝐸𝑏 𝑁0 ∈ {0,2,4}⁄  

using FLC (a-c) and VLC (d-f). Two images in the red box 

are incorrectly predicted; rest are correctly predicted. 

TABLE I. Simulation parameters for the DL Application 
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Model EfficientNetV2-B0 [8] 

Model Input Size: 224×224 

Top Layers: 

Average Pooling, 1280 

Flatten, 1280 

Fully Connected, 256 * 
Fully Connected, 7 ⁺ 

Trainable parameter: 6,188,439 

Non-trainable parameter: 60,608 
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s  Optimizer: Stochastic Gradient Descent 

Learning Rate (LR): 0.01 to 0.0001 using Reduce LR 

Loss: Categorical Cross-Entropy 

Accuracy: Training: 99.9%, Validation: 99.9% 

Dataset: GTSRB [9], Classes: 7 

Dataset Split: 

Training: 10220 images – 80% 

Validation: 1400 images – 10% 
Testing: 1400 images – 10% ꜛ 
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