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Abstract—An Image Quality Assessment (IQA) metric 

measures the quality degradation of an image and is used to 
optimize parameters of an image processing algorithm. The IQA 
score can be also an important indicator of the target 
downstream application performance. With the popularity of 
deep learning (DL)-based applications in resource constrained 
domains, most of the DL computations are outsourced to avail 
remotely located resources. The image data transmission for this 
purpose is susceptible to distortions due to the imperfect 
communication environment. The existing IQA metrics used to 
evaluate the quality of these images mainly rely on human 
judgment and do not account for the perceptual distortions that 
are responsible for the degradation in DL model performance. 
To address this issue, we propose a convolutional autoencoder-
based IQA metric that compares images in low dimensional 
feature space and can be used to monitor image degradation 
occurred during data transmission. The simulation analysis 
shows that the proposed method introduces at best 0.13% error 
while on average 8% error compared to the application model 
accuracy. Importantly, the proposed IQA score coincides with 
the DL model performance on a downstream task and can be 
used to optimize the parameters of a communication system.   

Keywords—deep learning, autoencoder, image quality 
assessment metric 

I. INTRODUCTION 

An image quality assessment (IQA) metric measures the 
quality degradation of an image. The degradation in an image 
can be due to image acquisition hardware, image processing 
algorithm, and/or data transmission [1]. The IQA metrics that 
are used to quantify an image quality can be classified as 
algorithms that require a reference image (Full-reference 
methods) and algorithms that do not require a reference image 
(No-reference methods). The full-reference methods compare 
a distorted image with the pristine reference image to measure 
a quality score. The methods in this category are suitable to 
judge the quality of images that undergone certain image 
processing algorithms such as image compression etc. On the 
other hand, the no-reference methods assess the perceptual 
quality of an image based on expected statistical properties of 
an image. The traditional IQA metrics are used to optimize the 
parameters of a preprocessing algorithm or an image 
acquisition hardware to improve the image quality that is its 
appearance, with respect to how it is perceived by the humans. 
In other words, the goal of the conventional IQA metrics is to 
compute an objective quality score that agrees with a 
subjective human quality score. However, with the wide 
adoptability of DL in various domains, it is necessary to 
quantify the image quality with respect to how well a DL 

model performs on a target task [2], [3]. The image quality 
specific to a task that can provide an indication of the 
downstream application performance is termed as task 
amenability in [2]. 

DL models have achieved the state-of-the-art performance 
for different computer vision tasks such as classification, 
segmentation etc. For an efficient DL-based solution, it is 
important that the model training and testing are performed 
against the data that comes from the same target application 
distribution. However, when this distribution is altered by 
distortions such as blur and noise in the images, then the 
performance of the trained DL model degrades. The source of 
distortion might be a lossy compression algorithm or 
imperfect channel conditions during transmission. Lossy 
compression provides a solution to efficiently utilize the 
limited available bandwidth. The information loss in a lossy 
compression algorithm such as the JPEG standard, is carried 
out in such a way that the degradations are not human 
perceivable. However, these unperceivable artifacts degrade a 
trained DL model accuracy. For example, authors in [3]–[5] 
analyzed the impact of the JPEG compression algorithm on a 
trained DL model performance and proposed methods to 
circumvent this issue. An alternative solution to the lossy 
compression algorithm is to utilize high data rate systems. 
However, due to the imperfect wireless communication 
environment and hardware errors, the received image quality 
degrades significantly. The authors in [6], [7] have studied the 
impact of these noises on a trained DL model performance in 
a scenario where the images are exchanged to avail third-party 
owned computational resources. Their analyses have shown 
that a DL model accuracy suffers during inference stage, when 
the images were transmitted with a high data rate wireless 
communication system. 

The aforementioned works either analyze the impact of 
image distortions on a trained DL model performance or 
proposed solutions to mitigate the performance gap. However, 
they do not quantify the perceptual distortions that are 
responsible for the degradation of a DL model performance. 
The related work of task amenability in [2] do not consider 
communication distortions. On the other hand, the existing 
IQA metrics are either sensitive to noise (full-reference 
metrics) or to changes in the distribution (no-reference 
metrics) [8]. Therefore, in the current study, we propose an 
IQA metric based on convolutional autoencoder to compare 
the similarity between clean and processed images in low 
dimensional feature space. Specifically, we have considered 
image distortions resulted from a communication system. For 
this purpose, we have implemented an Orthogonal Frequency 



Division Multiplexing (OFDM)-based communication system 
utilizing different modulation schemes. For the downstream 
application task, we have considered DL-based multiclass 
classification problem. For the scenario, we have assumed 
edge-cloud collaboration to enable AI-based IoT applications. 
The main contributions of this work are: (1) an autoencoder-
based IQA metric to quantify an image quality with respect to 
DL interpretibility and (2) the experiments were conducted on 
OFDM-based image communication system implemented 
with different modulation schemes  and channel models.  

II. SYSTEM MODEL 

We considered an edge-cloud collaboration to enable AI-
based IoT applications as shown in Fig. 1.  In general, there 
are two stages for implementing a DL-based solution. In the 
first stage, the model learns how to solve a problem on the 
available data – training stage. In the second stage, the trained 
DL model is deployed to solve real world problems related to 
the same domain they have previously learned – inference 
stage. The DL algorithms are compute-intensive tasks and 
their computation demands exceed the capability of resource-
constrained edge devices. Therefore, the DL model training is 
carried out on the data that is available on the cloud server 
utilizing cloud computational resources. The trained model is 
then deployed on edge server, which acts as an inference 
engine to serve various requests. The IoT end devices, which 
generate the data, are resource constrained devices; therefore, 
the AI computations are offloaded to the edge server. The 
devices are connected via a wireless link implemented using 
an OFDM system to facilitate the high data rate demands. This 
data transmission is susceptible to various types of distortions 
such as imperfect channel conditions, hardware noises, etc. 
For simplicity, we assumed that there is no other source of 
distortions such as image quality degradation due to lossy 
compression, except the communication system. Our 
objective is to measure the perceptual distortions in wirelessly 

transmitted images in order to estimate the downstream AI 
algorithm performance.  

III. PROPOSED METHOD 

The basic principle of the proposed IQA metric is to 
compare the perceptual similarity of a processed image to the 
original image in the feature space [9]. For this purpose, a 
dimensionality reduction function gሺ⋅ሻ such as an autoencoder 
[10] can be used to map an image 𝑰 ∈ 𝓝ௐൈுൈ in the high 
dimension pixel space to a feature vector in lower dimensional 
latent space Ψ ∈ 𝓡௪ൈ.  The proposed convolutional 
autoencoder as shown in Fig. 2. (a), consists of two non-linear 
functions: an encoder function  gሺ𝑰ሻ that maps the input 
image 𝑰 to a feature vector Ψ, and a decoder function gௗሺΨሻ 
that reconstructs the input image from those features. The goal 

is to learn gௗ ቀgሺ𝑰ሻቁ ൌ 𝑰 ൎ 𝑰 to minimize the reconstruction 

loss function  ℒ൫𝑰, 𝑰൯ , which penalizes gௗ ቀgሺ𝑰ሻቁ for being 

dissimilar from 𝑰 . The proposed autoencoder has four 
convolutional layers in the encoder and the decoder, and 128 
features extracted from the input image. Instead of using 
pooling layers to reduce the input size, the stride width is set 
to 2 in the last three convolutional layers. Though this 
increases the number of trainable parameters, but better 
accuracy can be achieved [11]. The trained encoder can be 
used to extract features from the original and processed 
images to compare their similarity as shown in Fig. 2. (b).  

The feature vector of an image in the latent space is 
defined as Ψ ൌ ሾ𝜓ଵ, 𝜓ଶ, … , 𝜓ଵଶ଼ሿ and the feature vectors of 𝑁 
images of label 𝑙  can be considered as a set of feature 
vectors ⋃ ൛Ψ,ൟே

ୀଵ . Instead of comparing the feature vectors, 
a representative centroid of the feature vectors set can be 
defined as in [9], [12] 
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Fig. 1. Edge-cloud collaboration to enable AI-based IoT applications. The
cloud server is used to train a model on its locally available data and edge is 
used as inference engine. The IoT end-devices send the AI computation 
requests and receive a result from the edge server. 
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Fig. 2. The proposed convolutional autoencoder-based IQA measure. (a) is 
the training of the autoencoder and (b) is the feature similarity of clean and 
noisy images using the trained autoencoder. 
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For a specific label 𝑙ሖ, the distance between  𝛾ሖ
 and  𝛾ሖ

 and 
the rest of the labels 𝑙 can represent how similar the features 
are. The proposed IQA score ሺሻ can be obtained as: 

 ൌ 1 െ 𝑓 ቀ𝛿൫𝛾
, 𝛾

൯ቁ , ሺ3ሻ 

where, 𝑓ሺ𝑥ሻ is a normalization function that maps 𝑥 into the 
range of  ሾ0,1ሿ , and =1  represents the highest similarity 
between the two feature vectors.  

IV. RESULTS AND DISCUSSION 

In this section, we implement our system model described 
in Section 2 and compare the transmitted image quality with 
respect to different quality assessment metrics. In the 
experiments, we have used the MNIST handwritten digit 
dataset [13], which consists of 60K training and 10K test 
images distributed between 10 classes. The images are 
grayscale with 2828 dimensions. In order to avoid long runs 
of zeros because of the uniform black background, we have 
replaced the pixel values with a random value of 20. For the 
metrics, their score is calculated as a mean across the whole 

test set. In addition, our simulation parameters used for the 
communication system design are summarized in Table 1.  

A. Visual Quality Analysis 

For visual inspection of images transmitted over different 
communication systems, we have considered QPSK and 64-
QAM with SNR ∈ ሼ0, 15ሽ and both channel models as 
examples. The standard Peppers image was transmitted over 
these systems and the results are shown in Fig. 3. The figure 
shows the transmitted and received constellation points, the 
received images, and histograms of the original and 
reconstructed images. It can be seen that the image has better 
appearance for QPSK than 64-QAM as the distance between 
the constellation points is larger and the error margin is lower. 
When using 64-QAM with the fading channel then the 
recovered image is unrecognizable. The main reason for 
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                                                            (c)                                                                                                                              (d) 

            
                                                            (e)                                                                                                                              (f) 

            
                                                            (g)                                                                                                                              (h) 

Fig. 3. Visual analysis of the images transmitted over an OFDM-based image communication system. Images were transmitted over AWGN channel in (a) –
(d) and over Rayleigh channel in (e) – (f). The SNR = 0 dB in the first column and SNR = 15 dB in the second column. The modulation scheme used was 
QPSK in (a)(b)(e) and (f) and 64-QAM in (c)(d)(g) and (h). In the constellation diagrams, orange is the transmitted and blue is the received constellation 
points. The histograms for the original and received images are shown with filled area and line graph, respectively, where the color shows the histogram of its 
corresponding color channel in the image. 

TABLE I. Summary of the simulation parameters used for the image 
communication system. 

Parameters Values 
Modulation Techniques BPSK, QPSK, 16-QAM, 64-QAM
Transform FFT 
Channel Model AWGN, Rayleigh Fading
Channel Estimation Least Square Error 
IFFT/FFT Length 64 
Cyclic Prefix Length 16 samples 



providing the histograms is to analyze the distorted image 
properties. An image histogram plots the intensity distribution 
as the number of pixels at each intensity level. For a natural 
image, the histogram is a skewed distribution concentrated at 
one location as shown in Fig. 3. with filled area graph for each 
color component. On the other hand, for noisy images the 
intensity distribution becomes smoother for example, as 
shown in Fig. 3. (c) and (e) with the line graph. In the case of 
Fig. 3. (a) (d) and (f), the received images have visible 
distortions; however, the distribution is following almost the 
same natural intensity distribution as that of the original 
image. On the other hand, for 64-QAM and Rayleigh fading 
channel as shown in Fig. 3. (g) and (h), the reconstructed 
images are noisy and have uniform distribution.  

In addition, an example image from the MNSIT dataset is 
transmitted over all communication systems given in Table 1 
and the results are shown in Fig. 4. for AWGN channel and 
Fig. 5. for Rayleigh fading channel. These images were used 
to evaluate the performance of the proposed autoencoder. In 
Fig. 4. and 5., each image is accompanied with the 
reconstructed image obtained from the proposed autoencoder. 
In Fig. 4. all reconstructed images are recognizable, while in 
Fig. 5. the learned representation from the clean images is not 
adequate to reconstruct images from the 16-QAM and 64-
QAM transmitted images. It is worth mentioning that our 
objective was not to train the autoencoder for image denoising 

task, but to extract features from the images that are 
representative of the downstream task.  

B. Image Quality Analysis 

Bit Error Ratio (BER) is used to measure quality of the 
reconstructed signal on the receiver side. It is a ratio between 
the number of bit errors and the total number of bits. In our 
simulations, the BER of a system is calculated as a mean value 
across the whole test dataset and is given in Table 2. It can be 
observed that with higher SNR the BER decreases and 
increase in the number of bits per symbol increases the BER.    

The BER measures the signal quality regardless of the 
signal contents. In other words, it does not measure the 
perceptual quality of the reconstructed images. Therefore, to 
get a better understanding of the image quality, we have 
considered Peak Signal-to-Noise Ratio (PSNR) and Structural 
Similarity Index Measure (SSIM) [14] quality metrics. The 
PSNR measured in dB, is derived from the mean square error 
metric, and gives the ratio of the maximum intensity value in 
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Fig. 4. Example image from the MNIST dataset transmitted over AWGN
channel utilizing different modulation schemes. The proposed autoencoder
reconstructed images are shown below each image. The modulation used in
(a) – (d) is BPSK, (e) – (h) is QPSK, (i) – (l) is 16-QAM and (m) – (p) is 64-
QAM. For each modulation SNR ∈ ሼ0, 5, 10, 15ሽ. 
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Fig. 5. Example image from the MNIST dataset transmitted over Rayleigh
fading channel utilizing different modulation schemes. The proposed
autoencoder reconstructed images are shown below each image. The
modulation used in (a) – (d) is BPSK, (e) – (h) is QPSK, (i) – (l) is 16-QAM 
and (m) – (p) is 64-QAM. For each modulation SNR ∈ ሼ0, 5, 10, 15ሽ. 
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Fig. 6. Recovered image quality analysis with respect to different quality 
evaluation metrics. (a) is PSNR, (b) is SSIM and (c) is PIQE measure. The 
missing values in (a) for some modulation schemes are when PSNR=. 
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the image to the power of the distortion. Higher the PSNR 
value, similar the two images are and when two images are 
same then PSNR has an infinity value. Fig. 6. (a) compares 
the PSNR values of distorted images obtained from different 
communications systems. Similar to BER, the PSNR 
increases with the SNR values. Though the PSNR has an 
advantage of being simple to calculate, its score does not agree 
with the subjective quality score. Therefore, we considered 
SSIM, which takes the human perception of structure into 
account. It combines local image structure, luminance and 
contrast into a single metric score. The score ranges from 0 to 
1, where larger value means high quality image. The 
calculated SSIM for the transmitted images is shown in Fig. 
6. (b). The SSIM follows the same trend as BER and PSNR.   

The metrics we have considered so far are full-reference 
image quality metrics, which means that they require a 
reference original image without any distortion to compute an 
objective score. However, in scenarios such as availing third-
party computation services, the unavailability of reference 
image makes these metrics obsolete [1]. Nonetheless, there are 
no-reference quality metrics that evaluate the image quality by 
using statistical features in it. Such measure scores align well 
with the perceived quality of images in terms of subjective 
human quality score than the full-reference images. An 
example of such algorithms is Perception-based Image 
QUality Evaluator (PIQUE) proposed in [15], which is 
sometimes also abbreviated as (PIQE). It is a perception-based 
quality metric that uses arbitrary distortion in natural images 
for the image quality evaluation. Its value lies in the range of 

[0, 100] and have inverse relation with the image quality that 
is, high value represents lowest quality images. The PIQE 
values are interpreted in steps of twenties for example, 0 to 20 
indicates excellent quality and 81 to 100 indicates bad quality 
of the image. The rest of the values can be interpreted in the 
same manner. In our simulations, the PIQE values obtained 
for measuring the transmitted image quality is shown in Fig. 
6. (c). Different from other metrics, PIQE score suggests 
almost equally poor quality for all transmitted images. The 
lowest score indicating high quality image is 68. One reason 
for this is that PIQE is designed for natural images where there 
is a lot of texture in them; however, in the MNIST dataset, 
most part of the image is smooth with no variations in the 
intensity values. In addition, the PIQE score mainly relies on 
the statistics of the images that were used during training. 

C. Deep Learning Model Performance Analysis 

For the downstream application task, we have considered 
the handwritten digit recognition task in the MNIST dataset. 
For this purpose, we have implemented a convolutional neural 
network-based multiclass classifier. The classifier has the 
same architecture as the autoencoder discussed in Section 3, 
with an additional dense layer of 10 nodes with SoftMax 
activation function. The model was trained for 50 epochs with 
ADAM optimizer and the batch size was set to 128. During 
training, the validation accuracy achieved was 99.32%. Once 
the model was trained, its accuracy was then evaluated using 
test data that the model has never seen. The test accuracy 
achieved was similar to the validation accuracy. Next, to 
evaluate the model accuracy on the distorted images, the held-

TABLE II. DL model performance correlation analysis with the image quality metrics. 

Methods 
SNR 
(dB) 

BER 
100 – 
Acc 
(%) 

PSNR SSIM [14] PIQE [15] 
IQA  
(%) Channel 

Model 
Modulation 

Scheme 
wp cp wp cp wp cp 

A
W

G
N

 

BPSK 

0 0.0783 1.6 15.84 15.9 2.15 2.44 76.3 73.49 9.48
5 0.0059 0.73 28.59 28.49 8.86 8.86 87.15 87.85 1.44
10 0 0.68   90 90 92.35 92.76 0 
15 0 0.68   90 90 92.35 92.77 0 

QPSK 

0 0.2124 26.96 10.25 10.34 1.08 1.31 80.02 79.46 33.04
5 0.055 1.93 16.2 16.29 2.6 2.84 76.45 75.66 6.3
10 0.0012 0.68   15.23 15.23 91.09 91.5 0.52 
15 0 0.68   90 90 92.35 92.77 0 

16-QAM 

0 0.3114 3.64 13.35 13.4 1.55 1.8 75.3 73.62 18.99
5 0.2049 0.93 17.67 17.72 2.52 2.68 71.29 67.73 8.42
10 0.0684 0.75 22.62 22.71 3.87 4.09 68.51 67.55 4.24
15 0.0038 0.67 35.01 35.04 12.22 12.22 89.47 89.19 0.8

64-QAM 

0 0.3608 32.6 10.43 10.44 0.97 1.14 78.85 78.64 39.03
5 0.3114 11.69 12.16 12.15 1.25 1.49 76.76 75.62 26.13
10 0.2232 3.79 14 14.02 1.67 1.87 72.24 71.58 14.77
15 0.0994 1.46 16.89 16.85 2.44 2.68 68 67.72 7.6

R
ay

le
ig

h 
Fa

di
ng

 

BPSK 

0 0.2008 72.41 7.7 7.77 0.6 0.71 81.87 81.65 68.08
5 0.0582 7.6 12.13 12.32 1.37 1.74 79.4 78.05 23.97
10 0.0083 0.93 21.33 21.82 4.32 4.56 79.87 80.85 3.63
15 0.0016 0.75   15.23 16.99 91.36 91.76 0.97 

QPSK 

0 0.3539 83.35 8 8.02 0.27 0.32 82.64 82.59 89.31
5 0.2276 56.71 10.53 10.52 0.71 0.76 75.7 75.79 68.54
10 0.1376 27.58 11.85 12 1.94 2.01 73.23 72.66 46.96
15 0.0966 26.6 11.85 11.98 3.37 3.37 81.19 80.48 48.25

16-QAM 

0 0.4302 88.66 6.71 6.72 0.13 0.18 81.85 82.02 91.68
5 0.3537 80.43 8.08 8.09 0.36 0.41 80.52 80.4 83.51
10 0.2892 54.61 10.45 10.55 0.66 0.76 78.05 77.73 71.82
15 0.2547 35.38 11.41 11.75 0.92 1.02 74.26 74.39 57.81

64-QAM 

0 0.4428 84.87 7.33 7.34 0.32 0.32 82.99 82.95 89.03
5 0.4138 77.27 8.37 8.4 0.46 0.51 83.15 83.03 82.83
10 0.3988 61.29 9.52 9.54 0.66 0.76 81.87 81.57 68.95
15 0.3979 45.07 10.31 10.35 0.81 0.97 81.37 80.84 57.12

100 – Acc: the percentage error in Accuracy, wp: wrong predictions, cp: correct prediction.



out test set was transmitted over different wireless 
communication systems. The resultant error in accuracy is 
summarized in Table 2, which is obtained by (100 – 
Accuracy). It is given that a trained DL model performance 
degrades when the data distribution on which the model is 
tested is different from the one it was trained [5]. Therefore, it 
can be observed that for lower SNR and higher number of bits 
per symbol, the model performance degraded. Specifically, 
when the images were transmitted over the Rayleigh fading 
channel, then the model accuracy is severely reduced. The 
main reason for the gap in the DL model performance is that 
the communication noise altered the distribution of the test set.  

D. IQA Correlation with DL Model Performance Analysis  

To get an indication of the downstream model 
performance, we analyzed the correlation between image 
quality evaluation metrics and the DL model performance. For 
this purpose, we first computed the PSNR, SSIM and PIQE 
scores for the wrong predictions (wp) and correct predictions 
(cp) made by the classification model. Intuitively, an IQA 
should indicate lower image quality for the wrong predicted 
images than the correct ones. In the case of PSNR, it can be 
seen that the score computed for wp and cp images is same 
and does not indicate the DL model performance. For the 
SSIM metric, we first scaled its values from the range [0, 1] to 
െ10 logଵሺ1 െ SSIMሻ because for similar images the SSIM 
values lie very closely. Compared to PSNR, there is a slight 
difference between the SSIM values of wp and cp images. 
However, the difference is not significant enough. It can be 
observed that both SNR and SSIM values increase across all 
modulation schemes when the SNR value is increased, 
suggesting better quality images. However, this does not 
coincide with the DL model performance as the values 
calculated for wrong and correct predictions are same. On the 
other hand, the PIQE values calculated for wp and cp are 
almost the same and as mentioned earlier, regardless of the 
communication system setup, PIQE computed the same score 
for all distorted images. For the proposed IQA metric, the 
score is computed on the whole test set and the percentage of 
wrong predictions is calculated. It can be seen that for a given 
modulation scheme the number of wrong predictions 
decreased as the SNR value is increased, which is in-lined 
with the task DL model performance.  Overall, in predicting 
the downstream DL model performance, the proposed IQA 
introduced maximum error of 22% and minimum error of 
0.13% while keeping an average error of 8% across all 
communication systems. 

V. CONCLUSION 

The performance of a DL model is strongly associated 
with the image quality. The existing IQA metrics either rely 
on or are optimized to coincide with human judgment. 
However, with the popularity of DL solutions in various 
domains, it is necessary to quantify perceptual loss in noisy 
images using machine perception. In this study, we proposed 
a convolutional autoencoder-based IQA metric that can be 
used to monitor perceptual distortions occurred in images 
during data transmission. Hence, the proposed IQA can be 
used to efficiently adjust the communication system 
parameters in order to enable AI-based applications in IoT. 

In the future, we are interested to analyze the correlation 
between state-of-the-art DL model performances with the 
proposed IQA metric score. In the proposed IQA metric the 

autoencoder can be replaced with variational autoencoder and 
generative adversarial networks for performance 
improvement. In addition, we are interested to mitigate the 
effect of perceptual distortions resulted from a 
communication system on a DL model performance by 
proposing noise-based data augmentation method as in [3]. 

ACKNOWLEDGMENT 

This work was supported by the National Research 
Foundation of Korea (NRF) grant funded by the Korea 
government. (MSIT) (RS-2023-00278294). 

REFERENCES 
[1] N. Ahmed and H. M. S. Asif, “Perceptual Quality Assessment of 

Digital Images Using Deep Features,” cai, vol. 39, no. 3, pp. 385–409, 
2020, doi: 10.31577/cai_2020_3_385. 

[2] S. U. Saeed et al., “Image quality assessment for machine learning 
tasks using meta-reinforcement learning,” Medical Image Analysis, 
vol. 78, p. 102427, May 2022, doi: 10.1016/j.media.2022.102427. 

[3] I. Ahmad and S. Shin, “Noise-cuts-Noise Approach for Mitigating the 
JPEG Distortions in Deep Learning,” in 2023 International 
Conference on Artificial Intelligence in Information and 
Communication (ICAIIC), Bali, Indonesia: IEEE, Feb. 2023, pp. 221–
226. doi: 10.1109/ICAIIC57133.2023.10067012. 

[4] S. Dodge and L. Karam, “Understanding How Image Quality Affects 
Deep Neural Networks.” arXiv, Apr. 21, 2016. Accessed: Aug. 26, 
2022. [Online]. Available: http://arxiv.org/abs/1604.04004 

[5] M. Ehrlich, L. Davis, S.-N. Lim, and A. Shrivastava, “Analyzing and 
Mitigating JPEG Compression Defects in Deep Learning,” in 2021 
IEEE/CVF International Conference on Computer Vision Workshops 
(ICCVW), Montreal, BC, Canada: IEEE, Oct. 2021, pp. 2357–2367. 
doi: 10.1109/ICCVW54120.2021.00267. 

[6] I. Ahmad, N. Islam, E. Kim, and S. Shin, “Performance Analysis of 
Cloud based Deep Learning Models in OFDM based Image 
Communication system,” in Proceedings of the Korean Institute of 
Communications and Information Sciences (KICS) Summer 
Conference, Jeju, Korea: Korean Institute of Communications and 
Information Sciences, Jun. 2022. 

[7] N. Islam, I. Ahmad, and S. Shin, “Robustness of Deep Learning 
enabled IoT Applications Utilizing Higher Order QAM in OFDM 
Image Communication System,” in 2023 International Conference on 
Artificial Intelligence in Information and Communication (ICAIIC), 
Bali, Indonesia: IEEE, Feb. 2023, pp. 630–635. doi: 
10.1109/ICAIIC57133.2023.10067100. 

[8] S. Park, M. S. Ibrahim, A. Wahab, and S. Khan, “GMDM: A 
generalized multi-dimensional distribution overlap metric for data and 
model quality evaluation,” Digital Signal Processing, vol. 134, p. 
103930, Apr. 2023, doi: 10.1016/j.dsp.2023.103930. 

[9] I. Ahmad and S. Shin, “Convolutional Autoencoder for Image Quality 
Assessment,” presented at the 한국통신학회 학술대회논문집, 
한국통신학회, 2023, pp. 1304–1305. [Online]. Available: 
http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11487614 

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT 
Press, 2016. 

[11] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, 
“Striving for Simplicity: The All-Convolutional Net,” Dec. 2014. 

[12] H. Salehinejad, E. Colak, T. Dowdell, J. Barfett, and S. Valaee, 
“Synthesizing Chest X-Ray Pathology for Training Deep 
Convolutional Neural Networks,” IEEE Trans. Med. Imaging, vol. 38, 
no. 5, pp. 1197–1206, May 2019, doi: 10.1109/TMI.2018.2881415. 

[13] Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit 
database,” ATT Labs [Online]. Available: 
http://yann.lecun.com/exdb/mnist, vol. 2, 2010. 

[14] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image 
Quality Assessment: From Error Visibility to Structural Similarity,” 
IEEE Trans. on Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004, 
doi: 10.1109/TIP.2003.819861. 

[15] Venkatanath N, Praneeth D, Maruthi Chandrasekhar Bh, S. S. 
Channappayya, and S. S. Medasani, “Blind image quality evaluation 
using perception-based features,” in 2015 Twenty First National 
Conference on Communications (NCC), Mumbai, India: IEEE, Feb. 
2015, pp. 1–6. doi: 10.1109/NCC.2015.7084843. 

 


