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Abstract— We propose a new outlier detection method with 

multi-dimensional data. The method detect outliers based on 

vector cosine similarity, with a new dataset built by adding a zero 

value dimension to original data. When a point in the new dataset 

is chosen as a measured point, an observation point is 

constructed as an origin with the only difference in the new 

dimension having a non-zero value when compared to the 

measured point. The vector from the observation point to the 

measured point is then formed, followed by another vector from 

the observation point to another point in the dataset.  We 

compare the cosine similarity of the vectors to find out abnormal 

data.  
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I.  INTRODUCTION 

Outliers show their special characteristics in certain 
situations, the identification of outliers is an important topic in 
data processing. At present, there are many methods such as 
LOF, Isolation Forest, OGAD [1], ABOD [3], DBSCAN [4] 
and other algorithms to identify outliers in two-dimensional or 
three-dimensional datasets. In some data application cases, we 
will encounter requirements for identifying outliers in high-
dimensional data. For high-dimensional data, as the number of 
dimensions increases, the number of calculations will increase 
exponentially, which poses challenges to finding the 
correlation of high-dimensional features in outlier detection. 
Some algorithms, such as dimension reduction as PCA 
algorithm, have brought about the loss of multidimensional 
data information and some obviously abnormal results. At 
present, there are ABOD and other algorithms that support 
high-dimensional data outlier detection, but they have their 
own shortcomings in terms of computational complexity, 
training data, and scale settings.  

We propose an unsupervised high-dimensional data outlier 
detection algorithm, Outliers Detected by Adding a Dimension 
to compare Vector Cosine Similarity  (OD-ADVCS). Using the 
algorithm, we can solve the problem of computational 
complexity caused by the increase in dimensionality. The 
algorithm detects outliers based on vector cosine similarity: 
first, we add one new dimension to the original data and assign 
zero-value to the new dimension; then, each point in the dataset 
is selected as a measured point, and a new observation point is 
created that is the same as the measured point except for the 
new dimension assigned to non-zero value. The observation 
point is assigned as the origin, the vector from observation 

point to measured point and the vector from observation points 
to the other point in the new (n+1)-dimensional dataset are 
formed, then we calculate and compare the vector cosine 
similarity between the formed vectors to filter out abnormal 
data. Experiments show that the method can effectively detect 
outliers in datasets of different high-dimensional types. 

II. ALGORITHM 

A. Original dataset 

We define the quantity of n-dimensional dataset q, and the 
points are marked as Xi (m1, m2,...,mn), where Xi is the data 

point and i≤q, n is the dimension of the data point, and mn is 

the n-th dimension value of the Xi point. 

Thus, Xi(mk) is marked as the value of the k-th dimension 

of the point i, i≤q, k≤n, and Xj(mk) is marked as the value of 

the k-th dimension of the point j, j≤q, k≤n. 

B. Principle 

Outliers are detected by the following steps. 

• Step 1: For a given n-dimensional dataset with a given 

quantity of dataset points q(q＞ 2, n≥ 2), each n-

dimensional point Xi(m1,m2,...,mn) is extended one-
dimensional to (n+1)-dimensional Xi(m1,m2,...,mn,mn+1), 
and the value of the new dimensional mn+1 is assigned 
to 0. 

• Step 2: As a measured point Xi(m1,m2,...,mn,mn+1) 
selected from the (n+1)-dimension data points in the 
dataset p respectively, we create a new observation 
point Oi(m1,m2,...,mn,mn+1) with (n+1)-dimension, 
whose value is the same as the measured point 
Xi(m1,m2,...,mn,mn+1) in each dimension, except the 
value of the (n+1)th dimension is set to a non-zero 
value, which is different from the measured point. Thus, 
for the origin of the new observation point Oi, the 
values of every dimension are the same as Xi, except the 

(n+1)-dimension, with a difference: Oi (mn+1)≠0, Xi 

(mn+1)=0. 

• Step 3: Take the observation point Oi(m1,m2,...,mn,mn+1) 

as the origin, and a vector Oi→Xi to the measured point 

Xi(m1,m2,...,mn,mn+1) is formed. 



• Step 4: Another new vector Oi→ Xj is formed from the 

observation point Oi(m1,m2,...,mn,mn+1) to the other 
reference point Xj(m1,m2,...,mn,mn+1) in the dataset. 

• Step 5: Calculate the cosine similarity between the 

vector Oi→Xi and the vector Oi→Xj. The cosine 

similarity Sij between the vector Oi→Xi and the vector 

Oi→Xj  (i≠j, i≤q, j≤q) is calculated. 
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Figure 1. Example of  Outlier Detect Using Vector Cosine Similarity by 
Adding a Dimension 

• Step 6: Repeat Step 4-5 to calculate the vector cosine 
similarity corresponding to all other reference points in 
dataset except the measured point. 

• Step 7: Summing the largest r value of cosine similarity 
of vectors as the anomaly calculated value of this 
measured point. Sorting the maximum first r values of 

Sij and summation as SUMi (r≤q). Thus, we obtain the 

cosine similarity value of point i. 

• Step 8: Repeat Step 2-7, take the next point as the 
measured point Xi(m1,m2,...,mn,mn+1), until all m data 
are measured. Repeat the calculation of the next point 
until all points have been calculated. 

• Step 9: Comparing the vector cosine similarity anomaly 
calculation values of all m points, sorting SUMi, the 
smaller the value, the more outlier it belongs to. The 
smaller the value is, the more it tends to be an outlier 
value; otherwise, the larger the value, the more it is like 
a normal point. 

 

 

 

 

 

 

 

III. PSEUDO-CODE 

The following pseudo code is based on the thought of 
algorithm described above. 

__________________________________________________ 

Algorithm Program                                                                                                                  
1:  input original dataset Xi(m1,m2,...mn), i∈q 

2:  new expanded dateset  Xi(m1,m2,...mn,mn+1), mn+1=0, i∈q 

3:  for i=1→q 

4:      observation point created Oi(m1,m2,...mn,mn+1), mn+1≠0 

5:      for j=1→q, j≠i 

6:           
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7:          SortSi(r) = Sorting(Sij, Max→Min) 

 

8:          
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9:      end for 

10:    SortSum(t) = Sorting(SUMi,Min→Max) 

11:  end for 

12:  Outlier← Point(SortSum(t)), Min→Max 

______________________________________________________________ 
 

IV. EXPERIMENTAL DATA AND ANALYSIS 

The current conventional outlier recognition algorithms, 
LOF for 2D data and ABOD for 3D data and high-dimensional 
data, will be used as comparisons with the new method in this 
paper. 

There are two major parameters used in OD-ADVCS: nd, 
the value of the new dimension of the observation point, and sn, 
the largest static number of cosine similarity of the vector's 
value.  

• 2D and 3D test data are formed by using python random 
method to generate random numbers with normal value 
cluster range and anomalies according to the specified 
shape designed by the requirements to compare the 
algorithms. Below, Table I shows the 2D test data 
statistical result of the new algorithm compared with 
algorithm LOF, and Table II shows the 2D and 3D test 
data statistical result of the new algorithm compared 
with algorithm ABOD. 

• Clover flower data are used as test data to detect outliers 
by OD-ADVCS, compared with algorithm ABOD. The 
clover flower dataset comes from the UCI 4-
dimensional dataset with three sets. Datasets are formed 
by normal data selected from one set and abnormal data 
selected from other two different sets. According to the 
marked classification, we compare the accuracy of 
identification between the new algorithm and the 
common algorithm ABOD. Following Table III(a), 
which shows the result when one outlier is selected, 
Table III(b) shows the result when two outliers are 
selected. In this experiment, the data is first normalized, 
and then multiplied by 300 to enlarge the differentiation 
to facilitate data comparison.

 



Table I. Experiments:2D test data 

 

Table II.  Experiments:3D test data 

 

 

Table III(a).  Experiments:Clover flower with 4-dimensional data when one outlier is selected  

Normal Data Abnormal Data 
Normal Data 

QTY 

Abnormal 

Data QTY 

Test 

Times 

OD-ADVCS ADOD 

Accurate 

Number of 

Times 

Accuracy 

Rate 

Accurate 

Number of 

Times 

Accuracy 

Rate 

Iris-setosa 
Iris-versicolor 48 1 50 50 100.0% 49 98.0% 

Iris-virginica 48 1 49 49 100.0% 49 100.0% 

Iris-versicolor 
Iris-setosa 50 1 48 48 100.0% 42 87.5% 

Iris-virginica 50 1 49 35 71.4% 23 46.9% 

Iris-virginica 
Iris-setosa 49 1 48 48 100.0% 31 64.6% 

Iris-versicolor 49 1 50 15 30.0% 14 28.0% 

Summary 294 245 83.3% 208 70.7% 

 

 

 

 

  

 

 

Normal 

Data 

QTY 

Normal 

Points 

Radius 

Range 

Abnormal 

Data QTY 

Abnormal 

Points 

Distribution 

Radius 

Range 

Test 

Times  

OD-ADVCS ABOD 

nd sn 

Accurate 

Recognition 

Times 

Accuracy 

Recognition 

Rate 

Accurate 

Recognition 

Times 

Accurate 

Recognition 

Times 

200 1R 20 1.10R-3R 200 80 40 192 96% 166 83.0% 

200 1R 20 1.20R-3R 200 80 40 200 100% 
181 90.5% 

200 1R 20 1.20R-3R 200 80 10 198 99.0% 

200 1R 20 1.30R-3R 200 80 10 200 100% 194 97.0% 

215 1R 5 1.10R-3R 200 80 40 200 100% 196 98.0% 

215 1R 5 1.20R-3R 200 80 40 200 100% 
200 100% 

215 1R 5 1.20R-3R 200 80 10 200 100% 

215 1R 5 1.30R-3R 200 80 10 200 100% 200 100% 

Normal 

Data 

QTY 

Normal 

Points 

Radius 

Range 

Abnormal 

Data QTY 

Abnormal 

Points 

Distribution 

Radius 

Range 

Test 

Times  

OD-ADVCS LOF 

nd sn 

Accurate 

Recognition 

Times 

Accuracy 

Recognition 

Rate 

Accurate 

Recognition 

Times 

Accurate 

Recognition 

Times 

200 1R 20 1.10R-3R 200 80 40 194 97% 186 93% 

200 1R 20 1.20R-3R 200 80 40 200 100% 
193 96.5% 

200 1R 20 1.20R-3R 200 80 10 199 99.5% 

200 1R 20 1.30R-3R 200 80 10 200 100% 200 100% 

215 1R 5 1.10R-3R 200 80 40 200 100% 196 98% 

215 1R 5 1.20R-3R 200 80 40 200 100% 
199 99.5% 

215 1R 5 1.20R-3R 200 80 10 200 100% 

215 1R 5 1.30R-3R 200 80 10 200 100% 200 100% 



Table III(b).  Experiments:Clover flower with 4-dimensional data when two outliers are selected

 

• Wilt dataset with 6-dimensional dimension are used as 
test data to detect outliers by OD-ADVCS, compared 
with algorithm ABOD. Wilt dataset comes from LMU 
Dataset Wilt (2% of outliers version#08, Normalized, 
duplicates). The dataset is formed by 93 wilt data and 
4578 non-wilt data, with 2% wilt data among the total 
of 4671 data. Following Table IV shows the result of 
the accuracy of identification by the algorithm OD-
ADVCS. Because the smaller the calculated score value, 
the more outliers tend to be, and the evaluation method 
we use here is to count the number of outliers in each 
percentage area sorted by the minimum value rank. By 
comparing the statistical number of outliers in each 
percentage range, we evaluate the effectiveness of the 
algorithm. In this experiment the parameter nd is set to 
200, and sn is set to 15. 

Table IV.  6-dimensional data result accuracy by OD-ADVCS 

 

• We try to compare the influence of different parameter 
values of nd and sn, with the same Wilt dataset used in 
the experiment, Figure 2 and Figure 3 show the trends. 
The evaluation method we use here is to record the 
most deviated score ranking, that is, the largest ranking, 
that has been marked as an outlier. By comparing this 

ranking, we evaluate the influence of the parameters of 
the algorithm. 

 

Figure 2. Influence of value of nd (new dimension of observation point) 

 

 

Figure 3. Influence of sn (largest static number of vector cosine similarity) 

 

According to the data analysis, we find that the OD-
ADVCS algorithm has strong accuracy and adaptability for 
identifying data outliers in each dimension. 

6.2%

6.4%

6.6%

6.8%

7.0%

7.2%

7.4%

290

300

310

320

330

340

350

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

6
5

0

Outlier rank number Outlier rank scope

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

0

100

200

300

400

500

10 15 20 25 30 35 40

Outlier rank number Outlier rank scope

Normal Data Abnormal Data 
Normal Data 

QTY 

Abnormal 

Data QTY 

Test 

Times 

OD-ADVCS ADOD 

Accurate 

Number of 

Times 

Accuracy 

Rate 

Accurate 

Number of 

Times 

Accuracy 

Rate 

Iris-setosa 

2 Iris-versicolor 48 2 1225 1225 100.0% 528 43.1% 

2 Iris-virginica 48 2 1176 1176 100.0% 1035 88.0% 

1 Iris-versicolor  

+ 1 Iris-virginica 
48 2 2450 2450 100.0% 2209 90.2% 

Iris-versicolor 

2 Iris-setosa 50 2 1128 1128 100.0% 190 16.8% 

2 Iris-virginica 50 2 1176 553 47.0% 190 16.2% 

1 Iris-setosa  

+ 1 Iris-virginica 
50 2 2352 1680 71.4% 966 41.1% 

Iris-virginica 

2 Iris-setosa 49 2 1128 1128 100.0% 1 0.1% 

2 Iris-versicolor 49 2 1225 70 5.7% 66 5.4% 

1 Iris-setosa  
+ 1 Iris-versicolor 

49 2 2400 720 30.0% 390 16.3% 

Summary 14260 10130 71.0% 5575 39.1% 

Score 

Rank 

Scope 

Data 

Ranking 
Qty 

Wilt 

Qty 

Wilt 

in 

Total 

Wilt 

in 

Scope 

Identified 

Rate 

Increment 

0-1% 1-47  47  33 35.5% 70.2% 35.5% 

1-2% 48-93  46  15 16.1% 32.6% 51.6% 

2-3% 94-140  47  13 14.0% 27.7% 65.6% 

3-4% 141-186  46  12 12.9% 26.1% 78.5% 

4-5% 187-233  47  7 7.5% 14.9% 86.0% 

5-6% 234-279  46  6 6.5% 13.0% 92.5% 

6-7% 280-326  47  7 7.5% 15.1% 100% 

SUM  - 93 100%  - 



• From the experimental data, it shows that the OD-
ADVCS algorithm has the same recognition accuracy as 
the traditional two- or three-dimensional algorithm LOF 
and the angle-based algorithms. 

• OD-ADVCS has obvious advantages in high-
dimensional datasets. 

• It shows from the experiment that the parameter 
selection of the OD-ADVCS algorithm refers to a 
setting with weak sensitivity to the results and strong 
adaptability. 

V. CONCLUSION 

Based on vector cosine similarity, we provide a method 
OD-ADVCS for finding outliers by adding one dimensional to 
the dataset. Experiments reveal that the recognition accuracy of 
algorithm OD-ADVCS is similar to that of the two-
dimensional or three-dimensional algorithms, it also has larger 
advantages in multi-dimensional data accuracy and adaptability. 
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