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Abstract—To cater for the growing demand of capacity,
Access Point (AP) densification is a promising solution.
Within an Ultra Dense Network (UDN), a mobile User
Equipment (UE) can associate with one of many candidate
access points. Association with an optimal AP, from multiple
eligible APs in proximity of a UE, while avoiding unbalanced
UE distribution, becomes a challenge. Legacy Mobility Load
Balancing (MLB) methods are usually reactive by design
which hinders their efficiency to solve time restrained MLB
problem. In this paper, an improved MLB framework is
proposed, which utilises Recurrent Neural Network with
Long Short Term Memory (RNN-LSTM), for users’ temporal
and spatial mobility prediction. It predicts AP’s future
load based on predicted distribution of UEs and finally
optimises network’s load in advance via a load aware AP to
UE association based Load Balancing (LB) technique. This
MLB framework optimises load pre-emptively by visualising
congestion beforehand. The simulation results suggest that
the performance of our MLB framework is superior to
other existing algorithms that address time-constrained LB
problem incurred by high mobility.

Index Terms—5G and beyond, ultra-dense networks, mo-
bility load balancing, mobility prediction, user association,
Recurrent Neural Networks (RNNs), small cells, Long Short-
Term Memory (LSTM) Network.

I. INTRODUCTION

To achieve goals of higher data rates and better cov-
erage, dense deployment of APs has been emerging as a
promising technology for 5G/B5G networks. UDN com-
prises high density of Small Cells (SCs), where a user
may receive signals from multiple suitable for association
candidate APs simultaneously, due to their proximity.
Similarly, mobile UEs will cross cells even more fre-
quently, associating with different APs. Under this dense
and complex infrastructure, load balancing among neigh-
bouring APs, while maintaining a good signal quality for
UEs, becomes a challenge [1]. Load imbalance is more
frequent in SC network due to UE mobility and constrained
coverage/resources of SCs, which reduces the network
throughput and handover success rate.

In this pretext, selection of ideal AP to associate with,
such that Quality of Experience (QoE) requirements of mo-
bile UEs are satisfied and resources of APs are efficiently
utilized is critical. Traditional, maximum received signal
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strength based AP to UE association mechanism, yields
unbalanced distribution of users among candidate APs with
similar resources, as it does not take load of the APs in
consideration in association decisions. Also, conventional
MLB techniques are reactive in nature and usually utilise
current network statistics for decision making. However,
in dynamically changing cell environment where UEs are
highly mobile, by the time the optimal network parameters
are configured to curb overloading, they become stale.
Especially in 5G/B5G networks, where low latency of the
algorithm is more demanding, it calls for re-evaluation of
AP selection and LB techniques. Therefore, this research
article concentrates on proposing a solution focused on
proactive load aware AP selection scheme assisted by
mobility prediction, for high mobility scenarios.

A. Related work

In dense AP deployment, the chance of associating
with an unideal target AP increases, when conventional
handover/association strategies, relying on the strongest
signal received at the UE from surrounding APs are used
[2].

Mobility prediction has also been utilised for MLB in
some recent research work. Authors in [3] used a Multi-
graph Convolutional Network (MGCN) and Gated Recur-
rent Unit network (GRU) for user’s location prediction.
Then LB is performed by manipulating Cell Individual
Offset (CIO) value for each cell. In [4] authors proposed
a MLB framework ”OPERA”, in which Semi-Markov
model was used for mobility prediction, while concurrently
optimising coverage and capacity of network. However,
one of the limitations is that, in [4] only human walk-
based mobility model is implemented and high mobility
scenario such as vehicular mobility is not considered.
Also, semi-Markov models have limited memory, therefore
long-term sequence dependencies in the trajectory data
are not recorded. This adversely affects the prediction
accuracy and hence performance of LB algorithm. In [5]
authors first proposed a forward-looking LB scheme, by
incorporating mobility and future cell load prediction, via
Bayesian Additive Regression Trees (BART) model. Based
on predicted load of cells, authors then propose a LB
algorithm which adjusts CIO to avoid overloading.



Fig. 1. Proposed proactive MLB framework, comprised of, 5G RAN, mobility prediction, load forecast and load optimisation modules. .

In [6], authors presented Load Balanced Handover Min-
imized User Association (HMUA-LB) problem. HMUA-
LB aimed to minimise number of overloaded APs in the
network and to decrease number of handovers experienced
by a UE. To solve this problem, a greedy heuristic algo-
rithm LB-USSL is proposed. However, for performance
evaluation of LB-USSL, UEs are mobilised at a constant
speed of 60 km/hr during simulation, which limits the
applicability of the proposed scheme.

B. Contribution

In perspective of aforementioned limitations, we
propose a proactive MLB framework powered by
RNN-LSTM based mobility prediction (Fig. 1). The
contributions of this paper are as follows:

1) In the proposed proactive MLB framework, mobility
prediction of UEs with respect to time and location,
based on RNN-LSTM is utilised to anticipate loads of
SCs. Based on historical trajectory data of UEs, their
future locations in terms of coordinates are predicted.
Considering anticipated location of all the UEs, the APs
most likely to be chosen by these UEs to associate with,
can also be predicted. This enables us to visualise future
load of all APs as well.

2) Based on predicted utilization of AP resources, load
optimization is performed. The proposed load optimization
algorithm is an extension of our previous work in [7] and is
based on load aware AP-UE association. The proactivity
of proposed MLB scheme becomes two-fold, since
every AP-UE association attempt incorporates knowledge
of APs load and mobility/load prediction is also employed.

3) Mobility-based network performance optimization
approaches are extremely perceptive to mobility traces,
precision of prediction and dynamic network settings. Con-
ventionally in research, synthetically generated mobility
traces are utilised for mobility modelling and prediction. In

contrast, utilising real mobility traces is a demanding task
due to missing values and limited context information. To
the best of our knowledge, limited research efforts have
been made, which optimise network resources based on
real mobility traces consisting of precise location of UEs,
minimal sampling time, different types of transportation
modes and long-term mobility sequences. In this research
work, GPS based trajectory dataset of 182 real users is
used, for training and testing RNN-LSTM based mobility
prediction model.
The remainder of this paper is organized as follows:
Section II describes proposed MLB framework; Section
III describes simulation setup and system evaluation; and
Section IV concludes the paper.

II. PROPOSED MLB FRAMEWORK

The components of proposed framework (fig. 1), and
their relationship with each other, are described in detail
in this section. The data flow in proposed MLB framework
(fig.1) is as follows:

1) Network configuration and UE measurements are
captured from radio access network (RAN) in real
time and are stored in database. Database comprises
reported measurements of all UEs, such as UE
current location, UE data requirements, UE received
SINR/CQI from neighboring APs, historical mobility
data, time stamped handover reports, current load of
APs etc.

2) At specified time intervals, current location of all
UEs and their historical mobility data is fed to
mobility prediction model. This data is used as input
for each prediction run and also as training data.
The output of mobility prediction model is estimated
coordinates for all UEs for next time instant.

3) Predicted location coordinates of all UEs are sent to
load forecast module, on the basis of which future
AP to UE associations are calculated. Consequently,
future loads of all APs is also forecasted given the
expected associations.



4) Estimated loads of all APs are sent to proactive load
optimisation unit. Load optimisation unit utilises
load forecasts and UE measurements from data base
to estimate optimal AP to UE pairs for next time
instant. These estimates are verified after performing
test configurations on simulated RAN (representing
deployed RAN).

5) Finally, recommendations of optimal AP-UE associ-
ations are forwarded to real RAN for implementa-
tion.

A. 5G NR RAN model

We consider a 5G New Radio (NR) UDN, comprising
SCs. A single-tier network is considered where the SC
APs c = 1 . . . C are distributed according to the Poisson
Point Process. For simplicity only downlink (DL) com-
munication is observed and since SCs operate in same
frequency spectrum, DL co-channel interference is also
assumed. The users u = 1 . . . U are randomly distributed
and are served by APs through a wireless access chan-
nel. The resources scheduled to UEs are divided into
fixed bandwidth Physical Resource Blocks (PRBs) and
are scheduled at 1ms slot interval. The required data rate
for mobile UEs is assumed to be known which gives an
estimate of expected UE throughput. APs are equipped
with Single Input Single Output antenna. Free Space Path
Loss (FSPL) model is adopted. Logical Channels (LCHs)
to support variety of applications, with logical channel
prioritisation is implemented.

B. Mobility prediction model

RNNs store historical data within network’s internal
state and the output of RNN is dependent upon this
historical input data. Generally, RNN constitutes an input
layer Xt, where t denotes time instant, hidden layer(s) H
and an output layer Y. In RNN-LSTM model hidden layers
are substituted with LSTM blocks. LSTM blocks contain
a memory cell and three gates. The memory cell controls
the information flow at each time step and the gates are
designed to manipulate the cell state of memory cell. As
input to RNN-LSTM network, a sequence of data values
ν1 to νT are given, where T is the length of sequence.
The output is computed as a predicted value, νT + 1 for
time T + 1. In the context of mobility prediction, first the
position markers from the user’s historical trajectory data,
are extracted at a specific sampling interval. Every position
marker, expressed by x-coordinate and y-coordinate, repre-
sents user’s location at one specific time-step. Then a series
of locations ν = ν1, . . . , νT is formed by representing
position coordinates with respect to a continuous series of
time steps and this series is used as input sequence to train
or test RNN-LSTM (fig. 2). Corresponding to every input
sequence (user’s trajectory data), the output layer maps the
output of the LSTM layer at every time-step i to a position
ν′i , yielding output sequence ν′ = ν′1, . . . , ν′T , where ν′i
is the predicted location at the i+ 1 time-step [8].

Fig. 2. Mobility prediction of network UEs.

C. Load forecast model

In the load prediction model, after predicting the possi-
ble distribution of users in next time instant, the consequent
load changes in small cells is estimated. Assuming that
the current time is t, then at any given instant t, future
time instant can be given as t + ∆t. As mentioned before
u ∈ Uc, Uc(t) represents all UEs associatedd with SC c at
time instant t. Total number of UEs forecasted to be in c
at time t + ∆t comprises of UEs who:
(i) have arrived into SC c during time interval [ t, t + ∆t]
and stayed in c till instant t + ∆t. This set of users are
given by: Uc(∆t).
(ii) and users who were already in cell c, did not handover
during [ t, t + ∆t] interval and will be present in cell c
at t + ∆t. This set of UEs is given by: U ′

c(t). This set is
not equivalent to Uc(t) because it does not include users
which handover during interval [ t, t + ∆t]. Therefore, the
total number of UEs anticipated to be in c at t + ∆t is
expressed as:

Uc(t+∆t) = Uc(∆t) + U ′
c(t) (1)

Cell load δc can be calculated as the ratio of PRBs
occupied in a SC c by associated UEs, according to their
required data rate and PRBs available in c. Therefore, cell
load can be expressed as:

δc =
1

NPRB

(
1

BPRB

(∑
Uc

Qu

SINRc
u

))
(2)

where NPRB is available PRBs at c, Qu is throughput
required by a UE u ∈ Uc and Uc represents all UEs
associated with SC c. SINRc

u is SINR of u when associated
with SC c and BPRB is the bandwidth per PRB. Downlink
SINR experienced by UE u from c is expressed as the
ratio of RSRP measured by u from c to the sum of RSRP
measured by u from all the interfering cells i ∈ 1, ..., I .
Considering radio propagation effects, the SINRc

u from c
to u at next time instant t + ∆t can be calculated as:

SINRc
u(t+∆t) =

[
P c
ugu,c∑

i ̸=c P
i
ugu,i +No

]
[t+∆t]

(3)



TABLE I
SYMBOL DEFINITIONS

Symbol Definition Symbol Definition
C Set of all SCs SINRth Threshold SINR
δc(t+∆t) future load of c for time instant t+∆t U Set of all UEs
δc Load of SC c Dm Capacity of AP m
M Set of APs in a cluster Dth Threshold capacity
BPRB Bandwidth per PRB δum Load of AP m while associated with u
Qu Desired user throughput σcluster Standard deviation of load of cluster
SINRc

u SINR at u while associated with c σth Threshold standard deviation of load
NPRB Total PRBs δavg Average load of cluster
Uc(t+∆t) total number of UEs forecasted to be in c at t + ∆t U ′

c(t) users who were already in cell c and did not handover during [ t, t + ∆t]
Uc(∆t) users arrived in c during [ t, t + ∆t] and stayed in c till instant t + ∆t Uc(t) set of all UEs associated with SC c at time instant t
δc(t+∆t) load of cell c at t + ∆t δ′c(t) load of cell c incurred by users U ′

c(t)
δc(∆t) load of cell c incurred by users Uc(∆t) δm(t+∆t) load of AP m at t + ∆t
SINRm

u SINR of u when associated with m Q′
u Throughput delivered to u

where P c
u is RSRP from c to u, gu,c is channel gain

between c and u, P i
u is transmition power of interfering

cell i, gu,i is the channel gain between interfering cell
i and u and No is the Additive White Gaussian Noise.
The t + ∆t subscript in (3) shows that all the parameters
within brackets are calculated for future time instant.

Now, exploiting future user-cell association information
from (1), load definition from (2) and expression to esti-
mate SINR for next time instant from (3), the future load
of small cell c for time instant t + ∆t is expressed as:

δc(t+∆t) = δc(∆t) + δ′c(t) (4)

D. Proactive load optimisation model

Within the MLB framework, the mobility prediction
and load forecast module forward the estimated future
coordinates of all UEs and estimated load of all the APs
for instant t + ∆t to proactive load optimisation unit.
Using this information along with information about QoE
requirements of UEs, proactive load optimization unit will
estimate the optimal associations between APs and each
UE. The proposed methodology is described in Algorithm
1.

1) Step 1 - Virtual cluster formation: Based on the
predicted location coordinates of every UE, the APs sur-
rounding UE on the basis of UE to APs distance are
identified. From these APs, a virtual cluster of M APs
such that m=1,...,M with high received SINR/CQI to UE
u is created. The capacity Dm of each m in the cluster
is determined and if any of the AP is already loaded
according to predicted UEs distribution i.e., has surpassed
its maximum capacity threshold Dth, it is eliminated from
the cluster and cluster is recreated. Load balancing will be
performed locally within each cluster of the network.

2) Step 2 - Estimating optimal Load-Aware AP-UE
pairs: Instead of associating UE with an AP yielding
highest received SINR/CQI in M , the predicted load
of APs in M obtained using expression in (4) is also
considered before association. Now for each m, algorithm

Algorithm 1 Proactive load optimisation algorithm
1: Get predicted location coordinates [xu, yu] of all UEs

u ∈ U for next time instant t+∆t
2: for all u ∈ U do
3: Identify surrounding APs from c ∈ C and compute

their SINRu
c (t+∆t)

4: Sort SINRu
c of each identified c to u in decreasing

order
5: Identify and cluster M APs with highest

SINR/CQI SINRu
c

6: for all m ∈ M do
7: acquire predicted load δm(t+∆t)
8: if Dm < Dth for t+∆t is satisfied then
9: Estimate δum if u is associated with m

10: Calculate σcluster for δum for t+∆t
11: Sort σcluster computed for each δum
12: Find smallest σcluster value and update information

of u and m pair which yielded smallest σcluster

13: Update association of all UEs with optimal APs at
beginning of t+∆t

14: repeat

will approximate the updated load δum of each of m, if
UE u is associated to it.

Then for each of u to m association case, standard
deviation of load of the cluster σcluster will be computed
which is expressed as:

σcluster =

√∑
m∈M (δm − δavg)

2

M
(5)

where δavg is average cluster load and δm is load of
AP m. A smaller value of σcluster corresponds to fairer
distribution of AP load within a cluster. As minimizing
σcluster is the objective of LB algorithm, the optimization
problem can be formulated as:

minimize
δum

σcluster m ∈ 1, 2, ...,M

subject to C1 : σcluster < σth

C2 : SINRm
u > SINRth

C3 : Q′
u ≥ Qu ∀u ∈ U

(6)



TABLE II
SIMULATION PARAMETERS

Parameter Value Parameter Value Parameter Value Parameter Value
DL Carrier frequency 2.635 GHz Downlink Tx Power 32 dBm Traffic model Full buffer Number of RBs 160
DL Bandwidth 30 MHz Number of UEs 60 active UEs Radius of cell 500 m Packet size 8000 bytes
UL Carrier frequency 2.515 GHz Number of SCs 15 SC APs DL packet scheduler Best CQI Antenna gain Rx 10 dBi
UL Bandwidth 30 MHz Cluster size 15 APs Subframe duration 1 ms Simulation time 7 days

Constraint C1 specifies that σcluster should be less
than a predefined threshold value. C2 ensures that SINR
should be above a threshold value. C3 ensures each user’s
minimum guaranteed throughput is satisfied.

Given the standard deviation values of cluster for each
UE-AP pair, the association which yields least standard de-
viation will be chosen as optimal pair. We can summarise
the load aware user association strategy with AP m as:

Um :={
∀u ∈ U | m = argmax

∀c∈C

((
1

σcluster

)α

× (SINRc
u)

1−α

)}
(7)

where Um indicates all UEs associated to m for which
the product of the SINR and standard deviation of cluster
load, is maximized for AP m. Moreover, α ∈ [0, 1]
assigns weights to SINR and standard deviation of
load’s measurements, to manage their impact in the user
association decision.

3) Step 3 - Updating AP-UE associations for next time
slot: Based on suggested optimal AP-UE pairs, every UE
will be connected to the respective APs at the start of t
+ ∆t. Note that AP-UE pairs values remain fixed for one
complete time interval of 1 minute, and are updated after
that.

III. SIMULATION RESULTS AND PERFORMANCE
ANALYSIS

A. Simulation setup

The 5G Toolbox and Deep Learning Toolbox in Matlab
software are used, for implementation of 3GPP 5G NR
specifications compliant functions and mobility prediction
module [9]. 5G Toolbox™ offers the nrGNB and nrUE
objects for creating the 5G base station (gNB) and user
equipment (UE) nodes, respectively, for network simula-
tion. These nodes are implemented with protocol stacks
comprising the application, radio link control (RLC),
medium access control (MAC), and physical (PHY) layers.
The simulation parameters details are given in Table II. The
prediction interval of 1 minute is considered in simulation.
Therefore, every minute, our proposed MLB framework
performs future location estimation of UEs for next time
period and load optimization. For simulation duration of
1-day, total number of evaluation points become 1440 as

per 1-minute granularity (24 hours×60 minutes = 1440
minutes). As we ran our simulation for 7 days, it yields
a total of 10080 evaluation points (1440×7). At each
evaluation point, performance metrics are noted to gauge
prediction accuracy of mobility model and efficiency of
load optimisation algorithm.

B. Network training

In our work, we used the LSTM network with 128
hidden units. The optimization algorithm used was Adam
optimizer. During training of prediction model, learning
rate of 0.001 and 200 epochs were used. The length of
input sequences in (timesteps) in the data set is variable,
depending on the length of each travel trajectory (in terms
of distance). The training goal is to minimise the value of
the loss function i.e. Mean Square Error (MSE).

C. Data set

The dataset utilised for training and testing the RNN-
LSTM model, is comprised of traces of real vehicle
trajectories. The transportation means of users in these
trajectories include, car or taxi, bus and bike. These
trajectories were created via GPS loggers and GPS phones
installed inside vehicles. The GPS devices logged the data
at a sampling rate of 1 to 5 seconds. The dataset is provided
by Geolife project and is explained in detail in [10]. Each
trajectory in dataset corresponds to a completed trip of a
vehicle, and contains 7 features, but the features relevant
to this work are latitude, longitude, altitude and timestamp.

Fig. 3. Conversion of GPS logs to Cartesian coordinates.

To better suit our MLB framework we reprocessed the
trajectory dataset by first converting GPS points to time-
stamped cartesian coordinates, so that location of vehicles
at every time stamp is represented by x-y coordinates
in meters (fig. 3). Keeping in perspective, the limited
coverage of SCs, we preferred trajectories within a certain
range in terms of distance. Also, the vehicle trajectories
which are continuous are selected. For the RNN-LSTM
network, to learn the UEs mobility patterns, we used 80%



of the dataset made of UE trajectories, for the training
phase, and 20% of trajectory dataset for testing phase.

D. Performance analysis

We have gauged proposed framework’s performance
against following; (i) The first scheme [5] predicts future
load state of cells by using Bayesian Additive Regression
Trees (BART) model and then balances future loads by
adjusting CIO via a heuristic algorithm. (ii) The second
scheme [6] formulates a Load Balanced Handover Mini-
mized User Association (HMUA-LB) problem to minimise
the number of handovers experienced by each UE and the
number of overloaded APs in network, (iii) The maximum
SINR based user association scenario.

To evaluate prediction performance of the RNN-LSTM
model, at every evaluation point prediction accuracy is
computed which is measured as the location estimation
distance error (in meters) between predicted coordinates
and actual coordinates of UEs. A total of 10080 average
distance errors collected over 7 days simulation time, are
visualised in a CDF plot in fig. 4. Minimum error was
calculated to be 4 meters and maximum error was noted
to be 33 meters. It is observed that majority of errors lie
between 10 to 20 meters.

Fig. 4. The CDF of average location estimation/distance error in meters.

Fig. 5. Actual and predicted numbers of UEs per cell and percentage
error.

A decrease in error values with increase in simulation
time is observed which is attributed to the length of input
sequences to prediction model. As the user starts moving

and mobility trajectory becomes longer, input sequence
also becomes longer, hence more knowledge is available
for mobility prediction model to make a prediction. Then
the correlation between actual and forecasted number of
UEs in each cell is calculated. Figure 5 shows comparison
of average number of actual and forecasted UEs in each
of 15 cells. The percentage error is also displayed for
every cell. As shown in the fig. 5, the RNN-LSTM model
predicted the presence of UEs in most of the SCs with
high accuracy.

Fig. 6. Standard deviation of load comparison.

Fig. 7. Average UE DL throughput comparison.

Fig. 8. Jain’s Fairness Index comparison.

To evaluate efficiency of load optimisation of proposed
MLB framework we used average of standard deviation
of load of AP clusters VS evaluation points as our Key
Performance Indicator (KPI). Smaller value of average



standard deviation at any time instant reflects better per-
formance of algorithm and vice versa. As shown in fig. 6,
maximum SINR based AP-UE association, causes worst
load imbalance as load of APs is not considered. LB
algorithm in [5] performs better than LB algorithm in [6]
as it incorporates load forecasting. In proposed framework,
future cell loads are visualised in advance, hence load and
QoS aware AP selection decisions are made ahead of time
and smaller deviation from average AP load is reported for
all time instants. The standard deviation of load is further
reduced as accuracy of mobility prediction increases due to
increase in length of input sequence. This accuracy further
enables the AP selection algorithm to make better selection
decisions for UEs, hence better load balance.

Fig. 7 shows CDF plot of average DL UE throughput
calculated across evaluation points during the simulation.
The proposed MLB algorithm maintained good throughput
for all UEs with maximum throughput observed to be 6.1
Mbps. This is owed to the optimal selection of AP for each
UE, with least load and best SINR, which ensures that the
data rate requirements of UE are satisfied. The expected
drop in throughput caused by non-uniform and changing
distribution of UEs, is compensated by mobility prediction
assisted, proactive AP-UE association. BART MLB [5]
provides comparatively better throughput than HMUA-LB
[6], but still suffers with throughput degradation. This can
be explained by the aggravated interference and decreased
SINR for UEs which are shifted from overloaded to under-
loaded cells via adjusting CIO, without taking other UE
QoE requirements into context.

Finally, the variance in cell loads is examined by using
Jain’s Fairness index plotted in fig. 8. Jain’s Fairness Index
β is used to express the degree of balanced distribution
of load among SCs. It is understood from the fig. 8 that
Fairness index for proposed MLB framework is higher than
other schemes with β approaching maximum fairness of
0.9.

IV. CONCLUSION

A novel proactive, spatio-temporal mobility prediction
based MLB framework for high mobility UEs in SC
UDNs is presented. Extensive simulations leveraging real
mobility trajectory data indicate, the proposed MLB not
only maintained high downlink throughput, it also en-
sured balanced distribution of loads among SCs, which
is critical for efficient resource utilisation in the network.
Proposed MLB solution, in contrast to traditional reactive
LB schemes, does not transfer load to lightly loaded cells
or optimizes load after load imbalance occurs, rather it
intelligently connects highly mobile users to suitable cells
by utilising mobility/load prediction and load aware AP-
UE association algorithm.
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