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Abstract — The inspection of electric utility assets is an 

important procedure for repair and hazard prevention such as 

wildfires. Traditionally, human workers inspect power lines 

manually which is time consuming and potentially dangerous 

due to high elevation and high voltage. Manual inspection 

requires power to be shut off during the procedure and results 

in inconvenient blackouts for residents and businesses which can 

be exacerbated by time spent diagnosing faults and repair 

equipment. With recent developments in computer vision and 

artificial intelligence (AI) using machine learning, the process of 

inspecting electric utility assets can be both expedited and made 

safer using unmanned aerial vehicles (UAVs) in conjunction 

with sustainable and resilient federated learning communication 

networks. This work aims to train object classification models 

for deployment on UAVs which will detect common electric 

utility assets during inspection processes. The models are 

trained on a large dataset of approximately 30,000 high 

resolution images capturing five class objects: crossarms, 

cutouts, insulators, poles, and transformers. Eight different 

model configurations of the YOLOv5 algorithm are trained 

using the dataset and scored against each other to assess 

performance and computational cost for deployment on UAVs. 

   

  Index Terms— computer vision, machine learning, power line 

inspection, object detection, YOLOv5, artificial intelligence, 

UAV      

 

I. INTRODUCTION 

Modern society is heavily dependent on electrical power 

being delivered to homes and workplaces across the nation. 

Decades of transmission and distribution infrastructure have 

been built up for urban and suburban everyday living. When 

electric utilities need to be maintained, repaired, or turned off 

due to unexpected weather conditions, power delivery must be 

temporarily shut off. Power shutoffs can prove to be a major 

inconvenience leaving people unable to do their work and 

preventing businesses from operating. The length of a power 

shutoff can vary depending on whether it occurs for inspection 

and maintenance of something more severe such as wildfire 

prevention in dangerous weather conditions. In the case of 

inspections, electric utility assets must be manually inspected 

by human workers which can be a slow and tedious process.   

The research presented in this work is part of a larger 

unmanned aerial vehicles (UAVs) project. Each UAV can 

hover at different locations and obtain images.  Inspection 

can be both expedited and made safer through UAVs for the 

electric utility industry. Therefore, it is an efficient 

methodology that each UAV fulfills different levels of 

learning in a distributed and collaborative fashion, which is 

a new paradigm raised by federated learning (FL). The main 

concept of this larger project is to deploy a FL 

communication network of drones to inspect a power 

distribution or transmission circuit. Automatic flight path 

will allow the drones to fly along the power lines, object 

classification algorithms will allow them to detect and 

diagnose problems along the circuit. A sustainable and 

resilient FL network will allow the drones to relay 

information to each other and the electric utility base station 

of industrial operations for a completely streamlined and 

automatic inspection procedure efficiently. In this paper, we 

focus on developing a machine learning (ML) model capable 

of detecting and classifying electric utility assets, 

specifically, before and after wildfires or other disasters. This 

paper only considers computing of ML model using 

YOLOv5 algorithm as the baseline, meanwhile the 

relationship of this work and communications by FL has 
been presented at a different paper [1].   

While similar computer vision on object detection 

research has been performed in literature, previous works 

have been performed with much smaller datasets. By using a 

much larger and higher quality dataset with multiple objects, 

this project aims to develop a robust baseline object 

classification model which can be further developed in future 

stages of the larger project to detect faulty and damaged 

equipment. Our contribution is provided as follows. (1) We 

train object classification models for deployment on UAVs 

which detected common electric utility assets during 

inspection processes with the specific steps and resized 

parameters involved in implementing YOLOv5 for object 

classification. (2) The models were trained on a significant 

large dataset of approximately 30,000 high resolution images 

capturing five class objects: crossarms, cutouts, insulators, 

poles, and transformers. (3) Eight different model 

configurations of the YOLOv5 algorithm were trained using 

the dataset and scored against each other to assess 

performance and computational cost for deployment on 

UAVs. 

II. RELATED WORKS 

The following works employed UAVs for aerial 

inspection of electric utility assets. Takaya et al. present a 

proof of concept using a quadrotor helicopter drone equipped 

with sensors and a camera to follow transmission lines and 

record clear footage of electric utilities and surrounding 

vegetation [2]. The success of this research demonstrated the 

benefits of using a UAV to inspect areas which make manual 

inspection difficult such as rocky terrain and dense 

vegetation. 

Object Classification with YOLOv5 for Electric Utility Asset 
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Chen et al. implemented the YOLOv3 algorithm for detect- 

ing and counting poles in UAV inspection video footage [3]. 

The model was trained to differentiate between upright and 

fallen poles. Due to the scarcity of data, the authors simulated 

images to represent the desired data and generated a set of 

13,000 images. The model was able to achieve about 90% 

accuracy with this dataset, demonstrating the robustness of 

the YOLO algorithm. 

Sumagayan et al. used YOLOv5 to detect six powerline 

components from images captured at their university in the 

Philippines [4]. Again, due to a scarcity of data, the authors 

opted to obtain images from powerlines on the university 

campus, manually label the images, and augment the images 

to produce a dataset of 10,000 images. Their results 

demonstrated very high scores which will be compared to the 

YOLOv5 models produced in this paper. 

  Works attempting to use object detection defect and fault 

detection on electric utilities have only focused on insulators 

specifically. Feng at al. used a dataset of only 3000 images 

to train an insulator detector that can pinpoint defects using 

images of large insulators in China [5]. Huang et al. also 

developed a fault detector using YOLOv5 for insulators in 

distribution networks specifically [6]. This work also used a 

dataset of 3000 images. Souza et al. created an insulator defect 

classifier for transmission lines using a model that combines 

the YOLO algorithm with a ResNet classifier using a dataset 

of only around 1000 images [7]. Throughout all of the works 

on object detection for electric utility assets, it becomes very 

apparent that data scarcity is a major problem. Researchers in 

this area are forced to procure their own small local datasets 

and find methods to augment the images to create a dataset 

suitable for training a ML model. However, the amount of 

success with the YOLO algorithm with such limited datasets 

demonstrates the algorithm’s robustness and ability to detect 

electric assets accurately. 
 

III. METHOD 

This work implements object classification using the 

YOLOv5 algorithm. The original YOLO (You Only Look 

Once) algorithm was developed by Joseph Redmon and 

released in 2016 [8]. Prior object detection methods followed 

a two-stage approach where the first stage extracts 

information and proposes bounding boxes on an image. The 

second stage runs a classifier on these proposed bounding 

boxes and classifies the object within each box. The two-stage 

method was slow and difficult to optimize. YOLO was a 

major breakthrough by streamlining the process into a single-

stage approach modeled as a regression problem. The YOLO 

algorithm predicts multiple bounding boxes and class 

probabilities simultaneously. 

In 2020, Glenn Jocher and Ultralytics released the 

YOLOv5 algorithm on GitHub [9]. YOLOv5 was 

implemented on the PyTorch framework which was a 

departure from the previous iterations of YOLO running on 

the Darknet framework. YOLOv5 also comes in five 

different configurations: nano, small, medium, large, and 

extra large. These models are named YOLOv5n, YOLOv5s, 

YOLOv5m, YOLOv5l, and YOLOv5x. These configurations 

refer to the number of layers and depth of the neural network. 

These standard models are trained on input images of 640 × 

640 resolution. YOLOv5 also has variants of all five 

configurations which use input images of 1280 × 1280 

resolution instead which are instead named YOLOv5n6, 

YOLOv5s6, YOLOv5m6, YOLOv5l6, and YOLOv5x6. 

Due to the large size of the dataset, we trained YOLOv5 

on local hardware rather than in an online notebook such as 

Google Colab. The machine used for training was equipped 

with a AMD Ryzen 5 2600X processor, NVIDIA GeForce 

3060 Ti graphics card, and 48 GB of RAM. All 

configurations of the YOLOv5 algorithm were trained 

except for YOLOv5l6 and YOLOv5x6 which were too large 

for the machine to train. All models were trained for 100 

epochs using the Auto batch function for batch size to 

maximize resource utility on our machine. Additionally, we 

trained the models starting with pretrained weights which 

were provided by Ultralytics after training each 

configuration with the MS COCO dataset [10]. Our initial 

experiments showed that pretrained weights yielded better 

results rather than training from scratch weights for our 

dataset. 

 

IV. DATASET 

The YOLOv5 object classification models are trained 

using the Drone-based Distribution Inspection Imagery 

dataset from the Electric Power Research Institute (EPRI). 

EPRI produced the dataset and made it publicly available due 

to the scarcity of available electric utility infrastructure 

imagery datasets [10]. The dataset consists of 29,705 images 

in .jpg format with resolution of 5184 × 3888 pixels. All 

images are overhead imagery of distribution lines captured 

from a UAV. Due to the nature of aerial imagery capturing 

sensitive information, EPRI has removed images containing 

people, cars, and other sensitive background information 

from the dataset. To further anonymize the images, EPRI has 

also .exif image-data scrubbed all images in the dataset. On 

July 2022, EPRI published the labels for the dataset 

indicating six classes of objects to be detected: poles, 

crossarms, insulators, cutouts, transformers, and background 

structures [12]. 

From EPRI [11], the dataset captures aerial imagery of 16 

different distribution circuits is given in Table I. The images 

vary in terms of lighting condition, angle, and background 

objects and conditions, which all serve to enrich the dataset 

to produce a more robust object classification model. Many 



different daytime lighting conditions are captured, i.e. direct 

sunlight, sunset, overcast, etc., but fog, rain, and nighttime 

images are not included. This means the models produced 

are intended to be deployed on UAVs in mostly clear 

daytime conditions. To split the data, we aim to use 80% of 

the data for training, 10% for validation, and 10% for testing. 

After determining how many images belong to each of the 

different distribution circuits, images from Circuit 15 are 

reserved for the validation set and images from Circuit 2 are 

reserved for the testing set since the number of images from 

each circuit approximately achieve the split goals. By using 

complete circuits for validation and testing rather than 

randomly splitting data, the scores used to evaluate the 

models are more indicative of the real-world application of a 

UAV inspecting an unseen distribution circuit. 
 

TABLE I 

NUMBER OF IMAGES FOR EACH DISTRIBUTION CIRCUIT 

Distribution Circuit Number of Images 
1 1909 
2 2977 
3 954 
4 979 
5 428 
6 642 
7 717 

8 675 

9 1996 

10 575 

11 4954 

12 3008 

13 2252 

14 1895 

15 2673 

16 3071 

Total 29705 

 

TABLE II 

NUMBER OF INSTANCES FOR EACH OBJECT CLASS 

 Training 

Set 
Validation 

Set 
Testing 

Set 
Total 

Crossarm 12597 9714 757 23068 
Cutout 7915 640 929 9484 

Insulator 45545 724 3372 49641 
Pole 24246 4576 3001 31823 

Transformer 7349 808 577 8734 
Background 

Structure 
347 33 35 415 

  

Table II shows the distribution of object instances for the 

dataset. The background structure class shows a significantly 

lower number of instances compared to the other classes. 

Ultralytics recommends approximately 10,000 instances for 

each class for sufficient training results [13]. Examination 

of these background structures showed that they captured 

supporting structures that could be confused for poles, but 

training results showed that accuracy detecting the class was 

very low and resulted in more errors than helping in 

detecting poles more accurately. Additionally, background 

structures are not an electric utility asset and would better be 

considered part of the background instead. Preliminary 

experiments excluding the background structure class from 

training yielded better results in the performance of our 

models. 

The dataset underwent minimal pre-processing due to data 

augmentation options being present in the hyperparameter 

settings for YOLOv5. We used default hyperparameters 

which include hue, saturation, and value augmentation for 

color space, rotation, translation, flipping across horizontal 

or vertical axis, and mosaic augmentation. To save 

computational resources, we resized the images into datasets 

appropriate for the 640- and 1280-resolution models of 

YOLOv5. Using default training parameters, the YOLOv5 

algorithm will automatically resize images to the appropriate 

input size. Maintaining the same aspect ratio of the original 

images means the 640 dataset has images of resolution 640 

× 480 while the 1280 resolution dataset has images of 

resolution 1280 × 960. All images were saved in a .jpg 

format. Preliminary results comparing the training time using 

the original, 1280, and 640 for training the YOLOv5s model 

showed that training time for each epoch is drastically 

reduced while learning is not affected. On our hardware, the 

original resolution dataset took 50 minutes for one epoch, the 

1280-resolution dataset took 6 minutes, and the 640-

resolution dataset took 3.5 minutes. Resizing the images to 

the appropriate input size before training saves a large 

amount of computation time compared to allowing the 

YOLOv5 algorithm to resize images during training. Fig. 1 

shows the bounding boxes of Ground Truth from Dataset 

while Fig. 2 shows the predictions from YOLOv5. 

 

 

Fig. 1. Example of Ground Truth from Dataset. 

 

V. EVALUATION METRICS 



The standard metrics for evaluating the performance of 

object classification models are precision, recall, and mean 

average precision (mAP). The formulas for calculating 

precision and recall are as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
              (1) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃+𝐹𝑁
                (2) 

 

where TP stands for true positive, FP stands for false 

positive, and FN stands for false negative. For object 

classification, precision indicates the accuracy of objects 

detected by the model. Recall represents how well the model 

can detect our objects of interest. Note that true negative 

(TN) is assumed to never be applicable for object 

classification since it is assumed that there are always objects 

to detect. Any objects we are not interested in are simply 

detected as part of the background. 

 

 

Fig. 2. Example of Predictions from YOLOv5. 

 

While applications such as image classification have 

straightforward methods to differentiating between TP, FP, 

and FN, object classification requires another metric to 

determine these values due to the nature of classifying 

sections of an image rather than the image as a whole. To this 

end, the concept of Intersection over Union (IoU) is used as 

a threshold to determine which guess made by the algorithm 

is TP, FP, or FN. For the YOLOv5 algorithm, the bounding 

box for the ground truth is compared to the bounding box 

drawn for the prediction. IoU is calculated by dividing the 

area of overlap of the two boxes by the area of the union of 

the boxes. By setting IoU to different threshold values, we 

can produce different scores according to our target 

localization goals. The standard threshold when comparing 

object classification models against each other is IoU = 0.5. 

If a prediction box has IoU ≥0.5 and has the correct object 

classification, it is considered a TP. If a prediction box has 

IoU < 0.5 or duplicate prediction boxes are generated, it is 

considered a FP. Finally, if there is no classification or IoU 

≥ 0.5 with incorrect object classification, it is considered a 

FN. 

Now that a threshold is set for precision and recall being 

calculated, mAP can be calculated using the following 

formula: 

 

𝑚𝐴𝑃 =  
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

                                                                   (3) 

 

where N is the number of classes of objects and AP is 

average precision for a class. To calculate AP, we graph the 

Precision-Recall curve for each class and take the area under 

the curve. As depicted in Fig. 3, the Precision-Recall curve 

is generated by graphing the trade-off between precision and 

recall at decreasing confidence thresholds. Since both 

precision and recall scores are between 0 and 1, the highest 

score for AP is also 1, with a higher score indicating high 

precision and recall.  mAP is calculated by taking the average 

of the AP for each class. 

 

 
Fig. 3.  Precision-Recall Curve After Training for crossarm, cutouts, 
insulator, pole, transformer, and all classes 0.968 mAP@0.5. 

 

Since different mAP scores can be generated using 

different values for IoU threshold, YOLOv5 provides two 

scores called mAP50 and mAP50-95. mAP50 is calculated using 

the standard IoU threshold of 0.5 and is meant to serve as the 

standard mAP score for evaluation. mAP50-95 calculates AP 

at thresholds from 0.5 to 0.95 in increasing intervals of 0.05 

and averages them to generate the AP for each class. By 

using ten different IoU thresholds of increasing value, 



mAP50-95 serves as a challenge metric where a higher score 

is obtained through high localization. 

 

VI. RESULTS 

The performance of our YOLOv5 object classification 

models perform very well as indicated in Tables III and IV. 

Except for the YOLOv5n model, all models achieved a mAP50 

score of 0.95 or higher with the validation set. Despite being 

the lowest scoring model, the YOLOv5n model manages to 

only fall behind by a small margin compared to YOLOv5s 

which is the second lowest. We observe that as model size 

increases, precision typically stays within the same range 

while the other scores improve for the validation set. We also 

see that the 1280-resolution models always perform better 

than their 640-resolution counterparts at the cost of 

significantly longer training time. 

When we compare just the 640-resolution models against 

each other, the scores provide us with insight on which 

metrics benefit the most with increasing network depth. The 

precision, recall, and mAP50 scores using validation set for the 

YOLOv5m, YOLOv5l, and YOLOv5x models stay roughly 

the same with only minor differences. However, the mAP50-95 

score increases with increasing network depth. This indicates 

that at the medium model the algorithm has reached a limit on 

how accurately it can detect objects using our custom dataset 

at the 640 resolutions, but increasing network depth allows 

the algorithm to draw bounding boxes closer to the ground 

truth boxes resulting in better localization of object 

classification. This is further supported when we observe the 

same behavior with the testing set scores. This helps in 

narrowing what model to select for an aerial inspection 

application. Within the constraints of a 640-resolution model, 

YOLOv5m provides the best object classification accuracy 

but choosing a larger model will provide better localization if 

that is a desired trait. 

 
TABLE III 

YOLOV5 VALIDATION SET SCORES 

 Precision Recall mAP50 mAP50-95 Training 

hrs 

YOLOv5n 0.957 0.897 0.941 0.669 4.3 

YOLOv5s 0.958 0.919 0.95 0.706 7 

YOLOv5m 0.962 0.932 0.957 0.727 12 

YOLOv5l 0.959 0.935 0.957 0.733 20.3 

YOLOv5x 0.962 0.939 0.957 0.738 36.5 

YOLOv5n6 0.961 0.925 0.959 0.719 16.7 

YOLOv5s6 0.959 0.942 0.964 0.74 23.1 

YOLOv5m6 0.956 0.949 0.965 0.751 50.3 

 

Comparing the 1280-resolution models to the 640-

resolution models, we can see that the higher resolution 

model can surpass the accuracy limits observed in the 

lower resolution model at the cost of significantly more 

training time. The increased training time is largely 

because a 1280-resolution image is quadruple the size 

of a 640-resolution image. More computational resources 

are required to process and augment the data during training. 

The larger images also slow down training time even more 

in situations where a smaller batch size is selected due to the 

limited computational resources of the hardware. The 

benefit to using a larger resolution model is the algorithm 

can extract more information from the increased number of 

pixels. Although precision scores remained in the same 

range as the 640-resolution models, recall and both mAP 

scores of the YOLOv5s6 and YOLOv5m6 models surpassed 

those of the YOLOv5x model by a noticeable margin. The 

only outlier is the precision for the YOLOv5m6 model for 

the validation set which is the lowest achieved value. 

However, this can be due to training variances or differences 

in batch size. Using testing results as a more practical 

evaluation demonstrates clearer increases in performance 

across all models. Although the YOLOv5n6 model performs 

better than its 640-resolution counterpart on every metric, it 

does not yield higher scores than the YOLOv5m model 

which achieves similar scores with less training time. 
 

TABLE IV 

YOLOV5 TESTING SET SCORES 

 Precision Recall mAP50 mAP50-95 

YOLOv5n 0.964 0.914 0.954 0.712 
YOLOv5s 0.966 0.932 0.962 0.749 
YOLOv5m 0.972 0.942 0.968 0.773 
YOLOv5l 0.971 0.949 0.967 0.779 
YOLOv5x 0.971 0.949 0.968 0.781 
YOLOv5n6 0.973 0.946 0.974 0.769 
YOLOv5s6 0.973 0.959 0.979 0.788 

YOLOv5m6 0.972 0.966 0.98 0.797 

 

Although 100 epochs were used to train all of our models, 

some models converge to their best validation scores much 

earlier. The same sized models for both resolution 

configurations are observed to converge at approximately the 

same rate, i.e. YOLOv5s converges at approximately the 

same rate as YOLOv5s6. Once again observing the 640-

resolution models, the small and nano models converge at 

approximately epoch 100 while the larger models converge 

within the range of epoch 40 to 60 with larger models 

converging earlier. This makes perfect sense since a deeper 

network will be able to extract more information and 

converge faster. Although 100 epochs were chosen for 

training all models for an equal training environment, 

training for a reduced number of epochs on larger models 

would reduce training time proportionally to the reduction of 

epochs. If we are to assume the medium, large, and extra-

large models can converge at approximately epoch 50, 

training time will be reduced by half. The YOLOv5m model 



was previously signified as the most accurate model ignoring 

improved localization with the large and extra-large models. 

If training time is reduced by half to 6 hours, the medium 

model would achieve noticeably improved scores compared 

to the small model for approximately the same training time. 

Finally, we can compare the metrics of our YOLOv5 

object classification models with those produced by the work 

of others. Although the work is similar in scope to the 

research performed in this paper, the dataset and labels used 

are completely different. The authors chose to label six 

classes of objects: transformer banks, high voltage bushings, 

low voltage bushings, arresters, radiator fins, and cutoff fuses. 

Their dataset was also obtained in one university campus, 

which will mean background conditions in images will not 

differ greatly. The authors also performed data augmentation 

to achieve a dataset of 10,400 images, which is almost a 

third of the size of the dataset used in this paper without 

augmentation. The top scores achieved by their work across 

all models with a testing set were 0.9735 for precision, 0.949 

for recall, and 0.9686 for mAP50. No scores for mAP50-95 

were provided. When comparing the scores with our testing set 

scores, we can see that all scores are matched by YOLOv5m 

and larger. Recall and mAP50 are surpassed by a noticeable 

margin with our 1280-resolution models. Although classes 

detected between their work and ours are different, these 

observations demonstrate how a larger more varied dataset can 

achieve superior results with the same algorithm. 

VII. CONCLUSION AND FUTURE WORKS  

With recent developments in computer vision and machine 

learning, the process of inspecting electric utility assets can 

be both expedited and made safer using UAVs in conjunction 

with sustainable and resilient communication networks.  The 

object classification models produced in this paper serve as 

a baseline for training with the Drone-based Distribution 

Inspection Imagery dataset from EPRI. The dataset is the 

largest dataset to capture electric utility assets to date. Future 

works aim to compare the baselines set by this paper with 

other algorithms such as YOLOv4- Tiny, SSD, and other 

popular and successful object classification models and 

algorithms. Such comparisons can help evaluate which 

method is most appropriate for deployment on UAVs. 

Additionally, future research will attempt to develop object 

detectors which will also be able to detect faulty equipment 

using transfer learning. As previously stated, data capturing 

faulty equipment is scarce and inadequate for training a robust 

model. However, by employing transfer learning, we can 

build off a strong foundation of models trained using the large 

dataset from EPRI and adjust weights using a smaller dataset 

to adapt them for fault detection.  

Moreover, together with federated learning, efficient 

communication and UAV networks can be developed as part 

of future works for inspecting electric utility assets. 

Furthermore, this scheme has practical applications for 

enhancing wildfire surveillance and prevention. 
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