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Abstract— In this study, we conducted comparative 

experiments on continuous data for BCI research using various 

comparison models depending on the data composition. The 

goal was to compare the classification performance of artificial 

intelligence models on data that considered continuity, a 

characteristic of time series data, and data that did not. To 

summarize the research results in BCI research using EEG 

signals, action and thought classification achieved a high-

performance score of 0.8728 in LSTM as data continuity 

decreased. Additionally, DNN showed maximum performance 

with a score of 0.9178 when continuity was not considered. 

Moreover, it was observed that the data without considering 

continuity performed well in task classification. Therefore, BCI 

research focusing on behavior and accident classification based 

on EEG signals is expected to achieve excellent performance by 

showing various data characteristics through shuffling rather 

than considering data continuity. 

Keywords— EEG signals, BCI research, Time series data, 

Classification Performance, DNN, Data continuity 

I. INTRODUCTION  

EEG waves are measurable electrical signals generated by 
neurons as weak electrical signals propagate through tens of 
thousands of neurons [1]. Such EEG patterns can be 
categorized largely into five types based on their frequency. 
Delta (δ) waves have a frequency of 0.2 to 4 Hz and occur 
during very deep sleep, meditation, or unconsciousness. Theta 
(θ) waves have a frequency of 4 to 8 Hz and are associated 
with creative thinking, emotional stability, and falling asleep. 
Alpha (α) waves have a frequency of 8 to 13 Hz and occur 
when the mind is relaxed and calm. Stable alpha waves are 
produced when the eyes are closed and relaxed, and these are 
affected by the opening and closing of the eyes. Because of 
this, it is speculated that alpha waves are associated with the 
visual areas of the brain. Mu (μ) waves, a subset of alpha 
waves, are observed at frequencies of 7.5 to 12.5 Hz (mostly 
9 to 11) and are best observed when the body is in physical 
motion. Beta (β) waves with a frequency of 13 to 30 Hz are 
generated during everyday cognitive and thinking activities. It 
is often generated when doing complex calculations or 
thinking. Gamma (γ) waves with a frequency of 30 Hz or 
higher are produced when a person is in a state of high 
concentration, such as extreme tension or excitement [2]. A 
brain-computer interface (BCI) is a technology that measures 
the EEG signals from the brain to control a computer or 

machine using only thoughts [3]. Research on utilizing these 
BCIs is ongoing in a variety of areas. EEG is a time series of 
signal data with continuously changing potentials. According 
to the signal characteristics of EEG, it is classified into time 
series, oscillation, topographic information, and net structure 
analysis, among which time series analysis shows the 
continuous change of potential over time [4]. Time series data 
is a sequence of data points placed at regular time intervals. 
Time series data has a characteristic that it is continuous over 
time. This study focused on the temporal continuity of these 
EEG data. 

TABLE I.  COMPARISON OF EXISTING STUDIES 

Author Dataset Preprocessing Using Model 

Lo Giudice, et al.[5] Manual Butterworth filter 1D-CNN 

Cheng, S., et al.[6] Manual 
0.5Hz Cut-off Hz. 

Wavelet Transform 
SVM 

Khan, S.U., et al.[7] Public 
8th Chebyshev, 50Hz NF, 
STFT 

VGG-11, 13, 16, 
19, FBCSP+CNN 

Lee, H.S., et al.[8] Manual NF, 4th Butter worth filter. Linear SVM 

Ieracitano, C., et al.[9] Public CWT. 
Hybrid-domain DL 

approach 

Planelles, D., et al.[10] Manual 
50Hz NF, 8 Butterworth 
filter, Spatial filter, 

Laplacian algorithm. 

SVM 

Kline, A., et al.[11] Manual 2nd 0 BPF, DFT Multi-Perceptron 

Bose, R., et al.[12] Manual 
PSD,Statistical parameters, 
Hjorth parameter 

kNN, SVM 

Kwon, M., et al.[13] Manual FFT, BPF 
MI-BCI 

classification 

Shin, J., et al.[14] Manual 0.1~50Hz BPF sLDA 

Yavuz, E., et al.[15] Public CSP 
kNN, LDA, NB, 
DT, SVM, RF 

Rahman, M.M., et al.[16] Manual 
0.5Hz HPF, 50Hz NF, 30Hz 

LPF 
RTA-NET 

Chai, R., et al.[17] Manual PSD, AR Modeling MLP 

Darmakusuma, R., et al.[18] Manual Butterworth BPF SVM 

Huang, C., et al.[19] Public 
0.5 ~ 100Hz BPF, 

STFT 

ANN,SVM,SAE, 

MS-CNN 

Cho, J. H., et al.[20] Manual 60Hz NF CSP, LDA Model 

Venkatachalam, K., et al.[21] Public 4 ~ 40Hz BPF 
ELM, Kernel ELM, 
HELM, KHELM, 

Hybrid-KELM 



Note.—Manual = Manual Annotation, Public = Public Dataset, NF = 
Notch Filter, STFT = Short Time Fourier Transform, CWT = Continuous 
Wavelet Transform, BPF = Band-Pass Filter, DFT = Discrete Fourier 
Transform, PSD = Power Spectral Density, FFT = Fast Fourier Transform, 
CSP : Common Spatial Pattern, AR = Autoregressive, 1D-CNN = 1-
dimensional Convolutional Neural Network, SVM = Support Vector 
Machine, VGG = Visual Geometry Group, FBCSP = Filter Bank Common 
Spatial Pattern, CNN = Convolutional Neural Network, DL = Deep Learning, 
kNN = k-Nearest Neighbor, MI-BCI = Motor Imagery-Based Barin-
Computer Interface, sLDA = supervised Linear Discrimination Analysis, 
LDA = Linear Discrimination Analysis, NB = Naïve Bayes, DT = Decision 
Tree, RF= Random Forest, RTA-NET = Residual-based Temporal Attention 
Network, MLP = Multi-Layer Perceptron, ANN = Artificial Neural Network, 
SAE = Stacked Auto-Encoder, MS-CNN = Multi-Scale Convolutional 
Neural Network, ELM = Extreme Learning Machines, HELM = Hybrid 
Extreme Learning Machines, KHELM = Kernel Hierarchical Extreme 
Learning Machine, KELM = Kernel Extreme Learning Machine 

The behaviors in this study were selected through a 
comparative analysis of what brainwaves were used in 
previous studies. After selecting behaviors, an AI model was 
selected for this study. This study selected the 1D-CNN used 
by Lo Giudice et al.; DT by Yavuz, E., et al.; MS-CNN and 
ANN (DNN) by Huang, C., et al.; and LSTM and GRU 
models that can utilize continuity, which is a characteristic of 
time series. As many existing EEG studies had difficulty 
obtaining and using public data for their research, they 
acquired data through manual annotation. It is difficult to 
obtain public data because there are issues about the 
anonymization and de-identification of EEG data as human-
derived signals, as well as inconveniences in protecting 
subjects and disclosing data. When conducting new research, 
there is no data that meets the research purpose. Therefore, 
new data is acquired directly to conduct research. However, 
there are difficulties in disclosing the data since it is also 
human-derived. Many of these EEG signal studies use 
different datasets and utilize different models due to the 
difficulty of obtaining public data, as mentioned above. Other 
studies have considered continuity when utilizing EEG data 
but have not been quantitatively consistent in their approach. 
Due to data acquisition constraints, some studies have 
acquired their own EEGs, while others have used public data. 
However, the data descriptions of these studies are not 
uniform in their consideration of data preprocessing or 
continuity, making it difficult to study under the same 
conditions as previous studies. For these reasons, this study is 
organized by preprocessing the data and organizing the data 
in a way that unifies continuity. Previous studies had 
difficulties comparing the performance of each model. To 
address these difficulties, a study was conducted to organize a 
comparison experiment of BCI research based on EEG signals. 
Some of the behaviors and models used in other existing 
studies were selected for this study. The study was conducted 
by dividing the data structure into three methods according to 
the continuity of the time series of EEG data. Moreover, 
comparative analysis was performed on six AI models. This 
study aims to determine the impact of continuity in time series 
data on EEG classification performance and identify optimal 
classification models for different datasets. The results of the 
study are expected to provide useful information for other BCI 
research. 

II. METHODS 

A. Datasets 

In this study, an experiment was conducted for the 
comparative analysis of BCI research based on EEG signals. 
EEG data was collected from real human participants using a 
non-invasive EEG device (Quick-20r from CGX A 

cognitionics company). The purpose and process of the 
experiment were explained to all participants, and they signed 
an informed consent form. The study was approved by the 
Institutional Review Board (IRB) of Konyang University 
(KYU 2022-12-004-001). The electrodes used to collect the 
EEG data were based on the international 10-20 system 
established by the International Federation of Societies for 
Electroencephalography and Clinical Neurophysiology [22]. 
The data collection process consists of three steps as follows: 
① Place the CGX Quick-20r on the participant’s head, and 
adjust the electrodes for each electrode position. ② Check 
whether EEG is read normally through Bluetooth 
communication between Quick-20r and the laptop. ③ 
Participants perform each behavior for 30 seconds to collect 
EEG signals. For mechanical classification (annotation) of 
behaviors, this dataset consists of a similar amount of data for 
each of the five behaviors according to the methods used in 
existing studies: eyes open and eyes closed used by Lo 
Giudice et al.; waving left hand and waving right hand based 
on hand movements used by Khan et al. and Planelles et al.; 
and a mental arithmetic condition used by Shin et al. These are 
classifications of behaviors and thoughts, and EEG 
measurements are taken for 30 seconds per classification, 
resulting in two and a half minutes of signals from one 
participant. The configuration for data classification is as 
follows: 

 Eyes Open 

 Eyes Closed 

 Waving Left Hand 

 Waving Right Hand 

 Mental Arithmetic 

B. Preprocessing 

This study preprocesses the dataset obtained through data 
collection. Sampling rate is 500 Hz, and the EEG channel is 
21Ch. The acquired EEG data was measured at 0.002 second 
intervals for 30 seconds per behavior. The data was filtered 
using a band-pass filter. 

C. Experiment 

In this study, the experimental dataset is divided into three 
groups to evaluate the data, considering the continuity of time 
series data according to the data configuration. Table 2 shows 
the data constructed for the experiments in this study, and the 
data is categorized into six classifications based on continuous 
range and random shuffle. 

TABLE II.  CONFIGURATION OF DATASETS 

          Dataset 

Factor 
Merge RS†₁ SS†₂_500 SS_250 SS_125 SS_25 

*CR (sec) 150 0 1 0.5 0.25 0.05 

**RS 

(True/False) 
F T T T T T 

Note.— *CR : Continuous Range, **RS : Random Shuffling, RS†₁ : 
Random Sample, SS†₂ : Slicing Sample. 

The first is the merge data, where all the consecutive data 
are consistently consolidated. This is where the continuity of 
the data after preprocessing is used as a feature in the 
classification model, and the data is a time series at the time 
of measurement. The second is the random sample (RS) 
dataset, which is typically used to avoid overfitting and bias, 
which are problems with statistical classification methods 



when training a classification model. The RS data is a big 
limitation to data continuity, but it is used in many AI studies 
to solve problems with statistical classification methods. 
Where, all data are shuffled randomly to avoid considering 
continuity. This experimental data shows how continuous data 
like EEG affects classifiers based on its nature. The third is the 
slicing sample (SS) data, which has been truncated to account 
for continuity and partially randomly shuffled to account for 
continuity. The SS data is categorized into four types (1s, 0.5s, 
0.25s, and 0.05s) based on the number of seconds over which 
continuity is guaranteed. In this study, experiments with AI 
classification models are conducted on six classified datasets. 
The AI models used in the classification experiments have 
been selected from EEG-related studies. The models are DT, 
DNN, LSTM, 1D-CNN, GRU, and MS-CNN, and the 
classification experiments are conducted using DT, DNN, 1D-
CNN, GRU, and MS-CNN on the Merge dataset and RS 
dataset. For experiments with the SS dataset, which considers 
continuity, GRU and multi-scale CNN models have been 
added. GRU and MS-CNN were used for the SS dataset to 
check the strength of existing LSTM, 1D-CNN, and improved 
AI models in classifying data considering continuity. To keep 
the comparative classification experiments in the same 
research environment as much as possible, the complexity of 
the classification models, the hierarchy, and the optional 
variables were all configured similarly. This enables a 
comparison of how the structure of each classification model 
might perform, depending on the data. 

TABLE III.  TEST MODEL CONFIGURATION BY DATASETS 

        Dataset 

Model 
Merge RS SS_500 SS_250 SS_125 SS_25 

DT Depth 25 Depth 25 Depth 25 Depth 25 Depth 25 Depth 25 

DNN†1 295,734 295,734 288,755 289,359 294,254 292,397 

LSTM†2 292,357 292,357 292,437 291,305 291,920 293,270 

1D-CNN 291,549 291,549 293,817 292,407 291,957 291,957 

GRU†3 - - 293,561 292,901 292,521 292,245 

MS-CNN - - 299,175 299,385 290,845 294,205 

Note.— DNN†1 : Deep Neural Network, LSTM†2 : Long Short Term 
Memory, GRU†3 : Gated Recurrent Unit 

Table 3 shows the complexity of the classification models 
in the comparison experiments on the dataset. The hyper-
parameters of all experiments in this study are set to the same 
conditions. The set conditions were that the optimizer used 
Adam Optimizer and the batch size was set to 32 and epochs 
50. The deep learning (DL) classifiers have a similar 
complexity of approximately 300,000 except for DT, which is 
a machine learning (ML) classifier. In the DT classifier, the 
depth of the tree is the main parameter that determines the 
performance. In this study, it was increased from 1 to 24 to 
check the performance. For DL classifiers, the hierarchy 
varies depending on the division of the dataset being fed into 
the model. The different layers cause the slight differences in 
complexity between the models, as shown in Table 2, and the 
goal is to feed the classification model without compromising 
the continuity of the dataset. In addition, all classification 
models were set up based on a four-layer configuration. 
However, for models that require a large number of layers to 
represent the performance of the classification model, such as 
CNN and LSTM, only a minimal number of layers were added. 
Along with the CNN family, an improved classifier from the 
recurrent neural network (RNN) family, which is utilized in 
many studies in DL classifiers, was added. RNN classification 
models, such as LSTM and GRU, are known for their 
strengths in sequential data by storing state vectors of features 

to influence the next vector. GRU and MS- CNN, which were 
newly added to the comparison experiments, were not tested 
on the merge and RS datasets. To examine and analyze the 
strength of GRU and MS- CNN as improved forms of AI 
models for classifying data considering continuity in detail, 
they were tested with the SS dataset and not with the merge 
and RS datasets.  

III. RESULT 

This study conducted experiments on how continuous 
features perform across classification models, depending on 
the data configuration. The experimental data was divided into 
three groups, and representative ML and DL classifiers were 
selected and compared for the BCI classification problem. 

 

Fig. 1. Decision Tree Classifier Performance Graph 

TABLE IV.  DEEP LEARNING CLASSIFIER PERFORMANCE ON MERGE DATASET 

Matrix Models 
Eyes 

open 

Eyes 

closed 

Waving 

left hand 

Waving 

right hand 

Mental

arithmetic 

Precision 

DNN 0.9258 0.9278 0.9101 0.9091 0.9122 

LSTM 0.9288 0.9258 0.9026 0.9028 0.8767 

1D-CNN 0.9263 0.9081 0.9071 0.9029 0.9094 

Recall 

DNN 0.9412 0.9303 0.9112 0.8984 0.9040 

LSTM 0.9169 0.9109 0.9028 0.8911 0.9132 

1D-CNN 0.9266 0.9263 0.9118 0.8966 0.8925 

F1-Score 

DNN 0.9334 0.9291 0.9107 0.9037 0.9081 

LSTM 0.9228 0.9183 0.9027 0.8969 0.8946 

1D-CNN 0.9264 0.9172 0.9094 0.8997 0.9009 

       

 Table 4 shows the performance results of the DL 
classifiers with the merge dataset. In terms of the precision of 
classification, the DNN classifier showed good performance 
in general. Only for eyes open, the LSTM classifier showed 
the best classification performance. In terms of recall, the 
DNN classifier performed best for eyes open and closed as 
well as waving right hand. The 1D-CNN classifier performed 
best for recall of the waving left hand, while the LSTM 
classifier performed best for mental arithmetic. Finally, the 
DNN classifier performed the best for all classifications in 
terms of F1-Score. 

TABLE V.  DEEP LEARNING CLASSIFIER PERFORMANCE ON RS DATASET 

Matrix Models 
Eyes 

open 

Eyes 

closed 

Waving 

left hand 

Waving 

right hand 

Mental

arithmetic 

Precision 

DNN 0.9361 0.9311 0.9156 0.8965 0.9102 

LSTM 0.9298 0.9129 0.9006 0.8977 0.8946 

1D-CNN 0.9359 0.9171 0.9091 0.9102 0.8917 

Recall 

DNN 0.9323 0.9278 0.9054 0.9167 0.9068 

LSTM 0.9170 0.9242 0.9057 0.8959 0.8926 

1D-CNN 0.9233 0.9232 0.9120 0.8919 0.9127 

F1-Score 

DNN 0.9342 0.9295 0.9105 0.9065 0.9085 

LSTM 0.9233 0.9185 0.9032 0.8968 0.8936 

1D-CNN 0.9295 0.9201 0.9105 0.9009 0.9021 
 

 Table 5 shows the performance results of the DL 
classifiers with the RS dataset. As shown in the table, DNNs 
showed outstanding performance for most classifications in 
terms of precision, recall, and F1-Score. With the merge data, 



the highest classification performance was seen in precision 
for the classification of eyes open and recall for the 
classification of mental arithmetic. The classification 
performance for eyes open was increased with the RS dataset, 
but it did not achieve good results as the classification 
performance of DNN was also increased. Moreover, the 
overall evaluation matrix was 0.01 higher than with the merge 
dataset on average with the RS dataset. This suggests the 
effectiveness of random shuffling in classification and 
learning that utilizes discrete data. 

TABLE VI.  DEEP LEARNING CLASSIFIER PERFORMANCE ON SS_500 DATASET 

Matrix Models 
Eyes 

open 

Eyes 

closed 

Waving 

left hand 

Waving 

right hand 

Mental

arithmetic 

Precision 

DNN 0.3881 0.4072 0.3867 0.4105 0.3957 

LSTM 0.5885 0.6271 0.5330 0.5745 0.5913 

1D-CNN 0.1743 0.0 0.3684 0.3750 0.1887 

GRU 0.5598 0.4366 0.4943 0.5629 0.4882 

MS-CNN 0.3393 0.4345 0.3778 0.4742 0.5000 

Recall 

DNN 0.3842 0.3383 0.4028 0.3842 0.4789 

LSTM 0.7044 0.5522 0.4861 0.5320 0.6474 

1D-CNN 0.2808 0.0 0.0972 0.0148 0.6158 

GRU 0.5764 0.5821 0.3981 0.4187 0.5421 

MS-CNN 0.0936 0.7761 0.1574 0.7241 0.5211 

F1-Score 

DNN 0.3861 0.3696 0.3946 0.3969 0.4333 

LSTM 0.6413 0.5873 0.5085 0.5524 0.6181 

1D-CNN 0.2151 0.0 0.1538 0.0284 0.2889 

GRU 0.5680 0.4989 0.4410 0.4802 0.5137 

MS-CNN 0.1467 0.5571 0.2222 0.5731 0.5103 

       

TABLE VII.  DEEP LEARNING CLASSIFIER PERFORMANCE ON SS_250 DATASET 

Matrix Models 
Eyes 

open 

Eyes 

closed 

Waving 

left hand 

Waving 

right hand 

Mental

arithmetic 

Precision 

DNN 0.4956 0.5604 0.4780 0.4499 0.4163 

LSTM 0.7591 0.7634 0.6313 0.6537 0.6436 

1D-CNN 0.5763 0.5439 0.5139 0.5275 0.5734 

GRU 0.7684 0.7175 0.5990 0.6547 0.6456 

MS-CNN 0.3730 0.3658 0.4094 0.5142 0.0 

Recall 

DNN 0.5580 0.5062 0.4804 0.4300 0.4204 

LSTM 0.7235 0.7444 0.6127 0.6216 0.7413 

1D-CNN 0.4198 0.6154 0.4975 0.5651 0.6318 

GRU 0.6963 0.7816 0.6078 0.5823 0.7114 

MS-CNN 0.2864 0.8288 0.3431 0.5799 0.0 

F1-Score 

DNN 0.5250 0.5319 0.4792 0.4397 0.4183 

LSTM 0.7408 0.7538 0.6219 0.6373 0.6890 

1D-CNN 0.4857 0.5774 0.5056 0.5457 0.6012 

GRU 0.7306 0.7482 0.6034 0.6164 0.6769 

MS-CNN 0.3240 0.5076 0.3733 0.5450 0.0 
 

 Tables 6 and 7 show the performance of the DL classifiers 
with the SS_500 and SS_250 datasets, respectively. LSTM 
and GRU outperformed in terms of precision, recall, and F1-
score. Comparing the SS_500 and 250 datasets, the 
performance of the classifiers improved as the number of 
slices decreased. LSTM and GRU, which were classifiers of 
the RNN family, outperformed when it came to classification 
and learning effectiveness using continuous time series data. 

TABLE VIII.  DEEP LEARNING CLASSIFIER PERFORMANCE ON SS_125 

DATASET 

Matrix Models 
Eyes 

open 

Eyes 

closed 

Waving 

left hand 

Waving 

right hand 

Mental

arithmetic 

Precision 

DNN 0.5056 0.5291 0.5677 0.5066 0.5195 

LSTM 0.8003 0.8474 0.7211 0.6861 0.7296 

1D-CNN 0.7228 0.6374 0.6744 0.6270 0.5725 

GRU 0.8242 0.8168 0.7643 0.7614 0.8396 

MS-CNN 0.1936 0.0 0.0 0.0 0.0 

Recall 

DNN 0.6849 0.4323 0.5566 0.4885 0.4690 

LSTM 0.7972 0.7648 0.6833 0.7679 0.7606 

1D-CNN 0.5089 0.7577 0.5676 0.7090 0.6428 

GRU 0.8431 0.8682 0.7625 0.7487 0.7825 

MS-CNN 1.0 0.0 0.0 0.0 0.0 

F1-Score 

DNN 0.5818 0.4758 0.5621 0.4974 0.4930 

LSTM 0.7987 0.8040 0.7017 0.7247 0.7448 

1D-CNN 0.5973 0.6923 0.6164 0.6655 0.6056 

GRU 0.8335 0.8417 0.7634 0.7550 0.8101 

MS-CNN 0.3244 0.0 0.0 0.0 0.0 
 

 Table 8 shows the performance results of the DL 
classifiers with the SS_125 dataset. The GRU and LSTM 
classifiers performed well in terms of precision, recall, and F1-
score. For the SS_125 dataset, the GRU classifier performed 
best for most thought and behavior classifications. The 
SS_125 dataset had less sliced data compared to the SS_500 
dataset and SS_250 dataset above. Previously, the 
performance of the performance evaluation matrix increased 
with SS_250 as the slicing data decreased, and the 
performance of the SS_125 dataset was also better. 

TABLE IX.  DEEP LEARNING CLASSIFIER PERFORMANCE ON SS_25 DATASET 

Matrix Models 
Eyes 

open 

Eyes 

closed 

Waving 

left hand 

Waving 

right hand 

Mental

arithmetic 

Precision 

DNN 0.9343 0.9235 0.7932 0.8125 0.7684 

LSTM 0.8996 0.9429 0.8537 0.7975 0.8785 

1D-CNN 0.8932 0.8729 0.7666 0.7635 0.8483 

GRU 0.8613 0.8715 0.8332 0.7775 0.8544 

MS-CNN 0.6229 0.6933 0.5656 0.5659 0.5996 

Recall 

DNN 0.8808 0.8921 0.7998 0.7708 0.8729 

LSTM 0.9161 0.9038 0.7970 0.8754 0.8702 

1D-CNN 0.8576 0.8984 0.7557 0.7862 0.8429 

GRU 0.8828 0.9004 0.7572 0.8180 0.8362 

MS-CNN 0.7374 0.5281 0.3596 0.7100 0.6974 

F1-Score 

DNN 0.9067 0.9075 0.7965 0.7911 0.8174 

LSTM 0.9078 0.9229 0.8244 0.8346 0.8743 

1D-CNN 0.8751 0.8855 0.7611 0.7747 0.8456 

GRU 0.8719 0.8857 0.7934 0.7972 0.8452 

MS-CNN 0.6753 0.5995 0.4396 0.6298 0.6448 
 

 Table 9 shows the performance results of the DL 
classifiers with the SS_25 dataset. LSTM and DNN 
outperformed in terms of precision, recall, and F1-score. The 
LSTM classifier performed best for most thought and 
behavior classifications. Previously, the GRU classifier 
performed well in the SS_125 dataset; however, the LSTM 
classifier performed better in the SS_25 dataset,. As the slicing 
of the time series data was reduced to about 25, the continuity 
of the time series data was greatly reduced. Moreover, the 
DNN model, which previously showed excellent performance, 



may have shown good performance in classifying time series 
data. However, the RNN family models seemed to outperform 
the DNN classifier in classification performance with time 
series data. 

TABLE X.  DEEP LEARNING CLASSIFIER PERFORMANCE BY DATASET 

Matrix Models Merge RS SS_500 SS_250 SS_125 SS_25 

Precision 

DNN 0.9170 0.9179 0.3976 0.4800 0.5257 0.8464 

LSTM 0.9073 0.9071 0.5829 0.6902 0.7569 0.8744 

1D-CNN 0.9108 0.9128 0.2213 0.5470 0.6468 0.8289 

GRU - - 0.5083 0.6771 0.8013 0.8396 

MS-CNN - - 0.4252 0.3325 0.0387 0.6095 

Recall 

DNN 0.9170 0.9178 0.3977 0.4790 0.5263 0.8433 

LSTM 0.9070 0.9071 0.5844 0.6887 0.7548 0.8725 

1D-CNN 0.9108 0.9126 0.2017 0.5459 0.6372 0.8282 

GRU - - 0.5035 0.6759 0.8010 0.8389 

MS-CNN - - 0.4545 0.4076 0.2000 0.6065 

F1-Score 

DNN 0.9170 0.9178 0.3961 0.4788 0.5220 0.8439 

LSTM 0.9070 0.9071 0.5815 0.6886 0.7548 0.8728 

1D-CNN 0.9107 0.9126 0.1373 0.5431 0.6354 0.8284 

GRU - - 0.5004 0.6751 0.8007 0.8387 

MS-CNN - - 0.4019 0.3500 0.0649 0.5978 

Accuracy 

DNN 0.9171 0.9178 0.3968 0.4790 0.5247 0.8434 

LSTM 0.9070 0.9071 0.5824 0.6884 0.7543 0.8728 

1D-CNN 0.9108 0.9126 0.1955 0.5457 0.6383 0.8285 

GRU - - 0.5015 0.6756 0.8015 0.8393 

MS-CNN - - 0.4492 0.4079 0.1936 0.6068 

        

 

 

Fig. 2. Best Performance Classifier ROC Curve by Dataset 

Figure 2 shows the receiver operating characteristic (ROC) 
curve of the best-performing classifier for thought and 
behavior classification based on the dataset. The best model 
for each dataset from the classification performance metrics 
was selected in Tables 4 to 9 to provide a per-classification 
area under the curve (AUC). This included the average AUC 
of the five classification models. Table 10 is different from the 
other tables of performance results because of the addition of 
the accuracy matrix. As for the accuracy according to the data, 
DNN showed the best classification performance with the 
merge and RS datasets, and LSTM showed the best 
classification performance with all SS_datasets except 125. In 
the SS_125 dataset, the GRU classifier achieved the best 
performance. Experiments on classifying thoughts and 
behaviors based on data continuity showed that DNN 
classifiers performed strongly when data continuity was not 
considered. It performed best with the merge and RS datasets. 
The 1D-CNN and MS-CNN classifiers of the CNN family 
performed worse than the RNN family on continuous 
classifications like the SS_datasets. On the other hand, the 
RNN family showed strong classification performance when 
there is continuity in the data, and the LSTM model had the 
best classification performance with the SS_500, SS_250, and 
SS_25 datasets. However, the GRU classifier outperformed 

the LSTM in the SS_125 dataset. In summary, the results of 
this study suggest that DNN classifiers perform well when 
data continuity is not considered, and RNN-based classifiers 
perform well when continuity is considered. 

IV. CONCLUSION 

In this study, a comparative experiment was conducted on 
data continuity for BCI research with different comparison 
models based on data organization. This aimed to compare the 
classification performance of each model under the same 
conditions of data composition and continuity consideration, 
which were characteristics of time series data. This study 
focused on the continuity of the time series data and used six 
EEG signals collected in five different classifications based on 
their continuity. The experiments evaluated classification 
performance by training AI models of similar complexity with 
classified data. The classification models for comparison 
experiments were DT, DNN, LSTM, 1D-CNN, GRU, and 
MS- CNN models were further experimented with the SS data 
considering data continuity. Experimental results showed that 
DNN classifiers performed strongly when data continuity was 
not considered. The DNN classifier performed best with the 
merge and RS datasets. RNN classifiers also performed well 
on average for classifications with continuity, such as the 
SS_datasets. We paid attention to this. Across the SS_500, 
SS_250, and SS_25 datasets, with continuity in the data, the 
LSTM model performed the best across all evaluation 
matrices. The GRU classifier showed the best performance in 
the SS_125 dataset, with a slight performance difference 
compared to LSTM. Upon reviewing the experimental results 
of this study, it was found that lesser data continuity has better 
performance of deep learning classifiers in BCI research based 
on EEG signals. The LSTM was expected to achieve the best 
performance across the SS_datasets, since the performance of 
the LSTM was consistently stronger with the SS_125 dataset. 
However, the GRU classifier performed better in the SS_125 
dataset, suggesting that RNN classifiers performed differently 
depending on the number of continuities in the data. However, 
the LSTM classifier, not the GRU classifier, achieved the best 
performance in the SS_25 dataset. Regarding this 
phenomenon, this study determined that the simplified 
computational approach of the GRU model could be a strength 
for data with continuity over a certain range. In summary, the 
behavior and thought classification were best performed by 
the RNN family, especially LSTM when the continuity of the 
data was considered and DNN when the continuity of the data 
was not considered in BCI research based on EEG signals. In 
addition, the performance of the classifier according to the 
dataset showed that the data with random shuffling was the 
best-performing dataset overall. This suggests that the dataset 
that does not take continuity into account is a better dataset for 
classification than one that does. Therefore, BCI research on 
behavior and thought classification based on EEG signals 
seems to benefit from data feature diversification through 
shuffling rather than ensuring data continuity. Accordingly, 
this study is expected to make a positive contribution to the 
direction of BCI research based on data continuity. In the 
future work will diversify feature vector with the transformer 
models. 
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