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Abstract—In this paper, we propose a model that combines 

Backpropagation Neural Network (BPNN) with a metaheuristic 

algorithm to predict carbon dioxide (CO2) emissions. The model 

utilizes input variables directly influencing carbon dioxide 

emissions. Our objective is to monitor CO2 emissions based on 

energy consumption resulting from production processes driven 

by the corresponding energy demand. Model training and 

testing are conducted to identify the most suitable model. The 

results demonstrate that machine learning with the Particle 

Swarm Optimization (PSO) model achieves an optimal 

avoidance rate. To assess model accuracy using Mean Square 

Error (MSE) and Mean Absolute Error (MAE) the smallest 

error indicates a more precise prediction. Following established 

guidelines, this document aids managers in making informed 

business decisions and devising energy management policies 

that effectively monitor carbon emissions. 
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I. INTRODUCTION   

Global warming refers to the phenomenon in which the 
Earth's average temperature increases due to the greenhouse 
effect, a well-known process characterized by the 
accumulation of greenhouse gases [1]. This effect is primarily 
attribute to human activities, specifically the release of carbon 
dioxide (CO2) resulting from the combustion of various fuels 
in energy consumption processes. Key factors contributing to 
global warming include the heightened emissions of 
pollutants, resulting in increased permeability of the 
atmosphere to solar radiation. This phenomenon is known as 
the greenhouse gas effect. 

The critical greenhouse gases that require reduction 
include carbon dioxide (CO2), and the escalation of CO2 

emissions is related to final energy consumption from various 
sources such as coal and coal products, crude oil and 
petroleum products, gas, and electricity. The challenges posed 
by global warming have prompted countries to address the 
management of energy needs and the reduction of greenhouse 
gas emissions. Accurate predictions of energy requirements 
and CO2 emissions are crucial for effectively addressing the 
challenges and planning energy management strategies. 

The application scope of machine learning is extensive, 
with neural networks emerging as a widely embraced 
technique for predictive modeling, particularly in scenarios 
demanding high prediction accuracy, such as medical data and 
scientific research. Neural Networks offer an alternative 
approach to predictive modeling, extensively employed in 
various forecasting tasks. Among these, the Multi-Layer 
Perceptron (MLP), a prevalent type of Neural Network (NN),  
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has found widespread application across diverse practical 
challenges. Neural networks exhibit superior learning 
capabilities from unstructured data compared to other 
methods, owing to their distinct learning architecture, 
differing from general machine learning algorithms. However, 
training MLPs for specific applications presents challenges, 
often grappling with issues concerning local optima, 
overfitting problem, encompassing convergence rate, training 
speed, and sensitivity to initialization. Numerous studies have 
demonstrated the efficacy of several methods in predicting 
carbon dioxide emissions [2][3][4][5][6][7][8]. This article 
aims to address these challenges by employing five 
metaheuristic algorithms to train MLPs, specifically focusing 
on predicting carbon dioxide emissions in Thailand. 

II. BACKPROPAGATION ALGORITHM 

The supervised learning model is extensively used in 
machine learning, wherein a model undergoes training on a 
dataset. The Multi-Layer Perceptron (MLP) represents a 
neural network of higher complexity compared to a single 
perceptron, featuring interconnected hidden layers that form a 
mathematical model simulating the relationship between data 
and desired outcomes [9]. MLP offers various advantages 
such as classification, prediction, and problem-solving 
capabilities. In this approach, neurons within the hidden layer 
adjust their weights based on computed results, typically 
initialized randomly. Another notable learning model is 
reinforcement learning, which involves multiple layers and 
employs a feed-forward connectivity system. When dealing 
with multiple layers and a feed-forward connectivity system, 
the process is termed the backpropagation (BP) algorithm 
[10]. This learning mechanism entails transmitting error 
information during result computation, facilitating the 
adjustment of weights between layers to optimize 
computational efficiency [11][12][13]. 

III. METAHEURISTIC ALGORITHM  

Metaheuristics are applied to enhance performance in 
modified and adaptable problem domains [14]. They provide 
significant benefits when handling large-scale problems that 
are impractical for exhaustive analysis or comprehensive 
surveying. Employing metaheuristics addresses and enhances 
solutions for diverse optimization problems, considering 
challenges stemming from incomplete or limited data and 
computational resources. Metaheuristics encompass a range 
of algorithms that aim to efficiently explore solution spaces, 
aiming for near-optimal or optimal solutions without 
exhaustively evaluating all possible solutions. Metaheuristics 
algorithm often involve iterative processes that explore 
different parts of the solution space, balancing exploration and 
exploitation to efficiently converge on good solutions 
[15][16][17]. 



A. Biogeography-based optimization (BBO) 

BBO is an evolutionary metaheuristic inspired by the 
dispersal behavior of living organisms across various islands 
[18]. Frequently, populations migrate from islands with high 
fertility to those with lower fertility, resulting in increased 
fertility on the settled island due to the introduction of a 
diverse set of species. In this analogy, islands can represent 
solutions to a balancing problem, where suboptimal solutions 
are more likely to adopt characteristics from others, 
particularly better solutions. While existing good solutions are 
less prone to acquiring traits from other solutions, they are 
expected to evolve and develop into even better solutions over 
time. Overall, the BBO algorithm capitalizes on this idea of 
emulating the natural dispersal and adaptation observed in 
living organisms across different environments, leveraging 
the concept of migration between islands to optimize and 
improve solutions in problem-solving scenarios [19][20][21]. 

B. Jaya Optimization (JAYA) 

The Jaya Algorithm was devised to tackle extensive 
variable optimization challenges without specific targeting, 
conditions, or preset parameters [22]. It operates through a 
simulated natural population dynamics concept, randomly 
adjusting population variables to enhance suitability. These 
adaptations encompass the entire population, selecting 
variables to improve the target function and subsequently 
adjusting variables in the next generation. Its proficiency lies 
in resolving various constraint problems without complex 
parameter modification. Functioning as an inhibition-free 
search algorithm, it adeptly handles numerous parameters or 
computationally intense methods. Distinguished from other 
algorithms, the Jaya Algorithm emphasizes stability, adaptive 
enhancements, and efficacy in solving uncertain or diverse 
data problems. It remains an attractive choice for intricate 
optimization tasks across scientific and industrial domains 
dealing with extensive data, requiring minimal parameter 
adjustments, thereby asserting a significant role in the realm 
of optimization [23][24][25]. 

C. Particle Swarm Optimization (PSO) 

PSO is a nature-inspired algorithm that emulates the 
collective behavior observed in swarms [26]. It employs 
particles or agents forming a swarm to explore a search space 
in pursuit of the optimal solution for a given problem. Initially, 
random positioning of particles represents potential solutions, 
which are iteratively refined by the algorithm. Each particle 
updates its position based on both its personal experience and 
the best position discovered by the entire swarm. This process 
involves adjusting particle velocity and position using a 
formula that integrates personal and global best positions. 
Over iterations, particles traverse the search space, 
progressively converging toward an optimal or nearly optimal 
solution. The fundamental strategy involves maintaining a 
balance between exploration, seeking new solution areas, and 
exploitation, leveraging promising regions, to effectively 
navigate and determine the best solution. PSO's effectiveness 
stems from its simplicity, ease of implementation, and its 
ability to explore intricate search spaces, rendering it a widely 
adopted optimization technique across diverse domains 
[27][28][29]. 

D. Shuffled Frog-Leaping Algorithm (SFLA) 

SFLA is a metaheuristic optimization algorithm inspired 
by the behavior of frogs. It mimics the process of frogs 
hopping among lily pads to find the optimal solution for a 

given problem [30]. SFLA consists of a population of frogs, 
where each frog represents a potential solution to the 
optimization problem. The algorithm operates through a series 
of steps: initialization, grouping, memorization, shuffling, 
evaluation, selection and iteration. SFLA's core principle lies 
in the collaboration and exchange of information between 
frogs, resembling the way frogs leap between different lily 
pads to find better feeding spots. By combining local search 
and information sharing among frogs, SFLA aims to 
efficiently explore the search space and converge towards the 
optimal or near-optimal solutions for the given problem. Its 
adaptability and effectiveness in solving various optimization 
problems have made it a notable algorithm in the field of 
optimization [31][32][33]. 

E. Teaching-Learning-Based Optimization (TLBO) 

TLBO is a metaheuristic algorithm inspired by the 
teaching and learning process observed in a classroom. It 
simulates the learning environment where a teacher and 
students interact to improve learning [34]. In TLBO, the 
population is divided into teachers and learners. Teachers 
represent the best solutions, and learners are solutions that 
need improvement. The algorithm iteratively improves the 
learner's solutions based on the teacher's guidance. It consists 
of two phases: First, Teacher Phase: The best solutions 
(teachers) share their knowledge with other solutions 
(learners). The teaching process involves updating the learners 
based on the teacher's quality, allowing learners to improve 
towards better solutions. Second, Learner Phase: In this phase, 
learners assimilate knowledge from their teachers. They 
update their solutions by considering the information received 
from teachers, aiming to enhance their performance. TLBO 
operates by fostering collaboration and knowledge sharing 
among solutions to optimize the objective function. Its 
simplicity, ease of implementation, and ability to solve 
complex optimization problems make it a popular choice in 
various domains [35][36][37]. 

IV. EXPERIMENTS AND RESULTS 

Our objective is to monitor CO2 emissions resulting from 
energy consumption by seeking an accurate prediction with 
the lowest error. The dataset selected for this purpose pertains 
to Thailand and encompasses various dimensions, including 
GDP, population, coal and coal products, crude oil and 
petroleum products, gas, electricity, and CO2 emissions, 
spanning the years from 1990 to 2020. The data was collected 
from the World Databank [38] and The Expert Group on 
Energy Data and Analysis (EGEDA)[39]. In this experiment, 
as mentioned earlier, the dataset was utilized to split the data 
into a training set and testing set, with proportions of 85% and 
15%, respectively. The neural network architecture consists of 
three layers: 1) the input layer, 2) Hidden layer 1, starting with 
5 nodes and incrementing by 5 nodes up to 20 nodes, and 3) 
the output layer representing carbon dioxide emissions. The 
hyperparameters, including the learning rate and momentum, 
were set to identical values, specifically 0.1. The number of 
iterations was fixed at 1000, and the weight values ranged 
from -1 to 1. The population size of all metaheuristic 
algorithms is 50. Various indices are typically used to evaluate 
and validate prediction models and algorithms. The MSE and 
MAE indices were used in study to validate the prediction 
accuracy of the six machine learning algorithms and the multi-
objective mathematical model. Annual CO2 emissions target 
data are shown in Figure 1. 



 

Fig. 1. Annual CO2 emissions in Thailand (1990–2020)  

The Pearson correlation coefficient (R) was employed to 
examine the dependency between each input variable and the 
annual output. All relevant R-values are presented in Table I. 

From Table I, it is evident that the R-values for each input 
are close to 1, indicating a positive correlation and a direct 
linear relationship between the inputs and outputs. 

 

TABLE I.  THE RELATIONSHIPS (R) BETWEEN INPUT PARAMETERS 
AND OUTPUT 

GDP Population 

Coal 

and coal 

products  

Crude oil 

and 

petroleum 

products 

Gas Electricity 

0.9857 0.8809 0.8167 0.9676 0.9167 0.9685 

MSE was applied to calculate the minimize objective 
function performance during training as follows: 
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The MAE was evaluated for the reliability as follows: 
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Where 	
  and �
  are actual value and predicted value, 
respectively; n is the number of observations. 

The result from all architectures according to the MSE 
values obtained from the training, and the MAE from the test 
dataset are summarized in Table II, as follows.

TABLE II.  COMPARISON OF THE MSE VALUES OBTAINED FROM TRAINING AND THE MAE VALUES OBTAINED FROM TESTING 

Algorithm 
MSE from Training MAE from Testing 

6-5-1 6-10-1 6-15-1 6-20-1 6-5-1 6-10-1 6-15-1 6-20-1 
BPMLP 0.0118 0.0020 0.0017 0.0014 8.1821 2.6573 3.5633 3.7163 
BPBBO  0.0133 0.0056 0.0064 0.0088 0.1154 0.0746 0.0799 0.0940 
BPJAYA 0.0001 0.0389 0.0800 0.0524 0.2319 0.1972 0.2829 0.2290 
BPPSO  0.0047 0.0042 0.0046 0.0039 0.0687 0.0648 0.0676 0.0626 
BPSFLA 0.0076 0.0075 0.0054 0.0054 0.2162 0.2077 0.3199 0.3431 
BPTLBO 0.0468 0.0431 0.1023 0.1177 0.0871 0.0868 0.0732 0.0737 

Table III displays the average ranks resulting from the 
Friedman test conducted among the six competing algorithms. 
Lower scores indicate better performance. The results 
revealed that BPMLP had a lower MSE than BPPSO when 
evaluated on the training dataset. However, in the case of the 
MAE on the testing dataset, BPMLP exhibited a higher value 
compared to BPPSO. This divergence may suggest a scenario 
of overfitting in BPMLP. 

TABLE III.  COMPARISON OF THE MSE VALUES OBTAINED FROM 
TRAINING AND THE MAE VALUES OBTAINED FROM TESTING 

Algorithm 
Ranking 

MSE MAE 
BPMLP 1.75 6.00 
BPBBO  4.00 2.75 
BPJAYA 4.00 4.25 
BPPSO  2.00 1.00 
BPSFLA 6.00 4.75 
BPTLBO 3.25 2.25 

The results indicate that BPPSO effectively determines an 
appropriate search agent among all the compared methods. 
Observing the experimental outcomes, it's evident that the 
MSE and MAE rank values are the lowest for BPPSO, 
surpassing most values obtained by BP, except for the MSE 
training value, which might indicate an overfitting issue. 

These findings demonstrate the superior performance of 
BPPSO in solving the problem. 

Furthermore, the evaluation of the annual CO2 emissions 
through Table II and III reveals distinct patterns in the 
predictive accuracy of various algorithms. The BPPSO 
architecture within the artificial neural network stands out 
prominently, showcasing unparalleled promise in minimizing 
errors associated with CO2 emission predictions. Its robust 
performance, as indicated by the convergence curves in Figure 
2, substantiates its superiority over alternative algorithms. 

The MSE convergence curves depicted in Figure 2 provide 
a visual representation of the model's learning dynamics 
across different optimization techniques. It is evident from 
these curves that the neural network model, when trained by 
BBO, JAYA, PSO, SFLA, and TLBO, converges toward 
optimal solutions. Notably, the curve corresponding to PSO 
exhibits a distinct convergence pattern, underscoring the 
effectiveness of the PSO technique in minimizing the mean 
squared error. 

The success of PSO in integrating solutions is evident 
from the convergence of the MSE curve towards the best-fit 
function, highlighting the algorithm's adeptness in navigating 
the solution space. Comparative analysis accentuates the 
competitive edge of PSO over other optimization algorithms 
utilized in this study. Its consistent and efficient convergence 

 



demonstrates superior performance, emphasizing its viability 
for optimizing neural network models in predicting CO2 
emissions. 

In conclusion, the comprehensive analysis of Table II, 
Table III, and Figure 2 underscores the supremacy of the 
BPPSO architecture and the effectiveness of PSO in 
enhancing the accuracy of CO2 emission predictions. These 
findings offer valuable insights into leveraging specific neural 
network architectures and optimization algorithms for 
addressing environmental concerns associated with CO2 
emissions. 

V. CONCLUSION 

In this article, BPMLP was used to predict carbon dioxide 
emissions, employing a metaheuristic algorithm for 
initializing the weights of MLP. The aim of the training 
problem was to avoid overfitting while converging to the best 
possible solution. From the evaluation of various predictive 

models applied in conjunction with BP, namely BBO, JAYA, 
PSO, SFLA and TLBO, the BPPSO model exhibited the low 
MSE on the training dataset and the lowest MAE on the testing 
dataset when compared to BPMLP and other metaheuristic 
algorithms. BPPSO method has been proven suitable for 
forecasting annual carbon dioxide emissions, supporting 
precise energy management policies. 

In future investigations, it is planned to conduct a 
comprehensive comparison among various metaheuristic 
algorithms. Furthermore, the application of neural networks in 
conjunction with these metaheuristic algorithms can be 
extended to address a diverse array of challenges beyond 
carbon emissions prediction. This could encompass tackling 
finance-related complexities, strategic planning, or solving 
various other problem domains. Exploring these applications 
could unveil the versatility and robustness of the proposed 
approach in handling a wide spectrum of real-world issues.

 

Fig. 2. Convergence curves of metaheuristic methods based on the MLP architecture during training for MSE 
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