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Abstract—In this paper, we study a deep learning (DL)-
based energy efficiency maximization (EEM) problem in massive
multiple-input multiple-output (MIMO)-non-orthogonal multiple
access (NOMA) networks with multiple reconfigurable intelligent
surfaces (RISs). These RISs are deployed randomly at the edge of
the near radius to assist the base station (BS) in communicating
with near and far users. We formulate the problem of jointly
optimizing the precoding matrix and phase shift of the RISs to
maximize the overall energy efficiency subject to the quality-
of-service of each user, phase shift of RISs, and power budget
of the BS constraints. To address this challenging non-convex
problem with mixed-integer constraints, the original problem is
decoupled into phase shift and beamforming sub-problems, then
addressed them separately. We introduce the bisection search
algorithm to address the challenge of the phase shifts optimization
problem. For the beamforming optimization, it is transformed
into an equivalent non-convex problem but with a more tractable
form. Then, we propose an iterative algorithm based on the
inner approximation method for its solution. To support real-time
optimization, we design a deep learning framework to predict
optimal solutions of phase shifts at RISs and precoding matrix
under different parameter settings. Simulation results show that
the proposed DL-based approach can predict the optimal solution
with high accuracy in a short time compared to the conventional
approach. Additionally, the effect of the maximum power budget
at the base station, the number of RISs, and BS’s antennas are
evaluated thoroughly.

Index Terms—Deep learning, energy efficiency, massive
MIMO, NOMA, non-convex optimization, phase shift, RIS.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is a
promising technology to achieve high spectral efficiency
(SE) [1] and energy efficiency (EE) [2] in the fifth generation
(5G) wireless networks and beyond. As the number of users
and antennas at the base station (BS) increases, the computa-
tional complexity rises, which poses challenges in determining
resource allocation. To tackle this problem, deep learning
(DL) has been widely studied to solve the resource allocation
problems such as power allocation [3], channel estimation [4],
pilot power allocation [5] and precoding matrix [6] in the
massive MIMO networks within a short processing time.
However, when the cell dimension increases or there is an

obstacle between BS and users, the received signal quality of
users may degrade.

To enhance the coverage area and improve the received
signal quality of users, reconfigurable intelligent surface (RIS)
has been proposed to cover a wide area and improve received
signal quality for users since it has the ability to configure
its elements flexibly [7]. However, it is difficult to obtain the
optimal phase shift at RIS due to the large number of RIS
elements. To tackle this problem, the authors in [6] proposed a
DL-based framework to achieve the optimal phase shift at RISs
in massive MIMO-non orthogonal multiple access (NOMA)
networks. NOMA is one of the promising technologies for
beyond 5G networks to improve SE and EE in massive MIMO
networks [8]. The authors in [9] studied the DL-based method
to evaluate the RIS-aided cognitive NOMA networks. By em-
ploying the DL-based method, the computational complexity
is much reduced than that of the conventional optimization
approaches.

Inspired by the potential synergy of massive MIMO-NOMA
networks, RIS and DL technique, this paper studies an energy
efficiency maximization problem in massive MIMO-NOMA
networks, where multiple RISs are deployed to improve the
received signal quality at users, accompanied by a DL-based
evaluation framework. The advantage of integrating DL and
RIS in massive MIMO-NOMA networks lies in their ability
to improve system performance with low complexity and
processing time. At the same time, there exists a gap in
research exploring the effect of the combination of DL,
RIS, and massive MIMO-NOMA networks to address the
challenges of energy efficiency maximization problem. The
main contributions of the paper can be summarized as follows:

• We consider a downlink multi-user massive MIMO-
NOMA networks, where multiple RISs are deployed to
improve the received quality signal of users. We formu-
late the energy efficiency maximization (EEM) problem
subject to the minimum individual data rate, maximum
power budget, and phase shift at the RIS. The formu-
lated problem belongs to the class of non-linear mixed
integer programming, which is very challenging to solve
optimally.



• To solve the EEM problem, we decouple it into phase
shift and beamforming sub-problems. Then, we ad-
dress them sequentially with a proposed bisection algo-
rithm and iterative algorithm based on IA method with
low complexity for phase shift and beamforming sub-
problems, respectively.

• To support real-time optimization, we design a DL-based
framework to predict the optimal solution under different
parameter settings within a short time and high accuracy.

• Simulation results show that the proposed DL-based
framework can predict the optimal solution of the EEM
problem within a short execution time. Additionally,
the impacts of the maximum power budget at the BS,
the number of RISs and BS’s antennas are evaluated
thoroughly.

Notation: Italic, bold-face lower case and upper-case letters
are denoted by scalar, vectors, and matrices, respectively. The
diag(A) denotes diagonal matrix, and ∥.∥ denotes as Euclidean
norm of A. C and R are denote complex numbers and real
part, respectively.

II. SYSTEM MODEL

A. System Description
We consider a downlink multiple-user in massive MIMO-

NOMA networks assisted by multiple RISs as shown in Fig. 1.
A BS is deployed to serve a set K = {UEk|k = 1, · · · ,K}
of near user and a set L = {UEl|l = 1, · · · , L} of far user
simultaneously, while the N RISs (R) help to improve the
signal quality of users. The BS, UEk, and UEl are equipped
with MBS > 1, MK ≥ 1, ML ≥ 1 antennas, respectively,
while each RIS is equipped with MR > 1 elements. We

Fig. 1. The proposed system model of DL design EEM in massive MIMO-
NOMA systems assisted multiple RIS.

assume that BS is located in the center of the cell, while UEk,
and UEL are uniformly deployed with d1 and d2 radius from
the BS, where d2 > d1. The RIS is deployed randomly at
the edge of the d1 [10]. We also assume the BS, UEk and
UEl know the channel state information (CSI) perfectly [3].
Furthermore, the BS can calculate the transmit power to the
users and phase shift at RIS. We also assume the reflected
amplitude of the RIS is ideal; thus, it is set to one [6].

B. Channel Model

The BS transmits the superimposed signal to users following
the NOMA principle, which can be expressed as

s =
K∑
k

Wkxk +

L∑
l

Wlxl, (1)

where Wk and Wl are the linear precoding matrices of user k
and user l, respectively, while xk and xl denote the k-th near
and l-th far user’s symbols. For the sake of notation, we define
W1 ≜ [Wk]k∈K, W2 ≜ [Wl]l∈L, and W ≜ [W1W2]. Let
HB,k, HB,l and HB,Rn be the channel gains from BS to UEk,
UEl, and Rn, respectively. HRn,k and HRn,l are the channel
gains from Rn to the UEk and UEl, respectively. And ΘRn

is the phase shift matrix of Rn with diagonal reflecting matrix
being Θ = diag(ϕRn,1, ϕRn,2, ·, ϕRn,MR

), where ϕRn,MR
=

ejθRn,MR with ϕRn,MR ∈ (0, 2π]. Then, the equivalent channel
gains from BS to UEk, ĤB,k(Θ) and UEl, ĤB,l(Θ), can be
presented, respectively, as

ĤB,k(Θ) = HB,k +

N∑
n

HB,Rn
ΘRn

HRn,k, (2)

ĤB,l(Θ) = HB,l +

N∑
n

HB,RnΘRnHRn,l, (3)

where the channel gain H ≜
√
λhH̃ with H̃ ∈

{HB,k,HB,l,HB,Rn ,HRn,k,HRn,l}, where λh is the large and
H̃ is the small scale fadings, respectively [11]. Considering the
flat fading channels, the received signals at UEk and UEl can
be expressed as

yk = ĤB,k(Θ)Wkxk +
∑

k′∈K\{k}

ĤB,k(Θ)Wk′xk′

+
∑
l∈L

ĤB,k(Θ)Wlxl + nk, (4)

yl = ĤB,l(Θ)Wlxl +
∑

l′∈L\{l}

ĤB,l(Θ)Wl′xl′

+
∑
k∈K

ĤB,k(Θ)Wkxk + nl, (5)

where nk and nl denote a white Gaussian noise vector at UEk

and UEl with variance σ2. The UEk performs the successive
interference cancellation (SIC) to detect the UEl signal. Thus,
the signal-to-interference plus noise ratio (SINR) at UEk in
decoding UEl’s signal can be expressed as

γxl

k (W,Θ) =
∥ĤB,k(Θ)Wl∥
Ψk,l(W,Θ)

, (6)

where

Ψk,l(W,Θ) =
∑

l′∈L\{l}

∥ĤB,k(Θ)Wl′∥2

+
∑
k∈K

∥ĤB,k(Θ)Wk∥2 + σ2
k. (7)



Furthermore, the SINR of UEk to decode its own message
can be expressed as

γxk

k (W,Θ) =
∥ĤB,k(Θ)Wk∥
Ψk,k(W,Θ)

, (8)

where

Ψk,k(W,Θ) =
∑
l′∈L

∥ĤB,k(Θ)Wl′∥2

+
∑

k′∈K\{k}

∥ĤB,k(Θ)Wk′∥2 + σ2
k. (9)

For UEl, the UEl can decode directly its own signal by using
SINR, which can be expressed as

γxl

l (W,Θ) =
∥ĤB,l(Θ)Wl∥
Ψl,l(W,Θ)

, (10)

where

Ψl,l(W,Θ) =
∑

l′∈L\{l}

∥ĤB,l(Θ)Wl′∥2

+
∑
k∈K

∥ĤB,l(Θ)Wk∥2 + σ2
l , (11)

The downlink channel capacity of UEk and UEl can be
calculated, respectively, as

Rk(W,Θ) = ln(1 + γxk

k (W,Θ)), ∀k ∈ K, (12)
Rl(W,Θ) = ln(1 + γxl

l (W,Θ)), ∀l ∈ L. (13)

C. Problem formulation

Considering the EEM problem, the total hardware power
consumption at BS and all users can be expressed as [11]

P∑ = ϵ−1(∥W1∥2 + ∥W2∥2) +MBSP
d
BS + P s

BS

+
∑
k∈K

MkP
s
k +

∑
l∈L

MlP
s
l , (14)

where ϵ ∈ (0, 1] is the transmit power efficiency, P d
BS rep-

resents the dynamic power consumption, correlating to the
power radiation across all circuit blocks within each active
radio-frequency chain, P s

BS denotes the static power used by
the cooling system, P s

k and P s
l represent the hardware static

power of UEk and UEl. Let assume that the total circuit power
is P0 ≜ MBSP

d
BS + P s

BS +
∑

k∈K MkP
s
k +

∑
l∈L MlP

s
l .

The main goal of this paper is to maximize energy efficiency
of the considered system by optimizing the precoding matrix
and phase shift at RISs subject to individual channel capacity
constraints, maximum total power at BS and phase shift matrix
at RIS. Thus, the EEM problem can be formulated as

max
W,Θ

EEM∑ ≜

∑
k∈KRk(W,Θ) +

∑
l∈LRl(W,Θ)

ϵ−1(∥W1∥2 + ∥W2∥2) + P0

(15a)
s.t. Rk(W,Θ) ≥ R̄k, ∀k ∈ K, (15b)

Rl(W,Θ) ≥ R̄l, ∀l ∈ L, (15c)

||Wk||2 + ||Wl||2 ≤ Pmax
BS , (15d)

(θRn
|0 ≤ θRn

≤ 2π], ∀j ∈ J, (15e)

where constraints (15b) and (15c) guarantee the channel
capacity for UEk and UEl must be greater than the minimum
requirement R̄k ≥ 0 and R̄l ≥ 0, respectively. Constraint (15d)
represents the total power of all users in the system, which is
upper bounded by the maximum power budget at BS. And
constraint (15e) represents the phase shift of the RIS that has
discrete values. Thus, it is clear that the objective function
in (19a) is non-convex with respect to W1, W2 and Θ. The
EEM problem belongs to the class of mixed-integer non-
convex programming class, which is very difficult to solve
and obtain its optimal solution.

III. THE PROPOSED ALGORITHM FOR ENERGY
EFFICIENCY MAXIMIZATION PROBLEM

Generally, solving problem (15) is more challenging than
the spectral efficiency maximization (SEM) problem in [6]
due to mixed integer non-convex fraction programming, which
requires exponential complexity to find the optimal solution.
Nevertheless, we will show that the IA method can solve the
EEM problem effectively through our new transformations.
In particular, we decouple problem (15) into phase shift and
beamforming optimization sub-problems and then solve them
sequentially [12].

A. Proposed Algorithm for Phase Shift Sub-Problem

To address the phase shift optimization problem, the beam-
forming variable part is fixed. Then, the problem (15) can be
re-written as

max
Θ

EEM∑ ≜

∑
k∈KRk(Θ)

ϵ−1(K + L) + P0
+

∑
l∈LRl(Θ)

ϵ−1(K + L) + P0

(16a)
s.t. (15e). (16b)

As we can see in problem (16), the objective function (16a)
is concave, while constraint (16b) is a linear constraint. The
bisection search will be efficient to solve the convex problem,
which is proposed in Algorithm 1.

Algorithm 1 Bisection Search algorithm to Solve sub-
Problem (16)
Input: k, l.
Output: Θ⋆

Rn
.

Initialize the lower pL, upper bound pU, and accuracy ε;
1: Calculate p = (pL + pU)/2;
2: Update ϕRn

(pr);
3: Solve the problem (16);
4: if Convergence then
5: Θ⋆

Rk
← ΘRk

;
6: end if

Once the optimal solution of the phase shift optimiza-
tion problem is obtained, the beamforming optimization sub-
problem will be addressed sequentially, which will be pre-
sented in the following sub-section.



B. Proposed Algorithm for Beamforming Sub-Problem

In this sub-section, we apply the IA method to approximate
the non-convex parts iteratively. We first introduce a new
variable ∆ > 0 which satisfies the constraint

ϵ−1(∥W1∥2 + ∥W2∥2) + P0 ≤ ∆, (17)

then, with the optimal solution of the phase shift optimization
problem, the problem (15) is equivalently re-written as

max
W,∆

EEM∑ ≜
∑
k∈K

Rk(W)

∆
+
∑
l∈L

Rl(W)

∆
(18a)

s.t. (15b) (15c) (15d) (18b)

We introduce new variables e ≜ {ek, el}k∈K,l∈L and γ ≜
{γk, γl}k∈K,l∈L, where e and γ are the soft energy efficiencies
and SINRs of UEk and UEl, respectively. Thus, problem (18)
can be equivalently expressed as

max
W,∆,γ,e

EEM∑ ≜
∑
k∈K

ek +
∑
l∈L

el (19a)

s.t. γxk

k (W) ≥ 1/γk, (19b)
γxl

l (W) ≥ 1/γl, (19c)
ln(1 + 1/γk)/∆ ≥ ek, (19d)
ln(1 + 1/γl)/∆ ≥ el, (19e)
ln(1 + 1/γk) ≥ R̄k, (19f)
ln(1 + 1/γl) ≥ R̄l, (19g)
(15d), (17). (19h)

To obtain a tractable form, we introduce ι ≜ {ιk,l >
0}k∈K,l∈L which satisfy the convex constraint ∥ĤB,kWl′∥2 ≤
ιk,l′ . Furthermore, by using Lemmas 1 and 2 in [11], the
constraint (19b) can be approximated at the κ-th iteration as

Ψ̂k,k(W)

γk
≤ f

(κ)
k (Wk) (20)

where

∥ĤB,kWk∥2 ≥ 2R{(ĤB,kW(κ)
k )∗(ĤB,kWk)} − ∥ĤB,kW(κ)

k ∥
2

≜ f
(κ)
k (Wk), (21)

Ψ̂k,k(W)

≤
∑
l′∈L

(
∆2

k,l′

2∆
(κ)
k,l′

+
∆

(κ),2
k,l′

2

)
+

∑
k′∈K\{k}

∥ĤB,kWk′∥2 + σ2
k.

(22)

Similar to (20), constraint (19c) can be approximated as

Ψl,l(W)

γl
≤ f

(κ)
l (Wl), (23)

where

∥ĤB,lWl∥2 ≥ 2R{(ĤB,lW
(κ)
l )∗(ĤB,lWl)} − ∥ĤB,lW

(κ)
l ∥

2

≜ f
(κ)
l (Wl) (24)

The function ln(1 + 1/γ)/∆ is convex in (γ,∆) in con-
straints (19d) and (19e), which can be approximated at
(γ(κ),∆(κ)) point as [13, Eq. (18)]

ln(1 + 1/γ)

∆
≥ 2ln(1 + 1/γ(κ))

∆(κ)
+

1

∆(κ)(γ(κ) + 1)

− γ

∆(κ)γ(κ)(γ(κ) + 1)
− ln(1 + 1/γ(κ))∆

(∆(κ))2

≜ A(κ)(γ,∆), ∀∆(κ) > 0, γ(κ) > 0. (25)

For constraints (19f) and (19g), they can be approximated
as [6, Eq. (34)]

ln(1 + 1/γ) ≥ ln(1 + (γ(κ))−1) + (γ(κ) + 1)−1

− γ[γ(κ)(γ(κ) + 1)]−1 ≜ B(κ)(γ). (26)

Based on the discussion above, we can approximate the
problem (19) by the following convex problem at iteration
κ+ 1:

max
W,∆,γ,e

EEM∑ ≜
∑
k∈K

ek +
∑
l∈L

el (27a)

s.t. ∥ĤB,kWl′∥2 ≤ ιk,l′ , ∀k ∈ K, l′ ∈ L (27b)

A(κ)(γk,∆) ≥ ek, ∀k ∈ K, (27c)

A(κ)(γk,∆) ≥ el, ∀l ∈ L, (27d)

B(κ)(γk) ≥ R̄k, ∀k ∈ K, (27e)

B(κ)(γl) ≥ R̄l, ∀l ∈ L, (27f)
(15d), (17), (20), (23). (27g)

Finally, we summarize the proposed low-complexity iterative
algorithm in Algorithm 2 which re-used Algorithm 1.

Algorithm 2 : IA-based Algorithm to Solve Problem (15)
1: Initialization: Set κ ← 0, (W,Θ) ← 0, and generate an

feasible point (W(0),∆(0),γ(0), ι(0)) randomly;
2: repeat
3: Find Θ⋆, by using Algorithm 1;
4: Solve convex problem (27) to obtain (W⋆,∆⋆,γ⋆, ι⋆);
5: (W(κ+1),∆(κ+1),γ(κ+1), ι(κ+1)) ← (W⋆,∆⋆,γ⋆, ι⋆);
6: κ← κ+ 1;
7: until Convergence
8: (W⋆,Θ⋆) ← (W(κ),Θ(κ));
9: Calculate EEM∑ in (19a) based on (W⋆,Θ⋆);

10: Output: EEM∑ and (W⋆,Θ⋆).

IV. DEEP LEARNING DESIGN FOR EEM PROBLEM

In this section, we propose the DL-based framework for
EEM problem in massive MIMO-NOMA networks assisted
by multiple RISs. Fig. 2 illustrates the proposed DL-based
framework including the training and testing phases to achieve
the optimal solution of precoding matrix and phase shift of the
STAR-RIS with low computational complexity and real-time
manner. In Fig. 2(a), the DNN learns by off-line the mapping
function between the input parameters of problem (15) and



(a) Learning

(b) Testing

Fig. 2. The proposed DL-based framework to predict the optimal values

optimal solution through solving the problem (15) by Al-
gorithm 2 as target parameters. By using adaptive moment
estimation (Adam) [14] on the training dataset, the DNN
model is learning by minimizing errors in bias and weight of
the model parameters. Once the learning process is completed,
the trained model can predict the optimal values with new
input data as shown in Fig. 2(b). Based on these processes,
the DNN model learns to predict the optimal solution of the
precoding matrix and phase shift of the RIS based on new
input parameters.

The proposed architecture of a fully connected DNN is
designed to address the precoding matrix and phase shift of
the RIS as shown in Fig. 3. We consider small-scale fading

Fig. 3. The architecture of the DNN model.

matrices H̃, user’s positions {UEPos
k ,UEPos

l }, the number of
users {K,L}, RISs N , BS’s antennas MBS, user’s antennas
{MK ,ML} and elements at the RIS MR as input parameters
of the DNN model, while we consider the precoding matrix
and phase shift of the RIS as output parameters. Thus, the
DNN model consists of 7 + (2 × 1) × 3 + (MBS ×MK) +
(MBS×ML)+(MBS×MR)×2+(MR×MK)+(MR×ML)

dimentional input layer. A fully connected of 4 hidden layers
with 128, 256, 256, 128 neurons have weights along with
rectified linear unit (ReLU) as activation functions. The output
layer has MBS + (MR × 2) dimentional.

V. SIMULATION RESULTS

In this section, the illustrative simulation results are pre-
sented to demonstrate the performance of the proposed algo-
rithms to solve the EEM problem in massive MIMO-NOMA
networks assisted by multiple RISs. Simulation parameters
for performance evaluation are set as follows: R̄k = R̄l =
1 bps/Hz, cell dimension 500 m × 500 m, d1 = 200 m, MR =
16, MBS = 50 and 100, MK = ML = 10, Pmax

BS = 10 and 15
dBm, and P s

k = P s
l = 5 dBm. The convex solver SDPT3 and

the YALMIP toolbox are used in the MATLAB environment to
solve the convex problem [6]. We generate the 100K dataset
to learn the DNN model. For testing, we generate 500 new
datasets to evaluate the performance of the DNN model when
predicting the optimal solution.

Fig. 4(a) shows the effectiveness of Algorithm 2 to solve
problem (15) with various maximum power budgets at BS.
As can be observed in Fig. 4(a), the proposed algorithm
converges to the optimal value within 13 iterations because
it can find the improved solution over the whole feasible
value in every iteration. Additionally, when the maximum
power budget increases, the average EE increases because
the EE performance is proportional to the channel capacity
performance, which corresponds to objective function (19a).

Fig. 4(b) illustrates the impact of the epoch on the root
mean square error (RMSE) with a variation the number of
datasets. As we can see in Fig. 4(b), the RMSE decreases
when the epoch value increases. One of the reasons is that the
DNN updates the weight and bias of the neurons during the
learning process. Besides that, the DNN model with a large
number of samples performs better than its counterpart with a
small number of samples because the DNN model can learn
more features from a large number of samples.

Fig. 4(c) reveals the average EE versus the number of RISs
N with a variation in the number of BS’s antennas. When the
number of RISs increases, the average EE increases because
by increasing the number of RIS, the received signal quality
of users can improve. Furthermore, when the number of BS’s
antennas increases, the average EE increases. The reason is
that the system performance increases due to the increasing
contribution of degrees of freedom (DoF). In addition, the DL-
based approach can predict the optimal value of the precoding
matrix and phase shift at the RIS with high accuracy so that
it can achieve a good EE performance.

Finally, we evaluate the execution time of the DL-based
approach to achieve the optimal solution as shown in Table I.
As can be observed in Table I, the DL-based approach achieves
the optimal solution with a short execution time even when
the number of users increases. In contrast, the conventional
approach achieves the optimal solution with a longer execution
time when the number of users increases. The reason is
that the DL-based approach uses the mapping function to
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TABLE I
THE EXECUTION TIME OF CONVENTIONAL APPROACH VERSUS DL

APPROACH

Number of UEs 6 10 14 18
Conventional approach [minutes] 1 2 3 7
DL-based approach [seconds] 1 1 1 1

predict the optimal value. On the other hand, the conventional
approach needs several iterations when Algorithm 2 is running
to achieve the optimal solution, thus it consumes a significantly
greater amount of time compared to the DL-based approach.

VI. CONCLUSIONS

This paper studied a deep learning-based energy efficiency
maximization problem in massive MIMO-NOMA networks
assisted by multiple RISs to improve EE in the system. We
considered the problem of jointly optimizing the precoding
matrix of the RISs subject to the mixed integer constraints. To
address this problem, we decoupled the formulated problem
into phase shift and beamforming optimization problems.
The bisection search algorithm was proposed to tackle the
phase shift optimization problem, and also the low-complexity
iterative algorithm was proposed to tackle the beamforming
optimization problem, which was guaranteed convergence at
less local optima. Towards real-time optimization, a DL-
based framework was designed to predict the optimal value
of the EEM problem according to small-scale fading, user’s
positions, the number of users, RISs, BS’s antennas, and
elements at the RIS. Furthermore, the proposed DL-based
approach provided a high accuracy in a short time to predict
the optimal values. Additionally, the impact of the maximum
power budget at the BS, the number of RISs and BS’s antennas
were evaluated thoroughly.
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