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Abstract— The robustness of quality of service (QoS) in 

robotic communications is essential for operational efficiency 

and reliability. This paper presents an innovative deep learning-

based methodology specifically designed for QoS prediction in 

robotic networks. A predictive model was developed by 

extensively analyzing communication data, including aspects 

such as latency and bandwidth, along with environmental 

factors. This model accurately predicts important QoS 

parameters. The results show a significant improvement in QoS 

prediction accuracy and overall network performance over 

traditional machine learning methods. The implications of this 

study are important for the development of autonomous robot 

operations and provide scalable and efficient solutions for real-

time communication coordination that are pivotal to managing 

the complexity of adaptive robot systems. 
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I. INTRODUCTION  

The field of robotic communication is rapidly evolving, 
with an increasing demand for stable and high-quality 
network performance. This research addresses the 
challenging task of maintaining Quality of Service (QoS) in 
robotic networks by harnessing the capabilities of deep 
learning. Our research objectives can be summarized into 
three key goals: (1) developing models to accurately predict 
real-time QoS parameters in robotic communications, (2) 
exploring various deep learning algorithms for adaptive 
optimization of network performance, and (3) establishing a 
versatile methodology applicable across different robotic 
platforms and scenarios. 

While our experiments were conducted on a soccer field, 
the scenario depicted in Fig.1 illustrates robots connecting to 
the optimal network in a typical urban environment to 
perform their tasks seamlessly. In our experimental setup, 
four mesh Wi-Fi access points were strategically placed 
around the field, providing a robust network environment for 
testing. The robots traversed the urban environment, 
evaluating network performance based on metrics such as 
signal strength, latency, and bandwidth. This scenario was 
designed to mimic real-world conditions, shedding light on 
the impact of external factors on robot network dynamics and 
QoS. Fig. 1 provides a visual representation of this scenario. 

 

Fig. 1. Scenario 

II. RELATED WORKS 

In recent years, the field of QoS prediction in robotic 

communication has seen significant advancements, largely 

driven by the evolution of deep learning and collaborative 

filtering techniques. This section aims to present a 

comprehensive overview of related work, emphasizing how 

current research, including our own, is leveraging deep 

learning approaches, specifically convolutional neural 

networks (CNNs) [1], Long Short-Term Memory (LSTM) 

networks [2], and Graph Neural Networks (GNNs) [3], to 

enhance QoS prediction. 

 

The surge in robotic applications underscores the need for 

reliable and efficient communication networks. QoS, as a 

measure of network performance from the user's perspective, 

is fundamental in ensuring the seamless operation of robotic 

systems. Traditional QoS prediction methods, largely based 

on collaborative filtering, have been crucial. However, they 

exhibit limitations, particularly in handling sparse data and 



capturing the multidimensional nature of QoS attributes in 

robotic networks. 

 

Our approach diverges from these traditional methods by 

employing a synergistic combination of CNN, LSTM, and 

GNN architectures, each contributing uniquely to the model's 

performance. CNNs, known for their proficiency in 

processing spatial data, are employed to analyze and interpret 

the spatial aspects of network traffic and robotic movements. 

LSTMs, adept at handling sequential data, are utilized to 

capture the temporal dynamics in network performance, 

reflecting the ever-changing conditions in robotic 

communication. GNNs, on the other hand, are integrated to 

model the complex, non-Euclidean structures in network data, 

providing insights into the interconnectivity and 

dependencies within the network. 

This sophisticated blend of CNNs, LSTMs, and GNNs 

enables our model to capture the intricate interactions among 

various QoS attributes and contextual factors, such as the type 

of service, network conditions, and robot mobility patterns. 

Our model's multi-dimensional perspective is crucial for 

accurately predicting QoS in dynamic and heterogeneous 

robotic communication environments. 

Moreover, the robustness and adaptability of our deep 

learning-based model set it apart from traditional QoS 

prediction techniques. By utilizing these advanced neural 

network architectures, our model can adapt to the evolving 

nature of robotic networks, ensuring high prediction accuracy 

in the face of changing network conditions and robot 

behaviors. This adaptability is essential for real-time 

applications, where QoS requirements can fluctuate rapidly. 

In summary, our research contributes to the ongoing 

evolution of QoS prediction in robotic communication by 

harnessing the combined strengths of CNNs, LSTMs, and 

GNNs. We build on the foundational work in collaborative 

filtering and neighborhood-based models, advancing the field 

by introducing a multi-dimensional, context-aware approach 

that addresses the limitations of traditional methods. Our 

deep learning-based model offers a robust, adaptable 

framework for accurately predicting QoS in complex, 

dynamic robotic communication networks, marking a 

significant step forward in the quest for efficient and reliable 

robot communication systems. 

 

III. EXPERIMENT 

A. Enviornment Setup 

1) Field Selection: A standard-sized soccer field within 

a stadium was chosen for the experiment to provide ample 

space and a range of environmental variables such as wind, 

sunlight, and temperature variations. 

 

2) Hardware Deployment: Autonomous robot equipped 

with GPS, Wi-Fi modules, and environmental sensors for 

capturing real-time data on temperature, humidity, and light 

intensity were strategically placed throughout the field. 

 

3) Network Infrastructure Implementation: We installed 

several high-range Wi-Fi access points around the perimeter 

of the soccer field to create a robust mesh network, ensuring 

consistent communication coverage for the robots. 

 

In the Fig. 1, the red circle represents the Wi-Fi access point 

and the blue rectangle represents the robot. 

 

 
Fig. 2. Hardware Deployment Map 

 

4) Sensor Calibration in Open Field: Each sensor 

underwent a field-specific calibration to account for the 

open environment's unique characteristics. We performed 

initial tests to validate the data accuracy from each sensor in 

the outdoor context. 

 

5) Data Acquisition Strategy: The robot was 

programmed to collect data while executing pre-defined 

maneuvers across the field, simulating operational tasks 

such as object avoidance, goal-oriented movement, and 

patterned patrols. 

 

6) Real-Time Data Monitoring: A centralized 

monitoring system was implemented to capture and log data 

transmitted by the robots. This system was set up on the 

sidelines, with direct line-of-sight to all operational areas of 

the field. 

 

7) Data Collection Execution: During each experimental 

run, robots followed a synchronized routine, ensuring varied 

data points were collected under different environmental 

conditions and times of the day. 

 

8) Data Harvesting and Consolidation: Post-experiment, 

the data from each robot and the central server was 

harvested, synchronized, and consolidated into a master 

dataset for subsequent preprocessing and modeling. 

 

 The figure below shows the experimental environment and 

system configuration. 

 



 
Fig. 3. Experimental Environment and System Flowchart 

 

This outdoor experiment provided a diverse range of data, 

crucial for developing a QoS prediction model that can 

accurately reflect the performance of robotic communication 

in varied and dynamic environmental conditions.  

 

B. Data Collection 

 In our relentless pursuit of advancing the prediction and 

optimization of QoS within the domain of robotic 

communication, we meticulously devised an elaborate and 

multifaceted data collection strategy. This comprehensive 

strategy was thoughtfully crafted to acquire a diverse array of 

highly relevant data points, each playing a pivotal role in our 

mission to unravel the intricate nuances of QoS within robotic 

networks. 

At the heart of our data collection efforts lies the u-blox NEO-

M8N GPS sensor —a sophisticated and high-precision device. 

This sensor served as the linchpin in our quest for precision, 

offering real-time tracking of the robot's position. It provided 

an extensive dataset encompassing not only the robot's 

latitude, longitude, altitude, and timestamp information but 

also data captured down to the millisecond. This rich tapestry 

of real-time location data formed the foundational 

cornerstone, empowering us to delve deep into the profound 

impact of robot positioning on communication performance. 

The PicoScope 2205A latency sensor assumed a critical role 

within our data collection setup. This instrument, renowned 

for its exceptional precision, played an indispensable role in 

delivering precise and granular latency data. With the 

capability to capture latency measurements down to the 

nanosecond level, this sensor enabled us to gain profound 

insights into network performance, thus contributing 

significantly to the precision of our research. 

In our pursuit of understanding the role of network bandwidth, 

we harnessed the power of the Iperf tool [4]. This versatile 

and robust tool allowed us to quantify and closely monitor 

network bandwidth with exceptional granularity. It 

illuminated the implications of bandwidth on communication 

performance by facilitating meticulous data capture and in-

depth analysis of bandwidth-related metrics, thereby 

enhancing the depth and reliability of our research findings. 

To comprehensively assess network performance, including 

the packet loss rate, we employed the indispensable packet 

capture tools—Wireshark and Tcpdump. These tools enabled 

real-time capture, monitoring, and in-depth analysis of 

network traffic, scrutinizing packet loss rates down to the 

microsecond level. This approach provided us with crucial 

insights into network stability, a fundamental facet of QoS. 

Acknowledging the paramount importance of environmental 

factors in shaping communication scenarios, we seamlessly 

integrated the DHT22 temperature and humidity sensor into 

our data collection ensemble. This sensor provided high-

resolution data on temperature and humidity levels, enabling 

us to embark on a meticulous exploration of their potential 

impact on QoS. It facilitated a nuanced understanding of how 

environmental conditions could exert influence on 

communication performance. 

Furthermore, the TSL2561 light sensor found its place within 

our data collection setup, capturing data pertaining to light 

intensity—a variable often underestimated but possessing 

significant relevance in specific scenarios. This sensor's 

remarkable sensitivity and precision in measuring light levels 

equipped us to conduct an in-depth examination of its 

potential influence on communication performance. 

Each of these sensor components and equipment selections 

was made with the utmost care and consideration to 

contribute specific, pertinent data points essential for 

achieving our research objectives. Together, they constituted 

an intricately woven data collection framework, providing a 

holistic, ultra-detailed view of QoS in the context of robotic 

communication. Our unwavering commitment to precision 

and relevance underscored our dedication to advancing the 

field and enhancing the accuracy of QoS prediction. 

 

C. Data Preprocessing 

In our study on QoS prediction in robotic communication 
networks, we undertook a detailed and sophisticated data 
preprocessing routine, utilizing the PyTorch framework for 
deep learning model development. This phase was crucial in 
ensuring the accuracy and efficiency of our predictive model. 

The raw data, sourced from a variety of sensors like the u-
blox NEO-M8N GPS sensor, PicoScope 2205A latency 
sensor, Iperf tool for network bandwidth, and packet capture 
tools such as Wireshark and tcpdump, underwent a 
comprehensive cleaning process. This step involved 
identifying and rectifying any inconsistencies or errors in the 
dataset. For example, GPS data, prone to occasional signal 
loss or drift, was carefully scrutinized. We used linear 



interpolation [5] to fill in gaps in the GPS data, ensuring a 
continuous and precise representation of the robot's trajectory. 
The interpolation method was applied as follows: 

 

𝑝 = 𝑝(𝑡1) +
[𝑝(𝑡2) − 𝑝(𝑡1)]

𝑡2 − 𝑡1

× (𝑡 − 𝑡1) 

 

Additionally, environmental parameters like temperature, 
humidity, and light intensity, measured via sensors such as 
DHT22 and TSL2561, were thoroughly examined to detect 
anomalies or outliers. Any such irregularities were corrected 
or excluded to maintain data integrity. 

Post-cleaning, we embarked on feature extraction and 
selection, targeting metrics influential in determining QoS in 
robotic communication. This included extracting key network 
performance indicators like latency, bandwidth, and packet 
loss rate. Concurrently, data indicative of the robot’s 
environmental conditions, such as temperature and humidity 
readings, were incorporated to evaluate their impact on 
network performance. Mobility patterns of the robot, derived 
from GPS data, were also considered to understand their 
correlation with network performance fluctuations. 

Data normalization was the next crucial step, essential for 
standardizing the diverse data scales into a format suitable for 
neural network processing. We applied Min-Max scaling, 
transforming each feature to a range between 0 and 1. This 
normalization was critical to ensure no feature dominated the 
model due to scale variances, thereby promoting balanced 
learning. The Min-Max normalization was computed using:  

𝑋norm =
𝑋 − 𝑋min

𝑋max − 𝑋min

 

To address the time-series nature of network data, we 
transformed the dataset into fixed-size windows, crucial for 
capturing the network's dynamic performance over time. 
Selecting the appropriate window size involved balancing the 
need for capturing sufficient temporal information against 
computational limitations. 

Data augmentation was also implemented to enhance the 
model's robustness and prevent overfitting, particularly 
important given the dynamic nature of robotic communication 
environments. We introduced minor variations in network 
metrics, such as adding Gaussian noise to latency and 
bandwidth measurements, to create a diverse training dataset. 
This was achieved through: 𝐿′ = 𝐿 + 𝑁(0, 𝜎2) 

The final preprocessing step entailed splitting the dataset into 
training, validation, and testing sets, typically in a 70:15:15 
ratio. This separation was crucial for unbiased model 
evaluation and hyperparameter tuning. Each set was 
designated for a specific purpose: model training, validation, 
and performance evaluation under unseen conditions. 

Lastly, the preprocessed data was formatted to align with 
PyTorch requirements, including converting data into tensors 
and ensuring proper configuration of input and output 
dimensions for integration into the neural network architecture. 

D. Model Design 

 In our model designed for QoS prediction in robotic 

communication networks, we have intricately combined 

various advanced neural network techniques to capture the 

complex dynamics of network data. The model's architecture 

starts with a series of CNN layers, which are formulated to 

extract spatial features from the network data. Each 

convolutional layer 𝑖  applies a filter with weights 𝑊𝑖 and 

biases 𝑏𝑖  to the input 𝑋𝑖−1, followed by a ReLU activation 

function, described by the equation 

 𝑋𝑖 = ReLU(𝑊𝑖 ∗ 𝑋𝑖−1 + 𝑏𝑖). 

 These layers are designed to discern various spatial patterns 

critical for understanding network performance metrics. 

 

Following the CNN layers, the model employs LSTM layers, 

tasked with capturing temporal patterns and dependencies in 

the data. The LSTM cells are structured to handle long-term 

dependencies, using a series of gates and state updates.  

The operations within an LSTM cell at each time step t 

involve  

forget gate 𝑓𝑡 = σ(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓), 

input gate 𝑖𝑡 = σ(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖),  

cell state update 

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶),  

and output gate 𝑜𝑡 = σ(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜),  

culminating in the final hidden state ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡). 

 These LSTM layers are crucial for understanding how 

network performance evolves over time, making them 

invaluable for accurate QoS prediction. 

 

To enhance the model's focus on relevant temporal 

segments of the data, an attention mechanism is integrated 

after the LSTM layers. This mechanism computes attention 

weights for each time step t, enabling the model to prioritize 

moments in the data sequence that are more significant for 

QoS predictions. The attention weights 𝑎𝑡 at each time step 

are calculated using the formula  
𝑎𝑡 = softmax(𝑊𝑎 ⋅ ℎ𝑡) 

,where 𝑊𝑎 is the weight matrix for the attention layer. This 

addition allows the model to dynamically focus on the most 

impactful features within the network data, enhancing the 

precision of its predictions. 

 

The model also incorporates a GNN layer, especially 

designed to consider the network's topology and the 

interdependencies between nodes. This layer is crucial for 

understanding the complex relationships within the network 

and how they affect QoS. Each node in the graph updates its 

state based on information from its neighbors, described 

byℎ𝑣
(𝑙+1)

= ReLU(𝑊𝑔 ⋅ ∑ ℎ𝑢
(𝑙)

𝑢∈𝑁(𝑣) + 𝑏𝑔),  

where ℎ𝑣
(𝑙+1)

is the updated state of node v, N(v) represents its 

neighbors, and 𝑊𝑔, 𝑏𝑔 are the learnable parameters of the 

GNN. 

 

To synthesize the extracted features and make the final QoS 

prediction, the model employs a dense output layer. The 



predicted QoS metrics are determined using the formula 𝑦̂ =
𝑊𝑜 ⋅ hT + bo, where is the predicted output, 𝑊𝑜 and 𝑏𝑜are the 

weights and biases of the output layer, and ℎ𝑇  is the final 

output from the LSTM layers. 

 

The model's training is guided by a custom loss function 

specifically designed for QoS prediction. This function not 

only includes a mean squared error (MSE) term to minimize 

the prediction error but also integrates additional components 

that correspond to key QoS parameters like latency and 

bandwidth. The composite loss function is given by  

Loss =
1

𝑁
∑(𝑦𝑛 − 𝑦𝑛̂)2

𝑁

𝑛=1

+ λ1 ⋅ 𝐿latency + λ2 ⋅ 𝐿bandwidth 

where 𝐿𝑙𝑎𝑡𝑒𝑛𝑐𝑦  and 𝐿𝑏𝑎𝑛𝑑𝑤𝑖𝑡ℎ are additional terms for latency 

and bandwidth aspects, and 𝜆1 , 𝜆2  are their weighting 

coefficients. This sophisticated loss function ensures that the 

model not only accurately predicts QoS metrics but also 

emphasizes aspects most critical to network performance. 

 

Through this detailed and formula-driven design, our model 

robustly captures both the spatial and temporal dynamics of 

network data, along with the network's topological 

characteristics, making it exceptionally suited for predicting 

QoS in robotic communication networks.  

 

The integration of CNNs, LSTMs, GNNs, and an attention 

mechanism, all fine-tuned with a custom loss function, 

establishes our model as a state-of-the-art tool in network 

predictive analytics.  

IV. RESULT 

 Our Model displayed an exceptional accuracy of 98.3% and 

precision of 97.8%, far surpassing traditional models such as 

SVM (79.5% accuracy), RF (83.2%), and GBM (86.7%), as 

illustrated in Fig. 4, which compares accuracy and precision 

across all models; similarly, in terms of recall and F1 score, 

Our Model achieved 97.6% and 97.7% respectively, 

markedly higher than the recall rates of 75.8% (SVM), 80.6% 

(RF), and 84.1% (GBM), and their F1 scores, highlighting a 

balanced predictive performance (see Fig. 5 for recall and F1 

score comparison); the Mean Squared Error (MSE) for Our 

Model stood at an impressively low rate of 0.018, in contrast 

to the higher error rates of SVM (0.12), RF (0.11), and GBM 

(0.09), as depicted in Fig. 6, showcasing the MSE comparison. 

Against advanced neural networks, Our Model was 

consistently more accurate, achieving better results than 

standalone CNN (93.4% accuracy) and RNN (91.7%), 

especially in scenarios with high network variability where 

Our Model's performance exhibited remarkable stability 

(refer to Fig. 7 for a comparative analysis against CNN and 

RNN); this robustness was further confirmed in tests 

simulating fluctuating network environments, with Our 

Model maintaining over 95% accuracy, a resilience not 

observed in other models (illustrated in Fig. 8, depicting 

performance in varied conditions); a deeper qualitative 

analysis showed that the integration of CNN, LSTM, and 

GNN within Our Model was pivotal for its high-level 

performance, effectively utilizing complex multi-

dimensional data for nuanced QoS prediction, outstripping 

simpler models in capturing intricate network behaviors (Fig. 

9, a feature importance graph, highlights these aspects). 

In conclusion, the comprehensive data unequivocally 

position Our Model as a leading-edge solution for QoS 

prediction in robotic communication networks, offering 

unmatched accuracy, reliability, and robustness, setting new 

standards in network predictive analytics; the accompanying 

visual representations (Figs. 4-9) in the results section not 

only reinforce Our Model's superiority but also underscore 

the effectiveness and sophistication of its architecture, paving 

the way for its application in dynamic and complex network 

environments. 

 

 
Fig. 4. Accuracy and Precision Comparison 

 

 
Fig. 5. Recall and Precision Comparison 

 

  
Fig. 6. MSE Comparison 



 

 
Fig. 7. Comparative Analysis with CNN and RNN 

 

 
Fig. 8. Performance Consistency in Varied Network 

 

 
Fig. 9. Feature importance in Model 

 

V. CONCLUSION 

In this research, we have advanced the field of QoS 

prediction in robotic communication networks by developing 

a deep learning-based model, integrating CNN, LSTM 

networks, GNN, and an attention mechanism, a significant 

stride beyond traditional machine learning and neural 

network methods; our approach began with meticulous data 

collection using advanced sensors and tools to capture 

comprehensive network and environmental data, followed by 

sophisticated data preprocessing techniques including linear 

interpolation, Min-Max scaling, and data augmentation, 

ensuring the highest data quality for model training; the 

model itself, uniquely combining spatial, temporal, and 

network topology features, demonstrated exceptional 

accuracy, robustness, and adaptability in rigorous testing and 

comparative analysis, significantly outperforming existing 

models; this research not only provides a robust tool for 

predicting QoS in complex network environments but also 

lays the groundwork for future advancements, including real-

time adaptability and integration with emerging technologies 

like edge computing and 5G networks, with potential 

collaborations with industry partners for practical 

implementation, marking a substantial contribution to 

network analytics and paving the way for innovative 

applications in robotic communication systems. 
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