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Abstract—Elevator malfunctions represent significant chal-
lenges in modern building infrastructures due to their resulting
inconvenience and downtime, impacting transportation quality
and reliability. To address these issues, the current study proposes
to utilize Long Short-Term Memory (LSTM) networks to predict
safety-related breakdowns that lead to immediate elevator stops.
The methodology combines monitoring data analysis with LSTM
networks to forecast elevator safety chain breakdowns. In re-
sponse to the often-encountered problem of unbalanced datasets,
a real balanced dataset is constructed using monitoring data
from operating elevators worldwide. This dataset is formed using
language modeling techniques, identifying behavioral patterns
across various time horizons, and mapping these to a classifica-
tion problem. Further steps involve setting temporal boundaries,
embedding data within these boundaries, deploying an LSTM
neural network, and subsequently fine-tuning hyperparameters.
Experiment results indicate that an LSTM neural network can
predict elevator safety chain breakdowns with an F1-score of
85% on average across multiple time windows.

Index Terms—Deep Learning, RNN, LSTM, Elevator, Embed-
ding, Predictive Maintenance

I. INTRODUCTION

Elevators play a crucial role in modern urban infrastructure,
especially in high-rise buildings where they facilitate vertical
transportation of people and goods while assuring the safety
and comfort of the building’s occupants. Malfunctions can
cause significant inconvenience, result in financial and reputa-
tional loss, and in some cases pose safety concerns. Therefore,
it is essential to establish effective strategies to predict elevator
malfunctions and intervene prior to a breakdown. In recent
years, predictive maintenance techniques using data to predict
in advance when a machine is likely to malfunction have
garnered much attention. Indeed, predicting malfunctions en-
ables efficient scheduling the machine maintenance, reducing
downtime and associated costs. Predictive maintenance in the
context of elevators may help facility operation teams better
allocate resources and optimize maintenance efforts, resulting
in improved elevator performance and higher customer satis-
faction.

A. Background and problem statement

In the context of elevator breakdown prediction, it is critical
to note that not all elevator failures can be effectively pre-
dicted. Certain breakdowns occur without a defined pattern,

such as when external actions cause damage to the system.
Conversely, other types of breakdowns may be predicted be-
cause the affected units follow an unusual behavioral pattern,
which can be observed through their monitoring data entries.
This research focuses on the second premise. Within the com-
pany, a subset of breakdowns has been identified as potentially
linked to specific patterns. From this list, a particular elevator
safety chain breakdown at the door level has been selected.
This breakdown is among the most common ones which can
happen spontaneously and without external causes. Therefore,
it represents a good candidate for breakdown prediction. The
selected safety chain breakdown is associated with elevator
system malfunctions that prevent the safety chain at the door
level from closing properly, constituting an unsafe condition
that hinders elevator operation. Hence, when the malfunction
occurs, the elevator immediately becomes out-of-service. This
work aims to establish a prediction scheme specifically target-
ing the aforementioned safety-related

B. Literature Review

In recent years, several studies have examined the applica-
tion of machine learning algorithms for predictive maintenance
purposes. In particular, log analysis has garnered extensive
coverage in this context. For instance, the authors of [3]
proposed a novel algorithm architected to amass and scrutinize
logs, extract patterns, and identify anomalous content. They
leveraged an innovative conceptualization of log similarity,
based on the Longest Common Subsequence (LCS).

The concept of predictive maintenance has also been widely
addressed in academic literature. In [2], authors offer a com-
prehensive survey on data-driven methods, in the context of
artificial intelligence. Their work posits that both Machine
Learning and Deep Learning can execute predictive main-
tenance tasks remarkably well, with the average prediction
accuracy reaching 95.06%. The insights provided by this
work helped to shape our understanding of the landscape of
predictive maintenance techniques that could be relevant to
this thesis.

Specifically in the domain of elevators, the authors of [1]
ventured into the degradation assessment and fault modes clas-
sification using logistic regression on elevator door systems.
They employed a dataset consisting of vibration and current



data, which were transformed into wavelet packet energies
and used as features. Furthermore, many researchers have
acknowledged the potential of LSTM networks in anomaly
detection and predictive maintenance. In particular, the authors
of [4] developed an LSTM-based anomaly detection model for
log analysis. Their work underscores the efficacy of LSTM
in handling sequence data, outshining other popular anomaly
detection algorithms and achieving the highest AUC (Area
Under the Curve) of 0.913. This finding is consistent with
our choice of utilizing LSTM networks for predicting elevator
malfunctions.

Despite these valuable contributions, there appears to be
limited specific literature on the application of LSTM networks
to predict elevator malfunctions. Hence, this present study
aims to fill this void by introducing an innovative approach
and an operational dataset specifically tailored for elevator
breakdown prediction.

C. Contributions

The objective of this work is to develop predictive models
that can foresee 15, 30, 45, and 60 days in advance when
the elevator safety chain breakdown may occur, allowing a
more efficient maintenance plan, and ultimately enhancing
elevator reliability. The proposed methodology consists of
first collecting real monitoring data to construct a balanced
language-based dataset (Section II-A). Then, this data is
used to train, configure, and test an LTSM network targeting
elevator breakdown prediction (Section II-D). In particular, the
contributions of this thesis pertain to several key factors:

• Opposite to existing studies that rely on publicly available
academic datasets, the proposed work uses real operating
data that reflect the condition and behavior of a real-
world system. Thus, this thesis addresses the critical issue
of data validity, essential to ensure efficacy in predictive
maintenance systems.

• This work specifically focuses on the construction of
a consistent dataset, overcoming the challenges related
to the large volume of operational data, which often
constrains malfunction analysis.

• This work uses comprehensive real-world data to build
a consistent dataset. It includes monitoring messages
collected from an internal corporate database that records
entries from internet-connected installations worldwide.

II. METHODOLOGY

A. Data collection and transformation

This research uses a dataset from 700 elevator installations
across Europe, North America, and Asia that covers two years
of monitoring, from January 2021 to January 2023. It contains
multiple regular events and malfunctions spanning five classes:
Breakdown, Error, Warning, Status, and Diagnostic. Figure
1 shows the structure of the elevator monitoring events, as
communicated from connected elevators. Each event entry is
uniquely defined by the class-subcode pair, and linked to a
specific installation identified by its equipment number and
address. In order to streamline the dataset and make it more

Fig. 1: Monitoring data transformation

conducive to our research objectives, several modifications are
applied. Firstly, irrelevant data elements such as week, descrip-
tion and code (in grey in Figure 1) are omitted as they do not
directly pertain to the primary focus of investigating elevator
performance and maintenance trends. Next, the date, initially
containing date and time information, is transformed into a
continuous integer sequence in the form of year-month-day-
hour-minute-second (e.g., 20230101010101). This transforma-
tion simplifies the handling of date information and enables
more straightforward computation of time intervals between
events. Finally, if multiple events of the same class-subcode
occur during a day, it is represented only once in the new
proposed monitoring data format, thus avoiding any bias of
the prediction model with the count of events. To account for
days with no entries, a special marker <PAD>was introduced
in the aggregated sequence of days. This approach ensures that
the delta time between data points is preserved, allowing for
a more accurate representation of the temporal relationships
among events within the sampling period. These dataset
modifications streamline the data structure and enable a more
efficient and focused analysis of elevator behavioral trends.
By preserving the temporal relationships between events and
removing less pertinent information, the breakdown prediction
algorithm concentrates on the key variables indicating the
overall elevator performance, ultimately contributing to the
improvement of elevator installations worldwide.

B. Time window creation

The research necessitates the definition of three key terms:
• A window is a time interval defined by two times (t1, t2)

with t1 < t2 and the dimension d of the window d = t2−
t1. Windows of fixed dimension d ∈ D = {15, 30, 45, 60}
are used. A generic window wi can be associated with
a label ℓ(wi) ∈ {0, 1} (with 0 indicating no breakdown
and 1 indicating a breakdown).

• A prediction time is a window (t1, t2) in which the safety
chain breakdown occurs at time t2. It constitutes the
timeframe within which an issue is sought to be predicted,
based on the patterns discerned during the observation
times.

• An observation time is a window (t1, t2) during which
data is observed and analysed. It is a subset of the
prediction time.

To train distinct LSTM-based models, separate datasets
were created for different combinations of observation and
prediction times in D. A labeled dataset named d1−d2, where



(a) Sequences labeled as 1

(b) Sequences labeled as 0

Fig. 2: Time window creation: The red markers indicate the
day when the breakdown occurs, while the black markers
denote the days with no breakdowns.

d1 ≥ d2 and d1, d2 ∈ D, is created in the following manner:
let w = (t1, t2) be a prediction window of dimension d2. The
dataset considers all the observation windows wi = (ti1 , ti2)
of dimension d1, such that t1−2d2 ≤ ti2 < t2. For each such
window, the label ℓ(wi) = 1 is assigned if t1 ≤ ti2 ≤ t2 and
ℓ(wi) = 0 if ti2 < t1, as illustrated in Figure 2.

For example, in the dataset 30− 15 the prediction window
has a dimension of 15 days, and all the observation windows
have a dimension of 30 days. Suppose that the prediction
window is w = (50, 75) (i.e., the elevator breakdown occurs
on day 75), the dataset contains all the sequences of 30-
days contained in a windows wi = (ti1 , ti2) of dimension
di = 30 starting from day t1 − 2 · 15 = 20. This dataset is
composed of 30 sequences. The label of each sequence is the
label of the corresponding window. In this case, there are 15
sequences labeled 1 and 15 sequences labeled 0. Additionally,
each dataset is also enriched with random sequences from
installations that have never experienced the issue in question,
with these sequences assigned a label of ’0’. This approach is
intended to boost the model’s capability to distinguish between
situations leading to the breakdown and those that do not.
By incorporating these sequences into the dataset, the aim is
for the model to be able to generalize and accurately predict
outcomes on new installations it has yet to encounter.

C. Conversion into embeddings

The further step in the methodology involves transforming
the sequence monitoring data into a format more suitable as

input to the LSTM-based model. To accomplish this, a tech-
nique called embedding is employed. This technique enables
to representation of the monitoring data sequence in a fixed-
dimensional continuous vector space. It facilitates extracting
meaningful relationships from the dataset and enhances predic-
tion capabilities by converting the prediction-time sequences
dataset into 100-dimensional embeddings using Doc2Vec. This
approach offers several advantages, with the top two being:

• It reduces data dimension and improves computational
efficiency, allowing us to decrease the model training
time.

• Considering that the dataset is highly susceptible to
noise, as a breakdown can be generated by external
sources (e.g., field technician, user mishandling, van-
dalism), embeddings help make the model more noise-
resilient. Continuous representations enable the model to
learn from subtle similarities and differences between
entities, yielding better performance.

D. Model construction

In the context of elevator breakdown prediction, a specific
type of recurrent neural network (RNN) called Long Short-
Term Memory (LSTM) is utilized. Introduced by Hochreiter
and Schmidhuber in their groundbreaking work [5], this type
of recurrent neural network (RNN) is explicitly designed to
manage sequence data containing long-term dependencies.
Given its ability to capture the temporal patterns and de-
pendencies in the monitoring data, the LSTM network is
well-suited for accurate breakdown prediction. This is made
possible by their structure, which includes a cell state along-
side three ”gates” or ”ports”: an input gate, output gate, and
forget gate [8]. Figure 3 offers a visual representation of the
LSTM network structure. At each step, the cell state (also
known as the memory cell) is potentially updated based on
the interaction between the new incoming data and the gate
mechanisms. In particular:

Fig. 3: LSTM structure.



• The Forget Gate has the task of identifying which pieces
of information within the cell state are no longer relevant
and therefore can be eliminated. After the forget gate op-
erates, the information deemed not important is discarded
from the cell state.

• After the forget gate operation, the Input Gate is respon-
sible for determining what new pieces of information will
be updated in the cell state. It first creates a vector of new
candidate values that could be added to the state, and
then it makes a decision about which values to update,
producing a new state.

• The Output Gate decides which information will be used
in the output, based on the current state of the cell state
and the current input. It looks at the current input and the
updated cell state to decide which information from the
cell state is relevant and should be used to generate the
next hidden state.

The decision to use LSTM networks is motivated by the
sequential nature of the data. Specifically, temporal windows
can be viewed as corpora, with each corpus representing a
set of temporally ordered observations. Among the various
types of RNN, LSTMs have proven to be particularly effective
in dealing with complex temporal sequences, such as those
found in machine translation tasks [6] [7]. Drawing parallels to
how LSTM networks discern long-term patterns within a text
corpus to perform accurate translations, these networks might
discover long-term patterns in temporal windows, thereby
enhancing the accuracy of breakdown predictions. The ar-
chitecture designed for the LSTM network in this research
includes an input layer, followed by a hidden layer, and
concludes with an output layer. The input layer receives the
100-dimensional embeddings of the data, while the hidden
LSTM layer is dedicated to learning the temporal patterns
and dependencies inherent in the data. The output layer is
composed of a single sigmoid activation function, generating
a singular value representing the probability of a breakdown
occurring within the defined time window.

E. Hyperparameters configuration and training

The dataset is divided into 72% for training, 8% for vali-
dation, and 20% for testing. To optimize the hyperparameters
of the model, a Random Search is employed on the training
dataset. The hyperparameters under consideration are:

• The number of units in the input LSTM layer: ranges
from 32 to 128 units, with a step of 8.

• The number of units in the hidden layer: ranges from 16
to 64 units, with a step of 8.

• The learning rate: varying between a minimum value of
10−5 and a maximum value of 10−2.

Random Search randomly selects combinations of hyperpa-
rameters from a specified range or distribution. As it ex-
amines only a random subset of the hyperparameter space,
Random Search is significantly less computationally intensive
compared to Grid Search. Although Random Search does
not guarantee the identification of the optimal combination

of hyperparameters when the hyperparameter space is large
and/or some hyperparameters have a minor impact on the
model’s performance, it can yield similar or even superior
performance to Grid Search [10]. During Random Search, the
model is trained using the training data, and the performance
is evaluated on the validation set. The binary cross-entropy
loss function is used to measure the difference between the
predicted probabilities and the true labels, while the Adam
optimizer [9] is employed to minimize this loss by updating
the model’s weights. The validation set, being distinct from
the training set, provides an unbiased estimate of the model’s
performance on unseen data, thereby enabling the monitoring
of the model’s ability to generalize. The combination of hyper-
parameters that yield the best performance on the validation
set is considered optimal. Following the identification of the
optimal hyperparameters, the LSTM network is trained once
again, this time employing the identified parameters and using
the union of training and validation datasets. The performance
of this final model is then evaluated on the test set.

III. EXPERIMENTAL RESULTS

This section discusses the outcomes of the experiments,
covering the evaluation of the LSTM network’s performance
and the analysis of breakdown predictions at 15, 30, 45,
and 60-day time horizons. To facilitate the discussion, true
negative, false negative, false positive, and true positive are
referred to as TN, FN, FP, and TP, respectively.

A. Model Performance

The performance of the LSTM network is gauged through
various metrics such as precision, recall, F1-score, and the
Area Under the Receiver Operating Characteristic curve
(AUROC). These metrics collectively offer a comprehensive
evaluation of the model’s ability to accurately predict elevator
breakdowns within the designated time windows. From a busi-
ness perspective, minimizing the number of FP is crucial. This
is because each maintenance visit inconveniently interrupts the
client’s business. To address this, all classification thresholds
are incorporated into the performance evaluation with the
objective of minimizing the following cost function:

F1weight ∗ (1− F1) + FPweight ∗ FP (1)

In the above equation, F1weight and FPweight are weights as-
signed to the F1-score and FP rate, respectively. These weights
can be adjusted to reflect the importance or cost associated
with each component in the specific business context. In the
following experiments, they are set to 0.5, ensuring equal
importance for maximizing the F1-score and minimizing the
FP. Thus, the cost function favors solutions with high F1-
scores and penalizes those with high FP rates. The objective is
to obtain a model that optimizes its predictive accuracy while
minimizing any potential disruption to the client’s operation.

B. Experiment 1: 15-day Safety Prediction

The first experiment focuses on the prediction of Safety
breakdown within a 15-day window. The models used for this



(a) Confusion Matrix: 15-day observation,
15-day prediction.

(b) Confusion Matrix: 15-day observation,
15-day prediction with opt threshold.

(c) ROC curve: 15-day observation, 15-day pre-
diction.

Fig. 4: Confusion Matrices and ROC Curve for the 15-15
model at 0.5 and Optimized Threshold.

experiment include the 15-15, 30-15, 45-15, and 60-15 models.
The numbers represent the observation and prediction times,
respectively. Model performance is evaluated based on two
different thresholds. The first threshold is a conventional clas-
sification threshold of 0.5. The second threshold is determined
through an optimization process aimed at minimizing the cost
function. For this second threshold, all the thresholds utilized
to construct the ROC curve are assessed, and the value that
minimizes the defined cost function (Section 3.1) is selected,
thereby aiming to improve model performance.

The results are summarized in Table I for the 0.5 thresholds
and the optimized threshold. Note that in the table, the
values of TN, FN, FP, and TP are expressed as percentages,

TABLE I: Comparison of model performance using standard
and optimized thresholds for 15, 30, 45, and 60-day observa-
tions with 15-day prediction.

Model Threshold Accuracy Precision Recall F1-score TN FP FN TP
15-15 0.5 0.8454 0.8447 0.8454 0.8449 88.51 11.49 21.57 78.43
30-15 0.5 0.8171 0.8170 0.8172 0.8171 84.12 15.88 21.29 78.71
45-15 0.5 0.8340 0.8351 0.8340 0.8332 88.32 11.68 22.37 77.63
60-15 0.5 0.8285 0.8286 0.8285 0.8284 85.10 14.90 19.63 80.37
15-15 0.9460 (opt) 0.8498 0.8509 0.8498 0.8473 92.39 7.61 26.43 73.57
30-15 0.8938 (opt) 0.8267 0.8291 0.8267 0.8248 89.78 10.22 26.26 73.74
45-15 0.9229 (opt) 0.8378 0.8447 0.8378 0.8357 92.37 7.63 26.30 73.70
60-15 0.9088 (opt) 0.8330 0.8374 0.8330 0.8318 90.10 9.90 24.19 75.81

normalized for each row.
In terms of accuracy, precision, recall, and F1-score, the

15-15 model provides the best results when using a 0.5
classification threshold. This suggests that using 15 days of
observation time for predicting the next 15 days provides the
most accurate results under these conditions. The values of
FP deserve careful consideration, as they represent a tangible
financial loss for a company. In the case of the 15-15 model,
the FP rate stands at 11%, when normalized per row. With the
threshold optimized, we observe performances similar to the
0.5 threshold, with the 15-15 model once again outperforming
the others. However, this time there is a significant reduction
in FP to 7.61%, albeit at the cost of a 5% decrease in TP. From
78.43% to 73.57% (Figure 4). The other models (30-15, 45-15,
and 60-15) show a decrease in performance as the observation
period increases, both under the standard 0.5 threshold and
the optimized threshold conditions. This suggests that longer
observation periods may not necessarily improve the predictive
performance for the 15-day prediction task. In conclusion, for
a 15-day prediction of Safety breakdown, the 15-15 model
using an optimized threshold is preferable over the other
models due to its performance and its ability to minimize FP.

C. Experiment 2: 30-day Safety Prediction

The second experiment aims to predict Safety breakdown
over a period of 30 days. The models used in this experi-
ment are the 30-30, 45-30, and 60-30 models. The results
are summarized in Table II for the 0.5 thresholds and the
optimized threshold. Regarding model performance, the 30-
30 model shows the best results with the 0.5 threshold as well
as the optimized threshold.

This suggests that a 30-day observation period for predicting
the following 30 days provides the most accurate results under
these circumstances. With the optimized threshold, the 30-
30 model demonstrates a significant reduction in FP down
to 6.29%, albeit at the cost of a slight decrease in TP from
81.81% to 80.97%.

In conclusion, for a 30-day prediction of Safety breakdown,
the 30-30 model using an optimized threshold is preferable
over the other models due to its performance and its ability to
minimize FP.

D. Experiment 3: 45-day Safety Prediction

In Experiment 3, 45-45 and 60-45 models are utilized for
45-day Safety predictions. The results are summarized in Table



TABLE II: Comparison of model performance using standard
and optimized thresholds for 30, 45, and 60-day observations
with 30-day prediction.

Model Threshold Accuracy Precision Recall F1-score TN FP FN TP
30-30 0.5 0.8790 0.8800 0.8790 0.8782 92.60 7.40 18.19 81.81
45-30 0.5 0.8714 0.8722 0.8714 0.8710 90.68 9.32 16.89 83.11
60-30 0.5 0.8634 0.8646 0.8635 0.8632 89.84 10.16 17.40 82.60
30-30 0.6781 (opt) 0.8816 0.8837 0.8816 0.8806 93.71 6.29 19.03 80.97
45-30 0.9766 (opt) 0.8709 0.8789 0.8709 0.8694 95.17 4.83 22.15 77.85
60-30 0.9031 (opt) 0.8640 0.8705 0.8640 0.8629 93.59 6.41 21.33 78.67

TABLE III: Comparison of model performance using standard
and optimized thresholds for 45, and 60-day observations with
45-day prediction.

Model Threshold Accuracy Precision Recall F1-score TN FP FN TP
45-45 0.5 0.8306 0.8348 0.8306 0.8298 89.21 10.79 23.40 76.60
60-45 0.5 0.8265 0.8287 0.8265 0.8260 87.28 12.72 22.16 77.84
45-45 0.7958 (opt) 0.8279 0.8396 0.8279 0.8259 92.55 7.45 27.49 72.51
60-45 0.9524 (opt) 0.8243 0.8389 0.8243 0.8219 93.15 6.85 28.72 71.28

III for the 0.5 thresholds and the optimized threshold. Between
the two models, 45-45 appears to be slightly more promising
for both thresholds. Regarding FP, in the 45-45 model with the
optimized threshold, there is a reduction in FP from 10.79%
to 7.45%, at the cost of a reduction in TP from 76.60% to
72.51%.

Interestingly, the TN increases from 89.21% to 92.55%. In
essence, with metric values that are very close to those of the
45-45 model at a 0.5 threshold, this confirms the effectiveness
of the model with the optimized threshold.

E. Experiment 4: 60-day Safety Prediction

In Experiment 4, only the 60-60 model is utilized for 60-
day Safety predictions. The results for the 0.5 thresholds and
the optimized threshold are summarized in Table IV.

The overall performance of the model with the two thresh-
olds is quite similar, although it is necessary to point out that
in the model with the optimized threshold, there is a strong
degradation of TP. In fact, there is a reduction in FP from
14.45% to 7.67%, at the non-negligible cost of a reduction of
almost 7% in TP (73.89% to 66.13%).

IV. CONCLUSION AND FUTURE WORK

The findings of this research illustrate the potential of
LSTM neural networks in forecasting elevator failures using
monitoring data up to 60 days in advance. The models were
developed to offer a performance that is not only promising
across all investigated time horizons (15, 30, 45, and 60 days)
but also significantly superior to traditional maintenance tech-
niques. The capacity to anticipate breakdowns, evident in the

TABLE IV: Comparison of model performance using standard
and optimized thresholds for 60-day observation with 60-day
prediction.

Model Threshold Accuracy Precision Recall F1-score TN FP FN TP
60-60 0.5 0.7984 0.8015 0.7984 0.7976 85.55 14.45 26.11 73.89
60-60 0.9340 (opt) 0.7951 0.8144 0.7951 0.7911 92.33 7.67 33.87 66.13

models, equips facilities management and maintenance teams
with the means to make more efficient planning and resource
allocation for maintenance tasks, thereby mitigating down-
time and correlated expenses. The strength of this approach
lies in the conversion of data into embedding, supplemented
by the LSTM network’s proficiency in discerning long-term
dependencies. This dual strategy proves to be effective in
detecting breakdown patterns. This work further introduces
a cost function that rephrases predictive maintenance as an
optimization problem, for instance, minimizing warehouse
costs, thereby providing a more comprehensive perspective on
handling maintenance tasks. While a natural decline in perfor-
mance is observed with the extension of the prediction horizon,
this is a predictable outcome given the complexities associated
with long-range predictions. Despite this, the models continue
to perform robustly even at the challenging 60-day horizon,
underlining the potential of this methodology for long-term
breakdown prediction.

An inherent challenge of LSTM-based predictive models
is their lack of explainability. Understanding why they make
a certain prediction can be difficult, especially crucial in a
field like predictive maintenance, where comprehending the
cause of a potential breakdown can facilitate future system
development. A future research direction could be the in-
tegration of attention mechanisms to visualize which parts
of the input are deemed most significant during prediction,
potentially increasing the models’ interpretability.

In summary, this research evidences the capacity of LSTM-
based predictive models in revolutionizing maintenance strate-
gies for complex systems such as elevators. Additionally, the
introduction of a cost function offers a tangible way to transi-
tion predictive maintenance into an optimization problem, for
example in the optimization of warehouse costs.
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