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Abstract—Digital twin technology plays a crucial role in
accurately estimating the State of Charge (SoC) for Lithium-
ion Batteries (LIBs) in the field of electric vehicles. These digital
replicas provide real-time insights into LIB behavior, enabling
predictive maintenance and ensuring vehicle performance and
safety. However, the security of digital twin-based LIB monitoring
systems has become a critical concern, despite their numerous
benefits.This study delves into the security aspect of digital twin
technology, focusing on the vulnerability of SoC estimation to
timestamp attacks. These covert attacks disrupt the chronological
order of data packets, casting a shadow on the integrity and
accuracy of LIB state predictions. This research aims to shed light
on the disruptive capability of timestamp attacks, emphasizing
the need for robust defense mechanisms to safeguard the integrity
of EV battery data and the reliability of prediction models.

Index Terms—Digital Twin, Security, Lithium-ion Batter-
ies(LIBs), Time-Stamp Attack

I. INTRODUCTION

In an era defined by the ever-expanding universe of elec-
tric vehicles (EVs), the precise monitoring and predictive
maintenance of Lithium-ion Batteries (LIBs) are paramount
for ensuring vehicle performance, safety, and longevity. To
achieve these goals, digital twin technology has emerged as
a transformative force, enabling real-time insights into LIB
behavior. Yet, with the introduction of digital twins into LIB
monitoring systems comes a new set of challenges. It is
important to ensure the security of the digital twins as they
can be vulnerable to cyberattacks, which can result in data
theft or complete system takeover [1]. A security breach
can have severe consequences, including compromising the
accuracy and reliability of the physical systems that the digital
twins represent. Among these challenges the vulnerability to
timestamp attacks stands out. These covert attacks strategically
manipulate the chronological order of timestamps within data
packets while leaving data contents intact, casting a shadow
on the integrity and accuracy of LIB state predictions.

In the world of Cyber-Physical Systems (CPS), wireless
networks enable smooth connectivity [2], and the transfer of
time-critical information is crucial for remote state estimation
and control to function effectively. However, the reliance

on wireless channels has unearthed a significant security
concern. Consequently, researchers have extensively explored
attacks from an adversary’s perspective, mapping out a three-
dimensional attack space that encompasses the adversary’s
prior knowledge, disclosure, and disruption resources.

These investigations have categorized attacks into two
distinct yet interconnected domains: deception attacks and
disruption attacks. Deception attacks involve the injection
of additional data to sow doubt and reduce the accuracy
of remote estimators [3]. Researchers have meticulously
crafted optimal deception attacks and explored multi-sensor
scenarios where malicious actors compromise target sensors.
In parallel, disruption attacks focus on the interruption of
data reception, epitomized by denial of service (DoS) attacks.
These attacks have undergone thorough examination, with
researchers optimizing control signals and probing the energy
consumption–bit error rate relationship. Yan et. al [4] focused
on the synchronization control problem in a two-link master-
slave manipulator system. The system faced deception attacks
on the communication channel, resulting in inaccurate sensor
data and disrupted control. To address this issue, a deception
attack parameter was introduced into the manipulator’s dy-
namics. An adaptive law was developed for model estimation
and compensation, improving system stability. A new ana-
lytics framework has been developed by Choi et. al [5] to
analyze cyber attacks on Industrial Control Systems (ICS) by
specifically examining the communication channels between
HMIs and PLCs. This framework enables security researchers
to assess ICS attacks without the need for specialized tools
or knowledge of ICS protocols, PLCs, or network penetration
testing. By using digital twin scenarios, the framework has
successfully demonstrated deceptive attacks that are difficult
to detect, introduced heuristic inference attacks, validated
experiments using a water utilities scenario, and suggested
countermeasures based on time complexity theory. Li et. al [6]
examines the use of deception attacks in remote state estima-
tion, where multiple sensors, both reliable and unreliable, are
used to trick anomaly detectors and hinder the accuracy of the
estimation. A strategy for linear attacks is introduced, which



involves using disclosure and disruption resources. The study
establishes criteria for avoiding detection by existing detectors,
analyzes how the estimation error covariance changes during
attacks, and derives a mathematical expression for the optimal
linear deception attack. In this nuanced landscape, a signif-
icant security challenge has emerged, standing between the
realms of deception and disruption attacks. Here, a distinctive
capability takes shape: attackers with limited resources can
manipulate the timestamps of data packets without altering the
data’s core content. This scenario, with practical implications
especially in real-time applications, introduces the concept of
the ”time-stamp attack.” As part of this article, we analyze
the workings and ramifications of time-stamp attacks in the
context of both LIB monitoring systems and CPS based on
digital twins. By analyzing the disruptive potential of time-
stamp attacks, we aim to raise awareness of the security
challenges faced by these systems. Our work contributes to the
understanding of potential vulnerabilities and emphasizes the
need for robust defense mechanisms to preserve the integrity of
EV battery data and the reliability of prediction models. As the
landscape of electric vehicles continues to evolve, addressing
these security challenges becomes not only pivotal but a
linchpin in the broader mission of fostering the widespread
adoption of electric vehicles and a sustainable automotive
future.

The remainder of the paper is organized as follows: Section
II introduces the overall system model and attack structure.
The simulation results are presented in Section III, and Section
IV concludes the paper.

II. PROBLEM FORMULATION

A. System Structure

The proposed system contains two parts: On the physical
side, it employs a cloud-based IoT network that connects and
monitors EVs equipped with a Battery Management System
(BMS) for tracking essential battery parameters and an offline
model [7] driven by machine learning to make accurate State
of Charge (SOC) predictions.The SOC indicates how much
energy is being stored in a battery or energy storage system. It
measures the remaining capacity of the battery, indicating the
amount of energy that can still be utilized, usually represented
as a percentage of the total capacity. The digital side introduces
a Digital Twin, enabling real-time monitoring and forecasting
of battery activities, supplemented by the creation of syn-
thetic data to enhance SOC prediction precision. Through the
integration of these components, the system advances LIB
monitoring, fostering ideal performance and safety in EVs.

Dataset [8]: The dataset used in this study comprises
Multivariate time series data obtained from Li-ion batteries,
containing 45122 samples and eight features. These fea-
tures include ID-cycle, Voltage-measured, Current-measured,
Temperature-measured, Capacity, Current-charge, Voltage-
charge, and Time. This comprehensive dataset is instrumental
for analyzing battery behavior and capturing temporal relation-
ships. It serves various purposes, including anomaly detection,

pattern recognition, and the prediction of LIB performance and
longevity in the context of Electric Vehicles (EVs).

Fig. 1. Transmission of data with a Time-stamp attack.

B. Attack model

This study focuses on a scenario where an attacker with
limited capabilities aims to disrupt the order of data pack-
ets, thereby compromising the estimation performance of the
LSTM estimator in the digital twin. Five crucial features, se-
lected for State of Charge (SoC) estimation by LSTM, include
Voltage-measured, Current-measured, ID-cycle, Temperature-
measured, and Time. The assumptions about the attacker’s
abilities are as follows:

• The adversary has restricted attack capabilities and cannot
modify the data itself.

• The adversary can manipulate the timestamps of data
packets stored in the buffer, typically through EVs charge
stations.

C. Time-Stamp Attack Structure

A timestamp attack involves altering the order of data
packets to disrupt their chronological sequence [9]. Our data
sequence consists of five features: time (t), ID cycle (ID),
voltage (V), current (I), and temperature (T).

The original data sequence is represented as:
[x1, xk, xk+1, . . . , xk+m, . . . , xn], with n = 45122, and
1 < k < m < n.

Each data point (xi) within this sequence includes values
for the five features: [ti, IDi, Vi, Ii, Ti].

In a timestamp attack, the adversary’s goal is to reorder the
timestamps to introduce disruption. Mathematically, the ma-
nipulated sequence can be depicted as: Manipulated Data Se-
quence: [x′

1, x
′
k, x

′
k+1, . . . , x

′
k+m, . . . , x′

n] In this scenario, we
assume the adversary is attacking data packets xk, . . . , xk+m.

Within this manipulated sequence, timestamps have been
reordered with the aim of negatively impacting the LSTM
estimator’s performance. For example:

x′
1 = [t1, ID1, V1, I1, T1]

x′
k = [tk+2, IDk+2, Vk+2, Ik+2, Tk+2]

x′
k+m = [tk+(m−1), IDk+(m−1), Vk+(m−1), Ik+(m−1), Tk+(m−1)]

x′
n = [tn, IDn, Vn, In, Tn]



Here, the timestamps have been reordered to disrupt the
chronological order. we can see the attack structure in Fig. 1.

D. Evaluating Estimation Performance Metrics

In the realm of digital twin-based systems, the error co-
variance is of utmost importance when it comes to evaluating
the precision and dependability of state estimation. The error
covariance measures the connections between various state
variables and their uncertainties. The covariance can reflect the
extent to which the attack disrupts the accuracy and reliability
of state predictions. By analyzing the error covariance before
and after the attack, we quantify how the attack affects the
system’s ability to estimate states accurately.

Using Error Vector and Covariance Matrix, we can calculate
error covariance:

The error vector represents the differences between the
estimated states and the true states. Let’s denote this error
vector as E where E can be expressed as:

E = X −X ′ (1)

where E is the error vector, X is the true state vector, and X ′

is the estimated state vector. Now we calculate the covariance
matrix for the error vector E. The covariance matrix, denoted
as Σ, captures the variances and covariances between different
elements of the error vector. The covariance matrix Calculated
as follows:

∑
=

1

N

N∑
i=1

EiE
T
i (2)

where, N is the number of data points, Ei is the error vector
for the ith data point,and ET

i is the transpose of the error
vector for the ith data point.

III. SIMULATION AND EXPERIMENTAL RESULTS

We provide in Fig. 2 a comparative analysis of State of
Charge (SOC) estimations. The plot (a), represents the SOC
values provided by the battery manufacturer. Plot (b),illustrates
the SOC predictions made by the digital twin system prior to
a simulated attack. Finally, plot (c),shows the stark contrast
between the digital twin’s predictions before and after a times-
tamp attack. SOC estimation accuracy is clearly illustrated
by this visual representation, highlighting the importance
of securing battery monitoring systems in electric vehicles.
Fig. 3 shows the relationship between State of Charge (SOC)
Covariance and timestamp over time. SOC Covariance mea-
sures how the SOC values vary with each other. The plot
reveals fluctuations in SOC Covariance over time, indicating
variations in the accuracy and precision of SOC predictions.
A timestamp attack that alter the chronological order of
data packets can cause these fluctuations. In order to ensure
reliability and security, this plot helps assess the impact of
timestamp attacks on SOC estimation and develop defense
mechanisms for ensuring reliability and security.

Fig. 2. Impact of Time-stamp Attack on SOC Estimation by Digital Twin.

Fig. 3. Error Covariance of SoC with Time-stamp Attack.

IV. CONCLUSION

In this paper we explored a timestamp attack on a digital
twin. The security of Lithium-ion Battery (LIB) monitoring
is of utmost importance in the age of electric vehicles.
Although digital twin technology improves the accuracy of
state-of-charge (SoC) estimation, our investigation highlights
the susceptibility of these systems to timestamp attacks. As
electric vehicles advance, securing LIB monitoring systems
is vital for their growth. Our proposed attack model forms
a basis for further research in this area. By addressing these
security challenges, we contribute to a safer and more efficient
automotive future. The focus of future efforts will be to



develop a solution to prevent the timestamp attack.
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