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Abstract—Open-source machine-learning models demon-
strated promising performance in a wide range of applications.
However, they have been proved to be fragile against backdoor
attacks. Backdoor attack, as a cyber-threat, results in targeted
or not-targeted mis-classification of the neural networks without
effecting the accuracy of the benign data samples. This happens
through inserting imperceptible malicious triggers to the small
part of datasets to change the prediction of the model based
on attacker desired results. Therefore, a big part of researches
focused on improving the robustness of the neural networks using
different kind of detection and mitigation algorithms. In this
paper, we discussed the challenges of the defense methods against
backdoor attacks in machine learning models. Furthermore, we
explored three state-of-the art defense algorithms against BDs
including DB-COVIDNet, fine-pruning, LPSF and delve into
the evolving landscape of backdoor attacks and the inherent
difficulties in developing robust defense mechanisms.

Index Terms—backdoor attacks, backdoor defense, machine
learning, DB-COVIDNet, fine-pruning, LPSF

I. INTRODUCTION

The unprecedented success of machine learning techniques,
especially in neural networks (NN) has led to prominence
performance in various applications. Due to the increasing
demand for third parties and MLaaS (machine learning as
a service) [1], for taking charge of the training procedure,
these models, especially open source and open access NNs,
are vulnerable to security threats. Adversaries have access
to model parameters, hence, they can cause misclassification
for the neural networks. The Backdoor attack is one of the
security threats that embeds hidden backdoor triggers into the
training input data to obtain attacker-chosen results [2], [3].
During the training phase of the neural network, BDs can
be inserted in a few different ways - such as data injection,
data modification, and model manipulation. For example, an
attacker may have access to the training process and be
able to add extra training data stamped with a trigger. They
may also be able to modify the existing training dataset by
adding a trigger to each piece of data. Additionally, they
may be able to manipulate the model structure or parameters
by adding or removing neurons and connections or changing
the weights or parameters of the NN. The most important
property of a backdoor attack is that the trained NN model
performs well on benign samples while NN’s prediction will
be maliciously modified as shown in Fig. 2 [13]. On the

Fig. 1. Backdoor attack model [13].

other hand, a line of research has been focused on various
defense techniques against a backdoor attack, which are cat-
egorized into detection and mitigation techniques [4]–[11]. In
the detection category, defenders can use anomaly detection
methods to identify malicious inputs or search for specific
patterns of backdoor trigger attacks. In the mitigation category,
once a trigger is detected, defenders can stop the network
from triggering the backdoor by filtering, neuron pruning,
or unlearning techniques. In practical situations, defenders
usually have limited access to the model and training process,
which restricts their ability to modify or retrain the model.
Since, backdoor attacks are one of the major threats to all
security systems based on NN, discussing the defense method
challenges are of great importance [14], [15]. Therefore, in
this paper we focused on the limitations of defense algorithm
against backdoor attacks by exploring and comparing three
state-of-the-art defense algorithm including fine-pruning (FP)
[6], Link-pruning scale free(LPSF) [10], and Dropout-bagging
COVIDNet (DB-COVIDNet) [11]. In the fine-pruning method,
the defender merges the techniques of pruning and fine-
tuning due to their mutually beneficial impacts. The approach
involves initially pruning the deep neural network (DNN)
manipulated by the attacker and subsequently fine-tuning the
pruned network. When countering the basic attack, the pruning
defense eliminates backdoor neurons, and fine-tuning is em-
ployed to rectify the reduction in classification accuracy for
clean inputs resulting from the pruning. Link-Pruning Scale-



Free (LPSF) identifies inactive or less active pixels that could
serve as potential trap for triggers. It eliminates connections
(links) associated with these superfluous pixels where triggers
might be located. And, finally, the neural network architecture
is reconfigured into a scale-free structure [16] to enhance
accuracy, which may have suffered as a result of the link
reduction process. DB-COVIDNet works based on the intrinsic
properties of the bagging [17] and dropout algorithm [18].
Since triggers are the most important part of backdoor attacks,
by this method, it removes trigger-related features through the
modified dropout algorithm during the training process of the
bagging network. While these algorithms have demonstrated
remarkable outcomes, we have examined certain challenges
associated with them in this research paper. These challenges
include issues related to scalability, complexity of the models,
computational efficiency. The contribution of this paper are as
follows:

• First we reviewed the backdoor attacks background and
the capability of attacked and backdoor defender.

• Then we explored the existing challenges of backdoor
defense algorithms in the literature.

• We described our experiment setup, metrics and results of
evaluating the three defense techniques against backdoor
attacks and comparison results with benchmark dataset
of FMNIST.

• Finally, we discussed the challenges of the aforemen-
tioned defense algorithm.

The paper is organized as follows. In Section 2, basic def-
initions behind the backdoor attacks and backdoor defense,
their assumptions, goals and intuitions are described. In section
3, we concentrate on a main challenges on existing defense
algorithms. In section 4 we described our experiment setup,
metrics and results of evaluating the three state-of-the-art
defense techniques against backdoor attacks and comparison
results. Finally, we will discuss the limitations of aformen-
tioned models and conclude the paper by discussing the
results.

II. PRELIMINARIES

A. Type of Attack

In our research, we concentrated on the BadNet attacks,
originally introduced by Gu et al. [3], [13]. BadNets involved
the contamination of a fraction of training images using fixed
pixel-pattern triggers. Additionally, they included specific tar-
get labels defined by the attackers, which were integrated
into the Deep Neural Networks (DNNs) alongside legitimate
samples for training. We assume that attackers possess access
to the training dataset and have the capability to insert triggers
into small subsets of the data samples

B. Attacker Capabilities

During the training phase of the neural network, BDs can
be inserted in a few different ways - such as data injection,
data modification, and model manipulation. For example, an
attacker may have access to the training process and be able
to add extra training data stamped with a trigger. They may

also be able to modify the existing training dataset by adding
a trigger to each piece of data. Additionally, they may be able
to manipulate the model structure or parameters by adding or
removing neurons and connections or changing the weights or
parameters of the NN.

C. Backdoor Triggers

The critical aspect of backdoor attacks is creating triggers
that can effectively and inconspicuously manipulate the output
of a neural network model [12]. The success of a backdoor
attack heavily relies on the insertion of appropriate triggers,
which can influence two crucial factors: the effectiveness and
stealthiness of the attack. Effectiveness refers to the ability
of the trigger to be recognized by the neural network model
and predict the attacker’s chosen label with high probability.
Meanwhile, stealthiness relates to the ability of the trigger to
remain undetected by the network’s operator while causing the
model to produce malicious output. Attackers have developed
various types of triggers to achieve these objectives. As can be
seen in Fig. 2, there are several types of triggers that attackers
can use in backdoor attacks. One of these is the single-pixel
trigger, where the attacker alters a single pixel of an image to
serve as the trigger. Another type is the pattern trigger, which
uses a pattern of pixels instead of a single pixel. There are
different ways of injecting these triggers, such as the blended
injection strategy where a benign input is blended with a key
pattern, or the accessory injection strategy where an image is
generated with an accessory as the key pattern. The one-input
trigger involves inserting a complete input to the network to
fool it on a set of backdoor instances similar to a key input.
Physical triggers, on the other hand, use real physical objects
such as glasses to trick the neural network into recognizing
an illegitimate person as legitimate in face recognition tasks.

Fig. 2. Different type of triggers [13].

D. Backdoor Defense

To address the backdoor threat, there are currently sev-
eral approaches available. These defenses can be divided
into five categories: detection-based, preprocessing-based,
model reconstruction-based, trigger synthesis-based and poi-
son suppression-based. Detection-based defenses focus on
detecting the presence of a backdoor attack in the DNN
[17]. They typically involve analyzing the DNN’s behavior
and looking for unusual patterns that indicate the presence
of a backdoor attack. Preprocessing-based defenses involve
preprocessing the input data before feeding it to the DNN to



remove any backdoor triggers. This can include methods such
as image filtering or feature selection to remove any suspicious
input patterns. Model reconstruction-based defenses describes
modifying the DNN’s architecture or retraining it to remove
any backdoor triggers. This can include modifying the DNN’s
training data or architecture to prevent it from recognizing the
backdoor triggers. Trigger synthesis-based defenses involve
generating new training data that includes backdoor triggers
to improve the DNN’s ability to detect them. This can include
generating synthetic data with various trigger patterns to train
the DNN to detect them. Poison suppression-based defenses
involve modifying the DNN’s training data to reduce the
impact of any backdoor triggers. This can include adding noise
to the training data or removing the backdoor trigger samples
from the training data.

E. Defender Capabilities

In practical situations, defenders usually have limited access
to the model and training process, which restricts their ability
to modify or retrain the model. Their capabilities can be
divided into three categories: modifying the training during
learning by adding benign or reverse-engineered stamped input
data, changing the network architecture or parameters, and
using external models to filter data or models. To provide more
details, Training modification during learning is modifying
the training data during the learning process to remove or
mitigate backdoor attacks. This can be done by inserting
benign input data, or by adding input data with reverse-
engineered triggers but with correct labels. By doing this, the
DNN can learn to recognize the backdoor triggers as benign,
rather than as triggers for a malicious attack. In Network
modification the defender modifies the DNN’s architecture or
parameters to remove or mitigate backdoor attacks. This can
include adding or removing layers, neurons, or connections,
as well as changing the network’s parameters, loss functions,
or activation functions. By doing this, the DNN can be made
more resistant to backdoor attacks, or better able to detect
them. Data/Model filtering via external models refers to use
external models to filter the input data or to detect backdoor
attacks. For example, some shadow models can be used as
filters for malicious input data detection or for detecting
triggered models. By using external models to detect backdoor
attacks, the defender can more easily identify and mitigate
these attacks.

III. DEFENSE ALGORITHM CHALLENGES

Critical measures to build a robust defense algorithm against
cyber threats of machine learning models is an ongoing field of
research. Defense mechanism need to address many challenges
and limitations to tackle the security risks and concerns of
neural networks. In this section we explore the challenges of
existing defense algorithms against backdoor attacks through
following categories:

• Adaption challenges: This challenge refers to an at-
tacker’s ability to modify the triggers for a backdoor in
a way that evades detection methods. In other words,

the attacker seeks to introduce an unknown trigger that
the defender cannot identify. Consequently. Hence, the
defender must consistently outpace the adversary’s capa-
bilities.

• False positive and accuracy challenges: The main purpose
of backdoor defense mechanism is to remove backdoor
effects and minimize false positives while ensuring the
clean accuracy is not comprised. This means the defense
needs an appropriate trade-off between accurate detection
and computational costs.

• Data manipulating challenges: As we mentioned earlier,
the main objective of backdoor attacks is generating
triggers that can effectively fool the network. One of
the main challenges for defender is to generate diverse
and representative training data with backdoor triggers
specially in trigger synthesis based defense algorithms.

• Model and generalization challenges: Another limitation
for the defense mechanisms is wide range of neural
networks, diversity of architectures, and datasets. So in
terms of complexity and diversity of NN methods, the
defender needs to handle the real-world and resource-
intense models efficiently.

• Dynamic and contextual challenges: This limitation refers
to deal with dynamic and context dependent triggers, and
privacy concerns. To address this problem, the defender
requires the temporal and contextual concepts of input
dataset. On the other hand, some defense mechanism
need to deal with privacy concerns about modifying the
training data or architecture.

IV. EXPERIMENTS AND RESULTS

In this part, we will explain the configuration of our
experiment, the metric used, and the outcomes obtained while
assessing the effectiveness of three state of the art defense
algorithms including FP [6], LPSF [10], and DB-COVIDNet
[11] in counting BadNets.

1) Experiment Setup: We employed the subsequent com-
ponents and characteristics to establish our experiments and
test the efficacyof our defense mechanism against backdoor
attacks:

• Dataset: To insert backdoors into the neural network, we
utilized the FMNIST dataset in our experiments. FM-
NIST, which stands for Fashion-MNIST, is a collection
of Zalando’s clothing images comprising 60,000 images
for training and 10,000 samples for testing. In this work,
we chose 10% of the training dataset to insert triggers.

• Artificial Neural Network: In order to assess the ef-
fectiveness of FP and DB-COVIDNet defense methods,
we trained a CNN model with two convolution layers
(5x5x32 and 5x5x64), followed by a max-pooling layer
and a dense layer with 2048 units using the Keras
deep learning library with TensorFlow as the backend.
For training LPSF, we considered a feed-forward neural
networks (FFNNs) with various number of hidden layers.
FFNNs, consist of one input layer, some hidden layers
and one output layer which are consecutively connected



together. all the layers are connected together Long-range
scale-free structures connections between the input layer
and other layers of the network.

• Attack configuration and triggers: We follow the attack
method proposed by Gu et al. (2017) [3] to insert BDs
to the network during training. A portion of clean dataset
(10%) is chosen at random and these images are modified
by attaching a target to each of them. We used a 25-
pixel trigger, which is a white square located at the right
corner bottom of the randomly selected images and used
to evaluate the efficiency of the attack and the defense
method, as shown in Fig. 3.

Fig. 3. Backdoor trigger for FMNIST dataset.

• Evaluation metrics: Backdoor attackers are objective to
well performance on test samples and maintain high
accuracy levels without being detected during evaluation
by the user. Meanwhile, defense methods may reduce
accuracy, so defenders aim to restore clean accuracy. Two
key metrics used in this context are Accuracy (ACC),
representing the percentage of correct classifications of
clean data in the training dataset, and the Attack Success
Rate (ASR), which measures the percentage of backdoor
instances classified as targets.

2) Backdoor Attack Performance: The success of backdoor
attacks against convolutional neural networks (CNNs) and
FFNN trained on the Fashion MNIST (FMNST) datasets
has been investigated, revealing the susceptibility of these
models to such attacks. Table I shows that the attack success
rate (ASR) was 99.99%, 97%, and for CNN, and FFNN
respectively, indicating that the backdoor attack was highly
effective in triggering the model to misclassify images with
the backdoor trigger. A high ASR suggests that the model
is vulnerable to backdoor attacks, which can compromise the
integrity and security of the model.

TABLE I
BACKDOOR ATTACK PERFORMANCE

Neural Networks Dataset ACC ASR
CNN FMINST 98.99% 99.9%
FFNN FMINST 92% 97%

3) The State-of-the-art Defense Algorithms Performance:
On the other hand, as shown in Table II, the defense algorithms
have had a significant impact on the success of the backdoor
attack, with the attack success rate being greatly reduced
from over 97% to 0.2%, 0.2% and 6.3% for FP, LPSF, and
DB-COVIDNet, respectively. This substantial decrease in the
attack success rate demonstrates the effectiveness of the pro-
posed algorithms in improving the model’s robustness against

backdoor attacks. Moreover, it is important to note that the
accuracy of the models on clean data remains high. However,
it is worth noting that the high accuracy on clean data may be
indicative of overfitting, where the model performs well on the
training data but does not generalize well to new, unseen data.
Overall, the results indicate that the defense algorithms has
been successful in making the network more robust against
backdoor attacks, while maintaining high accuracy on clean
data.

TABLE II
THE PROPOSED DEFENSE ALGORITHM PERFORMANCE

Defense Algorithms Dataset ACC ASR
FP FMINST 96% 0.2%

LPSF FMINST 95% 0.2%
DB-COVIDNet FMINST 85% 6.3%

V. DISCUSSION

In this section we discuss the limitation and challenges
of three state-of-the-art defesne algorithm ahainst backdoor
attacks.

The Link-Pruning Scale-Free (LPSF) proposes the use of
scale-free neural network architectures and link pruning in
order to defend against backdoor attacks, in the training of
deep neural network image classifiers. LPSF rechieved high
performance agaianst backdoor attacks while it considered as
a first before attack defense algorithm against Badnets with the
advantage of the good run time. However, the evaluation is still
weak as it is restricted to FFNNs and there is no comparison
with other methods including complex CNNs or more complex
datasets like CIFAR10. With considering neuron pruning in
the first layer and scale-free at the last layer of the CNN, the
simulation results were so week. Hence, more optimization
needs to be regarded on multiclass benchmark ML dataset,
i.e., CIFAR-10/100 on non-IID dataset. This will help them
validate the proposed technique.

The main goal of DB-COVIDNet is based on the idea of
dropping features and combining it with bagging improves the
robustness of ANNs against neural attacks. They showed that
it worked very well on state-of-the-art CNNs. However, to
point out the limitations of the proposed defense algorithm,
the computational cost of DB-COVIDNet with different ratios
for dropout layers can be considered. On the other hand, it
is important to note that the effectiveness and stealthiness
of backdoor attacks are heavily reliant on the trigger, which
can be determined by its size or shape. The trigger plays a
critical role in the attack, as it can significantly impact the
success of the attack and the ability to remain undetected by
the user. However, it sounds that for more complicated types of
backdoor attacks, DB-COVIDNet has to optimize the method.
For example, in terms of multi-trigger attacks the proposed
partitioning method may not be effective since the triggers may
be spread across different partitions. To address this limitation,
further optimizations are required, such as developing a more
sophisticated partitioning mechanism that can identify and



group together all triggers that could activate the backdoor
attack, regardless of their location in the input data.

The FP method utilizes an integration of pruning and
fine-tuning strategies to combat backdoor attacks. It involves
removing the backdoor-related neurons from the attacker’s
neural network through pruning and then fine-tuning the
pruned network to recover any lost accuracy when processing
clean inputs. In practical testing against a standard attack,
FP effectively eliminates backdoor neurons and manages to
restore accuracy. fine-pruning (FP) has a significant advantage
over DB-COVIDNet method in terms of its increased resis-
tance to different forms of backdoor attacks. In particular,
even though DB-COVIDNet method might not consistently
perform well against multi-trigger backdoor attacks, fine-
pruning has demonstrated its ability to withstand and handle
this type of attack effectively. In addition, compare to LPSF,
PF demonstrated promising performance for complex DNNs.
However, choosing the right hyper parameters for fine-pruning
can be a complex task, as it involves finding a balance be-
tween eliminating backdoor neurons and avoiding the removal
of dormant neurons. Dormant neurons are those that don’t
significantly contribute to the network’s output under normal
conditions but might get activated in specific situations, like
during backdoor attacks. Thus, the selection of an appropriate
pruning rate that strikes the right balance between removing
backdoor and dormant neurons is crucial for the effective-
ness of the fine-pruning technique. This sensitivity to hyper
parameters requires careful consideration to achieve optimal
performance. Additionally, in the fine-pruning process, after
training the network with malicious data, validation data are
used to evaluate the activation of neurons, serving as a post-
attack defense mechanism.

VI. CONCLUSION

In conclusion, while open-source machine-learning models
have shown great promise across various applications, they
have also proven to be vulnerable to backdoor attacks. These
cyber-threats lead to deliberate or inadvertent misclassifica-
tions of neural networks without impacting the accuracy of
benign data samples. Backdoor attacks involve the insertion
of nearly imperceptible malicious triggers into a small portion
of the datasets, manipulating model predictions in line with
the attacker’s objectives. Consequently, a significant portion
of research efforts has been directed towards enhancing the
resilience of neural networks through the development of vari-
ous detection and mitigation algorithms. In this paper, we have
delved into the challenges faced by defense methods against
backdoor attacks in machine learning models. Additionally, we
have explored three cutting-edge defense algorithms designed
to counteract backdoor attacks. This examination has shed
light on the ever-evolving landscape of backdoor attacks and
the inherent complexities involved in creating robust defense
mechanisms. As we move forward, it is clear that addressing
these challenges will be pivotal in ensuring the security and
reliability of machine learning systems in the face of emerging
threats. For future works, it is imperative to continue refining

and expanding the scope of defense mechanisms, and try to
design a robust defense algorithm with less complexity, run-
time and limitations in terms of CNNs.
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