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Abstract—In this study, the cumulative probability distribution
(CDF) of PUSCH (Physical Uplink Shared Channel) Throughput,
which is the throughput of the lower layer in local 5G, is
estimated by Gaussian kernel density estimation in an envi-
ronment where frequency sharing is assumed between different
systems. The CDF was estimated by the Gaussian kernel density
estimation method and established as an acceptable criterion for
frequency sharing. Experimental results show that the proposed
method is more accurate than the conventional method.

Index Terms—Frequency Sharing, Same Frequency, Distribu-
tion Estimation, Kernel Estimation Method

I. INTRODUCTION.

The explosive growth of radio frequency traffic for next-
generation mobile communications has made it an important
issue to cope with the tightness of frequency resources [7].
Frequency sharing, in which multiple systems share the same
frequency resources to increase the efficiency of spatial and
temporal utilization, is attracting attention as an effective
solution to this problem [8]. In order to share frequencies
among multiple systems, interference from one system to the
other must be properly controlled so that both systems can
establish communications with the required communication
quality. There are two ways to control interference: one is to
ensure spatial separation between the systems to sufficiently
suppress interference [9], and the other is to control inter-
ference over time by using the frequency resources available
when the other system is not in use [10]. In interference control
that ensures spatial separation, the propagation distance of
the interfering wave is estimated using a radio propagation
model equation, and the radio transmission power and antenna
directivity are controlled so that the interference from other
systems is kept below a specified value. Ordinary radio prop-
agation models are generalized and do not take into account
the presence of shields that exist in the actual propagation
environment, such as buildings that have a shielding effect
on radio waves. As a result, there is a difference between
the estimated interference and the actual interference. Such a
difference in the given interference causes serious degradation
of communication quality for other systems. To avoid this,
the interference power is set higher than expected, and a
margin is provided. As a result, even in the case of a
difference between estimated and actual given interference,
the generation of interference exceeding the assumption can

be suppressed and degradation of communication quality can
be avoided. The margin setting is decided upon consultation
between systems sharing frequencies, but conservative sharing
guidelines result in excessively large margins. As a result, the
spatial separation distance required for sharing becomes large
and the time available to use frequency resources is limited,
and improvement in frequency utilization efficiency cannot
be realized. Therefore, a possible way to avoid interference
is to provide a mechanism that monitors the communication
quality of the system sharing the frequency while it is actually
communicating, and if the quality deteriorates beyond a certain
level, it notifies the user that serious interference has occurred.
Such a mechanism for protection against interference can sup-
press the margin required to a small extent, and safe frequency
sharing can be achieved through interference protection by
means of notification of the occurrence of interference.

In this study, the estimation is performed with the user ex-
perience of frequency sharing in mind. Therefore, we estimate
the distribution using PUSCH Throughput as an identifier as
the QoS of the user experience. Specifically, the proposed
method focuses on estimating the worst Throughput value.
In real environments, fluctuations in interference power occur
due to fading and other factors. For the user, a drop in the
Throughput worst-case value has a stronger impact on the user
experience than fluctuations in the Throughput average value.
The proposed method in this study first defines ”Normal”
and ”Anomaly” data based on a comparison of tolerance
limits (acceptable values) and Throughput worst-case values.
Next, the data are divided and the statistical distribution is
estimated using Gaussian kernel density estimation. Finally,
the estimated values are compared to the allowed values and
classified as ”Normal” or ”Anomaly. The proposed method
was confirmed to show a significant improvement in accu-
racy compared to the conventional method. This study uses
measurement data from actual equipment experiments, and the
details of the experiments are described in the literature [6].

Section 2 describes the proposed method, Section 3 com-
pares the estimation results of the proposed method with those
of the conventional method, and Section 4 summarizes this
study and discusses future prospects.



II. PROPOSED METHOD

A. Throughput Worst Value

Figure1 shows a flowchart of the proposed method in
this study. In this study, we consider the frequency sharing
judgment in the user experience to be important, and estimate
the drop in the worst-throughput value. First, the definition
of the worst-throughput value is presented. The CDF graph
of PUSCH Throughput at each interference power obtained
in this experiment is shown in the figure2. The Throughput
at CDF 0.1 in the figure2 is calculated for each interference
power. In this study, the calculated value of Throughput is
called the worst Throughput value.

B. Definition of tolerances and data

Next, we define a 15% drop from the normal state Through-
put in CDF0.1 as the tolerance limit, which we call the
tolerance value. In addition, we define the data obtained in
the experiment as ”Normal” data and ”Anomaly” data by
comparing this tolerance value with the worst Throughput
value described above. Specifically, when the allowable value
is 85.877487 [Mbps] and the output power from the signal gen-
erator is -40 [dBm], the worst throughput value is 98.396999
[Mbps], which is defined as ”Normal” data. On the other
hand, when the output power from the signal generator is -
5[dBm], the worst Throughput value is 45.83277750[Mbps],
which is defined as ”Anomaly” data. In this way, ”Normal”
or ”Anomaly” is defined for each interference power.

C. Data Division

In this study, with the aim of speeding up frequency sharing
decisions, the observed data are divided and the statistical
distribution is estimated by Gaussian kernel density estimation.
The figure3 below shows an illustration of data partitioning.
For example, when the number of data partitions is 10, the
first 1 to 10 samples are used for estimation as shown in the
figure3. Next, estimation is performed using samples 11 to 20.
This process is repeated to check the correctness rate between
the actual measured values in CDF0.1 and the estimated values
in CDF0.1. The actual data obtained is divided into 10, 20, ...,
and 100 segments, using 16,400 samples in total.

D. Gaussian kernel density estimation

In this study, we assumed that the trend of throughput is
Gaussian, and used Gaussian kernel density estimation, which
returns a probability density value, to perform the estimation.
Specifically, we used the module ”gaussiankde” in the python
scipy.stats library to perform the estimation.

A CDF graph was created from the probability density
values obtained using Gaussian kernel density estimation,
and the worst throughput value in CDF0.1 was output as
an estimated value. The obtained estimates are compared
with the allowed values. Specifically, if the estimated value
is 91.5 [Mbps] as a result of estimation using a portion of
the data defined as ”Normal,” the estimated value is judged
to be ”Normal” because the Throughput is greater than the
allowable value. This means that the data defined as ”Normal”

Fig. 1. Flow Chart

Fig. 2. CDF Graph in PUSCH Throughput

was estimated as ”Normal”. On the other hand, when the
estimated value is 74.7 [Mbps], the throughput is smaller than
the allowable value, and therefore, it is judged to be estimated
as ”Anomaly”. This is an error because the data defined as
”Normal” was estimated as ”Anomaly”.

E. Comparison with conventional methods

In this study, we compared the conventional method with the
proposed method. In the conventional method, the detection
of an event that occurs 1 out of 10 times is considered
when making an evaluation in CDF0.1. In other words, if
an event is incorrectly estimated 2 out of 10 times in the
estimation results, it is all incorrectly estimated. Specifically,
when the number of divisions is 10, all 10 judgment results are
considered erroneous when two or more erroneous estimates
exist among the 10 judgment results.

This study shows the difference in estimation results be-
tween the conventional method and the proposed method using
Gaussian kernel density estimation, and clarifies the improve-
ment in estimation accuracy using the proposed method.



Fig. 3. Imaged figure of data division

III. ESTIMATED RESULTS

The tableI shows the results of the estimation in terms
of a mixture matrix. From such a mixture matrix, we used
Accuracy and Recall as two evaluation indices. The formulas
for the two indices are shown below. In this study, Recall
is defined as ”Anomaly” while the estimated value is also
defined as ”Anomaly” in the case where Recall was actually
”Anomaly”.

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Recall =
TN

FP + TN
(2)

The results for each indicator for the number of divisions
from 10 to 100 are plotted in the figure4. The horizontal axis
indicates the number of divisions; the larger the value, the
fewer samples were used in the estimation. The vertical axis
shows the value of each score. The figure4 shows that the
proposed method is superior in both evaluation indices. In
addition, it is confirmed that the Recall score tends to decrease
as the number of divisions increases. In addition, the proposed
Gaussian kernel density estimation method has a high accuracy
of over 88% in terms of accuracy.

In addition, the accuracy of the model itself was evaluated
using KL divergence. The horizontal axis shows the data labels
of the acquired data, corresponding to the output power from
the signal generator. The vertical axis shows the value of
KL divergence. in the figure5. The figure5 shows that there
is no significant difference between the distribution based on
Gaussian kernel density estimation and that of the measured
data. Although the KL divergence of the data defined as
”Analytical” is relatively large, it is less than 1.5 for all
data labels, confirming the high estimation accuracy of the
Gaussian kernel density estimation model in estimating the
throughput distribution.

TABLE I
MIXTURE MATRIX

Real
Normal Anomaly

Predict Normal TP FP
Anomaly FN TN

Fig. 4. Estimated Results

IV. SUMMARY AND FUTURE PROSPECTS

In this study, the value at the bottom 10% point in the
CDF graph of PUSCH Throughput was defined as the worst
Throughput value, and the value at which Throughput de-
creased by 15% from the normal state was used as the accept-
able limit value, which was estimated using Gaussian kernel
density estimation. In order to speed up the frequency sharing
decision, estimation was performed using only a portion of the
obtained data, and as a result, a high accuracy of more than
88% Accuracy was confirmed.

As a future perspective, the reason for a certain degradation
in accuracy was assumed to be that the trend of the throughput
was Gaussian, but there may be a discrepancy with the
actual distribution. Therefore, modeling the exact probability
distribution of the Throughput distribution is an important
issue to be considered.
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