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Abstract—Application of a PDE-based neural network for
regression is proposed. After reviewing the effectiveness of our
model, we first confirmed the nonuniform learnability of the
model in regression task. Subsequently, we applied it to regression
tasks using Bayesian optimization. Numerical experiments show
that our model exhibits a performance comparable to that of
existing models.

Index Terms—partial differential equation, Bayesian optimiza-
tion, neural network.

I. INTRODUCTION

Recently, differential equation-based neural networks (NN)
have been actively discussed. Following the remarkable con-
cept of neural ODEs [1], numerous models, including partial
differential equation (PDE)-based neural networks, have been
proposed. Although they are believed to perform well with an
infinite number of layers, their theoretical and computational
exploration is a topic of ongoing research. On top of this,
the optimization procedures of nonlinear differential equation-
based neural networks are often laborious to implement.
Accompanied by remarkable developments in the optimization
literature, represented by Bayesian optimization, we previously
proposed the application of Bayesian optimization to ordinary
differential equation (ODE)-based neural networks [2]. The
effectiveness of PDE-based neural networks [3] have been
theoretically proved [4]. There, the universal approximation
property and th enonuniform leanability for binary classifi-
cation tasks have been proven. In this paper, we propose
the application of Bayesian optimization to PDE-based neural
networks for regression tasks, and evaluate the effectiveness
of our methodology through numerical experiments using
popular datasets from the literature. We demonstrate that our
model exhibits a performance comparable to that of existing
methods. Furthermore, we show that the proposed method
attains nonuniform learnability when applied to regression
tasks with least squares at the output layer.

II. TERMS AND NOTATIONS

A. General notations

We use the notation I = (0, 1). Let G be an arbitrary open
set in Euclidean space. With an arbitrary T > 0 we denote
GT ≡ G × (0, T ) and ∂G denotes the boundary of G. The
notation Cl(G) (l ∈ N) denotes a set of functions defined on

G with l-th order continuous derivatives. L2(G) denotes a set
of square-integrable functions defined on G, equipped with the

norm ‖f‖L2(G) ≡
(∫
G |f(x)|2 dx

) 1
2

. For u, v ∈ L2(G), we
denote their inner product in this space by 〈u, v〉. For r ∈ N,
we define the Sobolev spaces Hr(G), which are spaces of
functions f(x), x ∈ G, equipped with the norm ‖f‖2Hr(G) ≡∑
|α|≤r

‖Dαf‖2L2(G). Given T > 0, we use the notation HT ≡

(0, T )× I × I . Later, we will introduce two functions w0(x)
and w1(t, x, y), which correspond to the weight parameters in
the output and hidden layers of the NN. They are elements of
L2(I) and L2(HT ), respectively. For p ∈ [i,+∞], we define
the Besov space by

Bs,Wp∞ (Rd) =
{
f ∈ Lp(Rd)

∣∣‖f‖Bs,Wp∞ < +∞ p ∈ [1,+∞]
}
,

where

‖f‖Bs,Wp∞ ≡
(∑
k∈Zd

∣∣〈f,Φk〉∣∣p)1/p
+ sup

l≥0
2l(s+d/2−d/p)

( ∑
k∈Zd,τ∈T

∣∣〈f,Ψτ
lk〉
∣∣p)1/p,

with {Φk} and {Ψτ
lk} being Wavelet basis in L2(Rd) [5]. It is

known that H1(Rd) ⊂ Bs,W2∞ (Rd), for all s ∈ N. The norms
of vector and product spaces are defined in the usual manner.

B. Gaussian processes

N
(
~µ,Σ) denotes the multivariate normal distribution, with

~µ and Σ being the expectation vector and variance-covariance
matrix, respectively. We define a Gaussian process [6] [7].

Definition II.1. Let X be the subspace of Rd. For a given
function f : X → R, an arbitrary n ∈ N and E ≡
(~ξ1, . . . , ~ξn) ∈ X × . . .×X , if a vector-valued function, f =
(f(~ξ1), . . . , f(~ξn))> ∈ Rn satisfies f ∼ N

(
~m(E ),Σ(E )

)
with ~m(E ) = (m0(η1), . . . ,m0(ηn))> ∈ Rn, and Σ(E ) =[
k(ηi, ηj)

]n
i,j=1

∈ Rn×n with some functions m(·) : X → R
and k(·, ·) : X × X → R, then, we say that f follows the
Gaussian process [5], and denote by f ∼ GP

(
~m(E ),Σ(E )

)
.

In many cases, they employ a kernel function for k(·, ·)
and a constant for m0. Suppose we are provided with a



dataset D = {(~ξi, yi)}Ni=1 ⊂ X × R. Subsequently, the
joint distribution of observations y = (y1, . . . , yN )> and
y∗ = (y∗1 , . . . , y

∗
m)> that corresponds to a new element

E ∗ = (η∗1 , . . . , η
∗
m)> is:(

y
y∗

)
∼ N

[(
m0,N

m0,m

)
,

(
K + σ2IN K∗

K∗> K∗∗

)]
,

where σ2IN is the variance of the Gaussian noise of the
measurement, IN is the identity matrix of dimension N .
m0,N = [m0(~ξi)]

N
i=1 ∈ RN , m0,m = [m0(~ξ∗j )]mj=1 ∈ Rm,

K = [k(~ξi, ~ξj)] ∈ RN×N , K∗ = [k(~ξi, ~ξ
∗
j )] ∈ RN×m,

and K∗∗ = [k(~ξ∗i ,
~ξ∗j )] ∈ Rm×m. Thus, the conditional

distribution of y∗ given D and E ∗ follows N (m̂, Σ̂), where

m̂ = m0,m + K∗>
(
K + σ2IN

)−1
(y −m0,N ) ∈ Rm,

Σ̂ = K∗∗ −K∗>
(
K + σ2IN

)−1
K∗ ∈ Rm×m.

C. Bayesian optimization

The Bayesian optimization can be explained in three ways.
First, a Gaussian process is used, and the target loss func-
tion is assumed to follow the Gaussian process. The mean
and variance of the loss function value are predicted using
Gaussian process regression. Finally, the acquisition function,
which is used as a measure of the preference for the ex-
planatory variable value, is computed. In the experiments, we
employed the acquisition function known as Expectation of
Improvement(EI) [8] defined by EI(η) ≡ max{0, f∗n−f(η)}.

D. Leanability

Hereafter, we denote a probability space as (Ω,A , P ),
where Ω is the sample space, A , the σ-algebra with respect
to probability measure P . We also denote a corresponding
empirical measure as Pm(B) = 1

m

∑m
j=1 δ~ξj (B) for a Borel

set B with δ(·) being Dirac measure. Given a set F of
integrable functions on Ω, let us define the notations

Pf =

∫
Ω

f dP, ‖Pm − P‖F ≡ sup
f∈F

√
m
∣∣Pmf − Pf ∣∣.

Definition II.2. Given a probability space (Ω,A , P ) and a
set of integrable real-valued functions F , we say that F is a
Glivenko-Cantelli class for P if and only if ‖Pm − P‖F →
0 (m→ +∞) holds almost uniformly.

III. RELATED WORKS

In this section, we discuss the studies concerning Bayesian
optimization and differential equation-based neural network.
Owing to its highly generalizable framework, Bayesian op-
timization [6] [9] has been widely applied in statistics and
machine learning [10], including recommendation systems,
experimental designs, environmental monitoring, and sensor
networks [11].

Look and Kandemir [12] proposed applying the Bayesian
approach to differential neural networks. Dandekar et al. [13]
proposed the Bayesian neural ODE method, which employs
an MCMC-based posterior distribution in contrast to the
proposed method (Bayesian regression differs from Bayesian

optimization). The advantages of the Bayesian optimization
approach are as follows:

(i) The loss function can be a “black box” function, which is
optimized by considering a surrogate quantity called the
acquisition function. The differentiability, submodurality,
or the convexity of the loss function is not required.

(ii) We can try challenging exploratory values using the
acquisition function, which yields superior results with
higher probability.

Therefore, the Bayesian optimization can be applied to our
PDE-based neural network. This measure omits the tedious
gradient-descent-based scheme and eases implementation.

IV. OUR FORMULATION

A. Overview

In this paper, we restrict ourselves to the regression task.
We assume that there exits a data-generating probability dis-
tribution D, from which the sample data, which comprises of
the pairs of the input and output, say, {(~ξi, yi)}mi=1 ⊂ X ×Y ,
is i.i.d. drawn. We assume that X ⊂ Rd and Y ⊂ R. Let us
introduce: u0(x) =

∑d
j=1 ξjχIj , with χIj as the indicator

functions of Ij ≡ ((j − 1)/d, j/d] (j = 1, 2, . . . , d). We
formulate our PDE-based neural network as follows [4].

ut − νuxx = φ

(∫
I

w1(t, x, y)u(t, y) dy

+

∫
I

w1(t, x, y) dy

)
in IT ,

u(0, x) = u0(x)− 1 ≡ ũ0 on I,

u = 0 on ∂I ∀t ∈ (0, T ).

(IV.1)

To (IV.1), the existence of temporally local and global solu-
tions was obtained [4]. Hereafter, we will often denote the
solution to (IV.1) as u(t, x;w1, ~ξ, ν) for clearly indicating its
dependence on w1, ~ξ, and ν. Then, given the terminal moment
T and diffusion coefficient ν, we define a hypothesis set. This
set comprises functions on Rd realized by our model:

F
(ν)
T ≡

{
~ξ 7−→

∫
I

w0(x)u(T, x;w1
~ξ, ν) dx

∣∣∣(w0, w1) ∈ Wad

}
, (IV.2)

where the admissible set [14] Wad denotes a convex bounded
set in L2(I) × L2(HT ). In machine learning, actually, the
parameter values are determined according to a dataset and
an objective function. Given an objective function l(·) of

the form: l(h; ~ξ, y) = l̃

(∫
w0(x)u(T, x;w1, ~ξ, ν)dx, y

)
, we



consider the hypothesis set:

L
(ν)
T ≡ l̃ ◦F

(ν)
T

=

{
(~ξ, y) 7−→ l̃

(∫
w0(x)u(T, x;w1, ~ξ, ν) dx, y

)
∣∣∣∣∣(w0, w1) ∈ Wad

}
. (IV.3)

Then, we should aim at minimizing the risk over a loss
function l(·): LD(h) = Ez∼D

[
l(h; z)

]
, where Z ≡ X × Y ,

with X being a set of inputs. The notation z ∼ D means
that a random variable z is i.i.d drawn from D. Similarly,
we use the notation S ∼ Dm to denote that a dataset S of
sample size m is i.i.d drawn from D. However, we usually
do not know the actual distribution D. For this reason, we
usually try to minimize the surrogate quantity, which is called
the ”empirical risk”: LS(h) ≡ 1

m

∑m
i=1 l(h; ~ξi, yi), where

S = {(~ξi, yi)}mi=1 ⊂ Z represents the training data drawn
from the original unknown distribution D. This framework
is called empirical risk minimization (ERM). Utilizing the
law of large numbers, LS(h) converges to the true risk as
m→ +∞ for each h. In summary, given a dataset S ∼ Dm,
we consider: min

h∈F
(ν)
T

Ls(h), where F
(ν)
T is defined in

(IV.2) (see, Fig. 1 with r replaced by u). Because what we can
modify is (w0, w1) ∈ Wad, this can be equivalently presented
as:

min
(w0,w1)∈Wad

1

m

m∑
i=1

l̃

(∫
w0(x)u(T, x;w1, ~ξi, ν) dx, yi

)
.

Hereafter, we shall clarify the objective function in this paper
and validate the learnability of the problem above.

Fig. 1. Overview of the proposed method

B. Proposed formulation in regression task

Because we focus on regression in this paper, we employ
the least square function as l̃:

l̃

(∫
w0(x)u(T, x;w1, ~ξ, ν) dx, y

)

=

∣∣∣∣∣y −
∫
w0(x)u(T, x;w1, ~ξ, ν) dx

∣∣∣∣∣
2

. (IV.4)

Given ~y = [yi]
m
i=1 ∈ Rm, ui ≡ u(T, ·;w1, ~ξi, ν), and

introducing a notation ~u ≡ [ui]
m
i=1, this corresponds to finding

the solution of A~uw0 = ~y with an operator A~u : L2(I)→ Rm
defined by A~uw0 = [〈w0, ui〉]mi=1. By introducing the pseu-
doinverse operator [15] A†~u =

∑m
i=1 yiu(T, x;w1, ~ξi, ν), we

can equivalently write down as w0 = A†~u~y. Concretely, this
problem can be presented as follows, which takes the form of
the optimal control.

min
w1∈W(1)

ad

L
(ε)
S [h] ≡ 1

m

m∑
i=1

l̃
(
〈A†~u~y, u(T ;w1, ~ξi, ν)〉, yi

)

s.t.



ut − νuxx = φ

(∫
I

w1(t, x, y)u(t, y) dy

+

∫
I

w1(t, x, y) dy

)
in IT ,

u(0, x) = ũ0 on I,

u = 0 on ∂I ∀t ∈ (0, T ),

(P)

where the admissible set W(1)
ad denotes a convex bounded set

in L2(HT ).

C. Our approach

An approach to solve Problem (P) is to consider the gradient
of the objective function and update the coefficient to minimize
the loss function.

Another direction is a classical one in the optimal control
theory; by applying the Pontryagin’s maximum principle, we
consider the corresponding Euler-Lagrange equation, and then
Hamiltonian is minimized [14]. Another possible approach is
to apply the Hamilton–Jacobi-Bellman equation, as employed
by Han and Li [16] to derive the corresponding viscous
solution. However, these approaches pose a significant bur-
den on their implementation. Particularly, the implementation
depends on each task; hence, the code requires drastic re-
visions depending on the purpose (classification, regression,
etcetera). In this study, our PDE-based neural network above
with Bayesian optimization is proposed, wherein the objective
function distribution is traced to seek better parameter values
using an acquisition function. This method does not require
differentiability, submodularity, or convexity of the objective
function, thereby facilitating simple implementation.

We implement the proposed method with Python us-
ing GpyOPT [17] and scikit-optimization [18] libraries for
Bayesian optimization. The PDE was solved by Crank–
Nicolson method. Because we discretize the time interval,
we discretize w1(t, x, y) and w0(x) with N and L equivalent
intervals 4t and 4x, respectively. For φ(·) in (P), we used a
sigmoid function. In our implementation, the acquisition func-
tion is a function of: w0(ti, xj , yk) (i = 1, 2, . . . , N, j, k =
1, 2, . . . , L). Herein, we used EI as an acquisition function.
At the output layer, we determine w0(x) so that the quantity
in (IV.5) is minimized.



V. NONUNIFORM LEARNABILITY

Although our PDE-based neural network exhibits the uni-
versal approximation property [4], by using the concept of a
structural risk minimization (SRM) scheme, we can still make
it nonuniformly learnable [19]. A relaxation of the concept of
learnability of this kind has also been applied to support vector
machines [20]. To discuss this in more detail, we introduce
some notations.

A. Learnability

To evaluate the ’goodness’ of the training data, we define
the following concept.

Definition V.1. A training set S is called ε-representative
with respect to the domain Z ≡ X × Y , hypothesis set F ,
loss function l(·), and distribution D if the following holds:∣∣LS(h)− LD(h)

∣∣ ≤ ε ∀h ∈ F .

To determine the conditions under which the ERM scheme
works well, we need the following definition [19].

Definition V.2. We say that a hypothesis set F possesses
the uniform convergence property with respect to the domain
Z and loss function l(·) if there exists a function mUC

F :
(0, 1)2 → N, which is called the sample complexity, such that
for each ε, δ ∈ (0, 1) and for every probability distribution D
over Z , if S is a sample of m ≥ mUC

F (ε, δ) elements that
are drawn i.i.d. according to D, then, with a probability of at
least 1− δ, S is ε-representative.

Our hypothesis set F
(ν)
T does not satisfy the uniform

convergence property itself. However, we can also consider
a relaxed concept of learnability [19] .

Definition V.3. A hypothesis set F is said to be nonuniformly
learnable if there exists a learning algorithm A that associates
a dataset S with a hypothesis A(S) ∈ F and a function mF :
(0, 1)2 ×F → N, such that for every ε, δ ∈ (0, 1), and for
every h ∈ F , if m ≥ mF (ε, δ, h) then for every distribution
D over X × Y , with a probability of at least 1 − δ over the
choice of S ∼ Dm, it is ensured that LD(A(S)) ≤ LD(h)+ε.

The following theorem [19] describes an important charac-
terization of nonuniform learnability.

Theorem V.1. Let F be a hypothesis set that can be written
as a countable union of the individual hypothesis sets: F =⋃
n∈N Fn, where each Fn exhibits a uniform convergence

property. Then, F is nonuniformly learnable.

Returning to our specific case, we can show the main
theorem below.

Theorem V.2. Let l̃(·) be Lipschitz continuous with respect to
its arguments with L being its Lipschitz coefficient. Moreover,
suppose Z is bounded. Then, the hypothesis set F

(ν)
T defined

in (IV.2) is nonuniformly learnable.

B. Covering and bracketing numbers

Now, we define the concept of the covering number [7].

Definition V.4. Let (X, d) be a metric space, and let T ⊂ X .
We say that T ′ ⊂ X is an ε-cover for T if, for all x ∈ T , there
exists y ∈ T ′ such that d(x, y) ≤ ε. The ε-covering number
of (X, d), denoted as N(ε, T, d) is the size of the smallest
ε-covering. The metric entropy ins the log covering number.

Next, we define the bracketing number [7] [21].

Definition V.5. Given two functions l and u, the bracket [l, u]
is the set of functions f which satisfy l ≤ f ≤ u. An ε-bracket
is a bracket [l, u] with ‖u − l‖ < ε. The bracketing number
N[](ε,F , ‖ · ‖) is the minimum number of ε-brackets needed
to cover F .

Later, we shall use the following theorem [21].

Theorem V.3. let F be a class of measurable functions such
that N[](ε,F , L1(P )) <∞ for every ε > 0. Then, F forms a
Glivenko-Cantelli class for P .

C. Proof of Theorem V.2

To demonstrate Theorem V.2, we will introduce a sequence
of hypothesis sets.

L
(ν)
T (n) ≡ l̃ ◦F

(ν)
T (n)

≡

{
(~ξ, y) 7−→ l̃

(∫
w0(x)u(T, x;w1, ~ξ, ν) dx, y

)
∣∣∣∣∣‖w1‖L2(HT ) ≤ n

}
(n = 1, 2, . . .).

Evidently, these sets form the following relationships.

F
(ν)
T (1) ⊂ F

(ν)
T (2) ⊂ . . . ,

F
(ν)
T =

∞⋃
n=1

F
(ν)
T (n) ∀T, ν > 0. (V.1)

Next, we demonstrate that each set F
(ν)
T (n) in (V.1) satisfies

uniform convergence property. Then, in virtue of Theorem V.1
, we can show the nonuniform learnability of F

(ν)
T . Let us

present a known lemma [21] concerning the covering number
N(·) and bracketing number N[](·).

Lemma V.1. Let F = {ft
∣∣t ∈ T } be a class of functions

defined on a set X satisfying Lipschitz continuity in the index
parameter:∣∣fs(x)− ft(x)

∣∣ ≤ d(s, t)F (x) ∀x ∈ X , ∀s, t ∈ T , (V.2)

for some fixed function F (·), where d(·, ·) is a metric in the
index space T . Then, for any norm ‖·‖, N[]

(
2ε‖F‖,F , ‖·‖

)
≤

N(ε, T , d).

We also introduce the following lemma concerning the
metric entropy of a set of functions.

Lemma V.2. Let M > 0 and BM ≡ {u ∈ H1(I)
∣∣‖u‖H1(I) ≤

M}. Then, BM is relatively compact in L2(I) and satisfies

logN(ε,BM , L2(I)) ≤ KM

ε
∀ε > 0,



where K is a constant.

Proof. This lemma can be proven if we take p = q = 2 in
Theorem 4.3.36 of [5], and note that the inclusion of function
spaces H1(I) ⊂ B1,W

2∞ (I) [5].

Now, let us consider the set{
~ξ 7−→ l̃

(∫
I

w0(x)u(T, x;w1, ~ξ, ν) dx, y
)}

u(T,x;w1,~ξ,ν)

as F , and the set
{
u(T, x;w1, ~ξ, ν)

}
w1

as T in Lemma

V.1. Let us introduce w
(a)
1 , w

(b)
1 ∈ L2(HT ), and a notation

ũ(t, x) ≡ u(t, x;w
(a)
1 , ~ξ, ν) − u(t, x;w

(b)
1 , ~ξ, ν). From the

assumption, we have∣∣∣∣∣l̃(
∫
I

w
(a)
0 (x)u(T, x;w

(a)
1 , ~ξ, ν) dx, y

)
− l̃
(∫

I

w0(x)(b)u(T, x;w
(b)
1 , ~ξ, ν) dx, y

)∣∣∣∣∣
=

∣∣∣∣∣l̃(
∫
I

A†
~u(a)~yu(T, x;w

(a)
1 , ~ξ, ν) dx, y

)
− l̃
(∫

I

A†
~u(b)~yu(T, x;w

(b)
1 , ~ξ, ν) dx, y

)∣∣∣∣∣
≤ L

∣∣∣∣∣
∫
I

A†
~u(a)~yu(T, x;w

(a)
1 , ~ξ, ν) dx

−
∫
I

A†
~u(b)~yu(T, x;w

(b)
1 , ~ξ, ν) dx

∣∣∣∣∣.
The right-most-hand side is estimated above by∣∣∣∣∣
∫
I

(
A†
~u(a)~y −A†~u(b)~y

)
u(T, x;w

(a)
1 , ~ξ, ν) dx

∣∣∣∣
+

∣∣∣∣∣
∫
I

(
A†
~u(a)~y −A†~u(b)~y

)
u(T, x;w

(b)
1 , ~ξ, ν) dx

∣∣∣∣
By noting that A†

~u(a)~y−A†~u(b)~y =
∑m
i=1 ũ(t, x; ~ξi)yi, and using

the boundedness of ~y, we finally arrive at∣∣∣∣∣l̃(
∫
I

w
(a)
0 (x)u(T, x;w

(a)
1 , ~ξ, ν) dx, y

)
− l̃
(∫

I

w
(b)
0 (x)u(T, x;w

(b)
1 , ~ξ, ν) dx, y

)∣∣∣∣∣
≤ c‖ũ(T )‖H1‖~y‖Rm .

But if we take d(·, ·) in Lemma V.1 as the norm of H1(I),
this implies that we can apply Lemma V.1 to estimate
N[]

(
2ε‖F‖,F , ‖ · ‖

)
above.

Because the estimate of Lemma V.2 assures the finiteness of
the right-hand side of Theorem V.3, this implies that F (ν)

T (n)
satisfies the uniform convergence property for each n. In virtue
of Theorem V.1, we complete the proof of Theorem V.2.

We have seen that under some conditions, L (n) forms
a Glivenko-Cantelli class, and consequently, F (ν)

T (n) has a
finite sample complexity, say, mUC

F
(ν)
T (n)

(ε, δ). To examine

nonuniform learnability of F (ν)
T , let us consider

εn(m, δ) = min
ε∈(0,1)

{
mUC

F
(ν)
T (n)

(ε, δ) ≤ m
}
.

Then, it clearly holds that for each n ∈ N,∣∣LD(h)− LS(h)
∣∣ ≤ εn(m, δ) ∀h ∈ F

(ν)
T (n).

In addition, if we consider a family of functions w(n) : N→
[0, 1] that satisfies

∑∞
n=1 w(n) ≤ 1, we have an approach

called structural risk minimization (SRM) [19]. The following
result is known [19].

Theorem V.4. Let F be a hypothesis class, such that F =⋃
n Fn, where each Fn has uniform convergence property

with sample complexity mUC
Fn

. Let w : N → [0, 1] be defined
as w(n) = 6/n2π2. Then, F becomes nonuniformly learnable
using the SRM scheme at a rate

mNUC
F (ε, δ, h) ≤ mUC

Fn

(ε
2
,

6δ

(πn(h))2

)
.

Theorems V.2 to V.4, together with (V.1), guarantee that
our PDE-based neural network has nonuniform learnability,
and thus, can be used as a learner.

VI. EVALUATION

We conducted some numerical experiments to evaluate the
performance of our model using some datasets. Because the
main focus of the present paper is the theoretical argument, this
is the first example to check the effectiveness of our model.

1) Settings: In this experiment, we focused exclusively
on regression. The proposed model was implemented using
python 3.7 on a Windows Server 2019 (64bits), 12th Gen
Intel (R) Core (TM) i7-12700, 2.11GHz, RAM 96.0GB.

In this experiment, we used the time difference 4t = 5 ×
10−4 and a range of values for the number of temporal and
spatial grids, denoted as N and L, respectively. At the output
layer, we employed linear multiple regression scheme using
statsmodels [22].

2) Datasets: Numerical simulations are conducted with
’California housing’ [23] and ’Online News Popularity’ [24]
datasets, which are well-known benchmarks of regression.
The first dataset contained 8 attributes of apartment houses
in California, as well as the median value of the prices. The
latter one contained 59 attributes of online news articles and
the degree with which each article was shared. An overview
of these datasets is presented in Table I. We standardized the
whole dataset at first, and then split them into the training and
test datasets. We employed 75% of the data for training. After
the learning process using the training data, we measured the
MSE (mean squared error) using the remaining test data. We
also applied regressions with support vector machine (SVR),
random forest (RFR), LightGBM, XGBoost, and linear mul-
tiple regression. In the multiple regression analysis, we added



TABLE I
OVERVIEW OF DATASETS

California housing Online News Popularity
Sample size (train) 15480 29733
Sample size (test) 5160 9911

no regularization terms. We applied the forward stepAIC to
the variable selection process. We have also confirmed that
the VIF (variance inflation factor) values are less than 10 over
all selected explanatory variables, with which we have judged
that there is no multicollinearity.

3) Results of experiments: Tables II and III show the MSE
values of the training and test datasets (boldface indicates the
best value for each indicator) under a range of combinations of
parameters. The value of ν was set to 0.01. The performance
of the proposed method was comparable to that of the exist-
ing methods (random forest regressor (RFR), support vector
regressor (SVR) with RFB kernel, XGBoost, and LightGBM).
It also seems that the proposed method does not overfit in
the sense that the performance over the test datasets is not so
deteriorated compared to that over the training dataset. Note
that in the existing methods, we tuned the hyperparameters
by using cross-validation and grid-search. From Tables II and
III, we observe that the performance of our model varies
depending on the values of T (= 4t×N).

TABLE II
RESULTS OF ’CALIFORNIA HOUSING’ DATASET (AFTER

STANDARDIZATION)

(ν,N,L) Training MSE / Test MSE

Proposed method

(0.01, 2, 8) 0.808 / 0.805
(0.01, 2, 24) 0.336 / 0.360
(0.01, 2, 48) 0.324 / 0.345
(0.01, 2, 72) 0.314 / 0.321
(0.01, 5, 8) 0.809 / 0.806
(0.01, 5, 24) 0.338 / 0.346
(0.01, 10, 8) 0.808 / 0.805
(0.01, 2, 16) 0.758 / 0.788
(0.01, 30, 24) 0.858 / 0.859

Existing methods

Multiple regression 0.521 / 0.541
SVR 0.195 / 3.891
RFR 0.0258 / 0.469
LightGBM 0.115 / 0.316
XGBoost 0.0552 / 0.294

VII. CONCLUSION

This study demonstrates the nonuniform learnability of our
model when it is applied to a regression task. Moreover, we
implemented our model on a computer and performed certain
numerical experiments. It showed a comparable performance
to that of the existing models, such as Rondom Forest, Support
vector machine, LightGBM, and XGBoost. It was shown that
the generalization performance could be adjusted by some
parameters of the model. In the future, we will work on the
extension of our method to multi-class classification problem.
We will also consider the estimate on sample complexity,

TABLE III
RESULTS OF ’ONLINE NEWS POPULARITY’ DATASET (AFTER

STANDARDIZATION)

(ν,N,L) Training MSE / Test MSE

Proposed method

(0.01, 2, 8) 0.858 / 0.860
(0.01, 2, 59) 1.020 / 0.835
(0.01, 5, 59) 1.020 / 0.837
(0.01, 5, 118) 1.013 / 0.844
(0.01, 5, 177) 1.009 / 0.853
(0.01, 10, 59) 1.020 / 0.837

Existing methods

Multiple regression 0.979 / 0.974
SVR 0.591 / 0.947
RFR 1.004 / 0.842
LightGBM 0.529 / 0.873
XGBoost 0.815 / 0.841

as well as more effective methods such as active learning.
Regarding the possible future research issues, there is room
for improvement in optimization procedure. We are planning
to explore other optimization methods, such as Genetic Al-
gorithm, Differential Evolution, LSHADE-SPACMA, and so
forth. It is also important to discuss the PAC-Bayes perspective
of the proposed model as well. Additionally, we intend to
extend our PDE-based neural network to multidimensional
Euclidean spaces. This is necessary when considering a GNN
in which the elements are treated in the matrix form.
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