
Privacy Leakage of DNS over QUIC: Analysis and
Countermeasure

Guannan Hu
Sokendai

Tokyo, Japan
kokannan@nii.ac.jp

Kensuke Fukuda
NII / Sokendai
Tokyo, Japan

kensuke@nii.ac.jp

Abstract—Original DNS packets are unencrypted, which leads
to information leakage while users visit websites. The adversary
could monitor the DNS communication and infer the users’
Internet preferences, which may contain private content, such
as health, finance, and religion. Although several encrypted DNS
protocols have been proposed: DNS over HTTPS (DoH), DNS
over TLS (DoT), and DNS over QUIC (DoQ), recent research
shows that the adversary could still infer the category of websites
even using DoT and DoH.

This paper studies the privacy leakage problem of DoQ
protocol with two different DNS recursive resolvers (NextDNS
and Bind). We show that the classification performance of
the websites is high both in NextDNS and Bind resolvers for
identifying whether the category of websites is sensitive. More
particularly, we indicate that discriminative features are mainly
related to the inter-arrival time of packets and packet length.
Therefore, we further investigate two countermeasures that could
affect the classification results: adding random delay in responses
and padding the DNS payload. 1) We find that mean F1 scores
decrease as the delays increase. Specifically, it decreases the
classification performance by 21% with NextDNS and 19% (0-300
ms) with Bind. Also, 2) DNS padding decreases the classification
performance by 10%. We further investigate the combination
of the two countermeasures: both adding random (0-60ms and
0-100ms) delays and padding the DNS payload. We confirm
that the combined method could greatly reduce the classification
performance, on average 25% in Bind. These results indicate that
adding random time and padding can protect users’ information
from the website fingerprinting attack, though the random delay
might affect the user experiences.

Index Terms—DNS over QUIC, Privacy Leakage, Website
Fingerprinting

I. INTRODUCTION

With the increasing dependence of humans on the Internet,
the privacy leakage of users when browsing the Internet has
been widely discussed. “Pervasive Monitoring” [1] is the main
attack in that the adversary could monitor the network commu-
nication and infer the users’ private information by analyzing
the packet (i.e., packet length, count, and time). HTTPS is
often used to encrypt communication using Transport Layer
Security (TLS) or Secure Socket Layer (SSL). While these
encryption protocols (i.e., HTTPS, TLS, and QUIC) protect
the contexts, some packet information, such as packet arrival
time and size, is still exposed.

Our focus in the paper is on another protocol related to
website access: DNS. The DNS is a global service for mapping
between hostnames and IP addresses. The DNS packets are

unencrypted and easily be eavesdropped by the adversary.
To protect users’ privacy, some encrypted DNS protocols
have been standardized, i.e., DNS over TLS (DoT) [2], DNS
over HTTPS (DoH) [3], and DNS over QUIC (DoQ) [4].
More particularly, DoQ is a new protocol to encrypt DNS
messages using QUIC as an underlying transport. QUIC is
a new transport protocol based on UDP and standardized by
IETF RFC 9000 [5]. Currently, various public DNS services
support the encrypted DNS protocol. For example, Google [6],
Cloudflare [7], and Quad9 [8] have already support the DoT
and DoH. Only AdGuard [9] and NextDNS [10] could support
DoQ. Recent studies investigated the information leakage by
DoT [11] and DoH [12], [13] found that information leakage
is still possible even though DoT with DNS padding [14].

We discuss two possible countermeasures to mitigate the
privacy leakage in DoQ for website fingerprinting attacks:
adding random delay for DNS responses and padding DNS
payload. For this, we first split the websites from Alexa’s
top websites list [15] into two categories: sensitive and non-
sensitive. Then, for each website visit, we collect DoQ traffic
and extract 174 flow features corresponding to inter-arrival
time, packet number, and packet length. After training four
supervised machine learning algorithms, we measure the F1
score regarding different configurations and DNS resolvers.
The contributions of this paper are as follows:

• We confirm that the information leakage against website
fingerprinting attack exists in DoQ, as well as DoT and
DoH.

• We find high discriminative features to infer the website
which is mainly related to inter-arrival time and packet
length.

• We investigate two countermeasures that affect the classi-
fication performance of DoQ: adding random delays and
padding the DNS payload [14]. Adding random delay
decreases the classification performance by 19% (0.9 to
0.71) with Bind and 21% (0.9 to 0.69) with NextDNS.

• DNS padding also mitigates the classification perfor-
mance by 10% (0.9 to 0.8).

• We finally demonstrate that combining the two counter-
measures decreases the performance by 25%; they are
useful in protecting user’s privacy.



II. RELATED WORKS

The adversary could monitor the network traffic between the
victim and the web server, known as a website fingerprinting
(WFP) attack. The adversary intends to classify the websites
the victim visited by analyzing the traffic patterns. Several
previous works [12], [16]–[20] analyzed the WFP attacks on
the HTTP and extracted the features related to the packet
order, size, inter-arrival time, and burst behavior with different
machine learning classifiers (i.e., SVM and Random Forest).
For example, in Ref. [17], the authors applied a novel finger-
printing technique to mitigate the WFP attack for OpenSSH,
OpenVPN, CiscoVPN, Stunnel, and Tor using a Multinomial
Naive-Bayes classifier. They found the text mining technique
had no protection against the WFP attack. These works showed
that the WFP attack is possible against some privacy-enhance
services, such as Tor, IPsec, and VPN. Also, some encrypted
protocols (HTTPS, TLS/SSL, and QUIC) have been proposed
to protect the users’ private information. Other researchers
[21], [22] also analyzed the website fingerprinting attack on
the encrypted traffic: HTTPS and QUIC have been more
studied. A work [21] investigated whether the QUIC is more
difficult to fingerprint than TCP. They selected the top 300
features and used k-fingerprinting and deep fingerprinting
classifiers. The results indicated that the QUIC is not more
difficult to fingerprint than TCP. Zhan et al. [22] also studied
the vulnerability between HTTPS and QUIC (Google and
IETF QUIC) in different scenarios. They found that Google
and IETF QUIC were more vulnerable than HTTPS to the
WFP attack. In our work, we investigate the WFP attack on
encrypted DNS instead of web traffic traces.

Original DNS queries are unencrypted, sent in plain text,
and vulnerable to eavesdropping, which leads to information
leakage. Intending to protect the privacy of information, the
DNS encryption techniques had been standardized. Recent pa-
pers [23] described the deployment of DNS-Over-Encryption
servers, and a comparison of different encrypted DNS pro-
tocols: DoT, DoH, DoQ, DNSCrypt, and DTLS. Ref. [24]
presented the measurement, comparison, and analysis of the
DoH, DoT, and DoQ in three global organizations. Deccio
et al. [25] measured DoT and DoH in many different open
DNS resolvers and authoritative DNS servers. In Ref. [26],
authors summarized the current deployment of encrypted DNS
techniques (i.e., DoT, DoH, and DoQ), then surveyed the
analysis for detecting encrypted DNS protocols by analyzing
the encrypted DNS traffic. Other works from [27] intended
to classify and recognize the DoH traffic with five machine
learning algorithms: KNN, Decision Tree, Random Forest,
Naive Bayes, and AdaBoost. They found that the accuracy
of recognition DoH is over 99%.

Prior works are more focused on the WFP attack with
DoT and DoH. For example, Ref. [12] examined whether
encrypted DNS traffic could protect users and analyzed the
DoH traces with different environments (i.e., location, client
application, platform, or DNS resolver). They found monitor-
ing and censorship were feasible even using DoH, and some

features used to attack HTTPS were not appropriate for DoH.
In Ref. [7], authors analyzed the WFP attacks of DoH traffic
using three groups of features: size, timing, and ordering on
Google and Cloudflare DNS resolvers. The results suggested
that encrypted DNS messages should be padded to protect
privacy. The work of [11] analyzed the WFP attack on DoT
and compared the classification performances with padded or
unpadded DNS. The work from Jonas et al. [28] measured the
impact of padding strategies (128 B / 468 B block padding)
on DoT and DoH. They observed padding cannot mitigate
the WFP attack on DoH and DoT. These works demonstrated
that information leakage is still possible in encrypted protocols
(HTTPS, QUIC, and DNS-Over-Encryption). In our work,
we investigate two countermeasures that could affect the
classification performances of DoQ: adding random delay and
padding the DNS payload.

III. METHODOLOGY

A. Overview

We introduce the overview of two possible configurations of
encrypted DNS to simulate the website fingerprinting attack.

Here, our adversary scenario consists of three components;
web browser (client), recursive resolvers, and authoritative
servers. We assume the adversary can monitor the DNS traffic
between the victim (client browser) and the DNS resolver.
This scenario is easier than web traffic monitoring, especially
for high-speed networks. We consider two configurations to
simulate the website fingerprint attack, depending on DNS
software, as shown in Fig.1. We require a DNS proxy to
encrypt the DNS traffic and send it to the DNS resolver when
the resolver does not support the encrypted DNS. For the first
configuration Fig.1 (a), we set up the AdGuard DNS proxy
[29] on the client and local recursive resolver (Bind9 [30] on
Raspberry Pi). The DNS proxy is just a forwarder without the
cache and encrypts DNS packets with different protocols. The
second configuration is for DNS resolvers (i.e., AdGuard [9]
and NextDNS [10]) that support the encrypted DNS protocols.
When the user visits the website, the encrypted DNS queries
are sent to these DNS resolvers directly, as shown in Fig.1 (b).
We choose the NextDNS for our experiment. On the client
side, we use the popular browser: Firefox [31]. We capture
the encrypted DNS traffic (dotted lines) between the client
and server.

+ Random delay

Client - Side

Browser Recursive
Resolvers

Server - Side

DNS 
Proxy

DNS 
Proxy 

Authoritative
Servers

BindFirefox + Padding

+ Ongoing 
Padding

(a)

Client - Side 

Browser DoQ
Resolvers

Server - Side

DNS 
Proxy

Authoritative
Servers

NextDNSFirefox

(b)

Fig. 1. Two configurations to deploy the DoQ



B. Category Selection

Next, we explain the process of dataset collection: determine
the category of websites, select the websites for each category,
and capture the traffic data. For selecting visiting websites,
we determine the category of Alexa’s Top 300,000 websites
based on the FortiGuard Web Filtering [32]. Then, we select
the Top 400 for each category popular in websites [15] from
January 2020. We build a Python script to access the website
in the list automatically, and only one website is loaded each
time on the client side. For each website, we only visit its
homepage. While the access is complete (timeout 30s), we
close the browser and save the traffic data as pcap files. In this
process, we use Selenium [33] webdriver to drive the Firefox
(ver. 117.0.1) browser.

We treat the same domain (different TLD) as one sample,
i.e., if example.com and example.net are both in the list, we
prefer to choose a more popular one in the Alexa ranking.

After we prepare the targeted datasets, the next step is to
split the dataset into two labels for the binary classification. We
choose 30 1 categories of websites and split these categories
into two labels: ’Non-Sensitive’ and ’Sensitive’. Sensitive
category is related to personal information such as health,
finances, business, and government. For example, websites in
the health category may indicate that users intend to access
to obtain medical information for some specific symptoms.
Similar to past literature [11], we select dating, health, and
gambling categories as the sensitive. In addition, we select
seven (Finance and Banking, Global Religion, Government
and Legal Organization, Illegal or Unethical, Other Adult
Materials, Phishing, and Political Organization) categories as
sensitive. In our experiment, we consider the binary classifica-
tion: ’Non-Sensitive’ and ’Sensitive’. We select 10 categories
as sensitive, and the remaining 20 categories as non-sensitive
as shown in Table I. We evaluate the classification performance
of two datasets: balanced and imbalanced datasets, due to
the uneven distribution of the number of sensitive and non-
sensitive categories. Also, we intend to confirm whether the
imbalanced dataset (more realistic situation) could get better
performances. In addition, we use the oversampling technique
(SMOTE [34]) to handle the imbalanced data.

C. Feature Extraction

Features are variables or attributes that describe the instance
of the class in machine learning. We extract 174 bidirectional
flow features in traffic traces such as packet number, inter-
arrival time, and packet length between consecutive queries
and responses packets, mainly followed by the past literature
[21], [26], [35].

We list broad categories of traffic features as follows:

1The categories are: Advertising, Art, Brokerage and Trading, Business,
Dating, Domain Parking, Education, Entertainment, File sharing and Storage,
Finance and Banking, Freeware and Software Downloads, Gambling, Game,
General Organizations, Global Religion, Government and Legal Organization,
Health and Wellness, Illegal or Unethical, Information Technology, Internet
Radio and TV, Job Search, Malicious Websites, Meaningless Content, Newly
Observed Domain, News and Media, News groups and Message boards, Other
Adult Materials, Personal Vehicles, Phishing, Political Organizations.

TABLE I
SPLIT THE DATASET (30 CATEGORIES)

Non-Sensitive Sensitive

Balanced
Data

Business/Education/Entertainment/
File sharing and Storage/
Job Search/Newly Observed Domain/
News and Media/Personal Vehicles/
General Organizations/
Internet Radio and TV

Dating/Gambling/
Finance and Banking/
Global Religion/
Government and Legal
Organization/
Health and Wellness/
Illegal or Unethical/
Other Adult Materials/
Phishing/
Political Organizations

Imbalanced
Data

Advertising/Art/Brokerage and Trading/
Business/Domain Parking/Education/
Entertainment/File sharing and Storage/
Freeware and Software Downloads/
Game/General Organizations/
Information Technology/Job Search/
Malicious Websites//Meaningless Content/
Internet Radio and TV
Newly Observed Domain/News and Media/
News groups and Message boards/
Personal Vehicles

Packet count: The number of in/out packets.
Packet length: The length (bytes) of query and response

packets. We use the maximum, minimum, median, mean,
standard deviation, variance, coefficient variation, and deciles
for this feature.

Inter-arrival time: The features from a consecutive pair of
query and response packets. It includes the maximum, mini-
mum, median, mean, standard deviation, variance, coefficient
variation, and deciles of the inter-arrival value.

Cumulative bytes: The cumulative bytes of query and
response packets. We also consider the rate of bytes being
sent and received in a trace.

Entropy value: Shannon’s normalized entropy of inter-
arrival time and packet length.

Throughput: The average in packets and bytes.
Duration: The total transmission time in the trace.
Time to receive first N bytes: As in [35], the time that

is received from the DNS resolver could reflect whether the
resolver cached. We set the value of N to 3000 and 5000.

In the final step, we remove the features with zero variance.

D. Classifiers

For evaluating the classification performance, we split the
datasets into sets: training and testing. Then, we use the dataset
to train the supervised machine learning models we prefer and
evaluate the model with F1 scores.

We split 80% of the dataset as a training set and 20%
as a testing set randomly. We also adopt the 10-fold cross-
validation [36] method and repeat it ten times for each test
to evaluate the performance of our experiments. We train all
binary classifiers and tune parameters using the Randomized-
SearchCV [37] function from the scikit-learn library [38]. The
RandomizedSearchCV function can help us to find the best
estimator for each classifier. We obtain the mean F1 score to
evaluate the performance of each classifier. A higher value
of the F1 score (close to one) means better, and a lower
(close to zero) indicates a worse classification performance.
In our context, a lower F1 score is desirable because the
attacker cannot infer the website categories precisely. We use
well-known four supervised binary classification algorithms;



Random Forest (RF), AdaBoost (AB), XGBoost (XB), and
LightBM (LB).

IV. BASELINE CLASSIFICATION PERFORMANCE

We first evaluate baseline classification for DoQ traffic in
the two configurations, then discuss the important features for
the classification.

A. Baseline Classification Performance

At first, we focus on the baseline classification performance
for two resolvers (Bind and NextDNS) as explained in the
previous section. Specifically, we discuss the F1 score 2 of
the classification and the resulting top 10 important features.

Here, we crawl the encrypted traffic without cleaning the
cache in the Bind. As shown in Fig.2 (left), overall the
binary classification performances are very high for the four
classifiers, in the balanced and imbalanced dataset. Thus, these
classifiers are good enough to infer the website for the local
resolver.

Next, we select NextDNS as the DNS resolver. Fig.2 (right)
shows the results of NextDNS. We again find a high classifi-
cation performance; the F1 scores are all around 0.90 with im-
balanced and balanced data. The performances of imbalanced
data are slightly higher than balanced data, about 2-3% more.
Thus, we demonstrate that the classification performance is
high enough to infer the website regarding DoQ, whether on
NextDNS or Bind resolver.

RandomForest AdaBoost XGBoost LightBM
Bind

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.897 0.92 0.904 0.889
0.963 0.974

0.95 0.948
Mean F1 Scores

Balanced Data
Imbalanced Data

RandomForest AdaBoost XGBoost LightBM
NextDNS

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.892
0.895

0.907
0.908

0.914 0.932
0.904 0.927

Mean F1 Scores

Balanced Data
Imbalanced Data

Fig. 2. Classification Performance (Bind and NextDNS)

B. Feature Importance

We intend to understand what features have the most influ-
ence on the results for discussing possible countermeasures.
We measure the feature importance by calculating the mean
degradation of the gini impurity with the Random Forest
algorithm. For investigating the discriminative powers of the
feature, we repeat ten times to obtain the average value for
each feature. The range of feature important is 0 to 1, the
higher value means more influential for the classification.

We show the top-10 discriminative features in Table II. We
find that significant features are mainly related to inter-arrival
time. For the balanced data, the entropy of inter-arrival time
between a pair of query and response packets is the most
significant. We also notice that only one feature out of the
top-10 is related to another feature, packet length.

2F1 score is the harmonic mean of precision and recall.

For NextDNS, we obtain consistent results with those
in Bind. Thus, regardless of the DNS software, we should
decrease the classification performance by controlling these
effective features, for protecting users’ privacy.

TABLE II
TOP-10 DISCRIMINATIVE FEATURES (BIND)

Rank Balanced Data Imbalanced Data

Feature Mean Feature Mean

1 EntropyQRIntervalTime 0.022 QRIntervalTimeMean 0.024
2 EntropyRRIntervalTime 0.018 QRIntervalTimeMedian 0.018
3 EntropyQQIntervalTime 0.016 EntropyDFIntervalTime 0.016
4 QueryIntervalTime 0.015 QRIntervalTimeMin 0.014
5 EntropyResponseLength 0.011 RQIntervalTimeDeciles4 0.012
6 EntropyDFIntervalTime 0.0103 RQIntervalTimeDeciles3 0.0114
7 RQIntervalTimeDeciles3 0.0103 QueryIntervalTimeStandard 0.0113
8 RQIntervalTimeDeciles4 0.0102 EntropyRRIntervalTime 0.0104
9 ResponseIntervalTimeMin 0.010 ResponseLengthMax 0.01001
10 QueryIntervalTimeMin 0.009 QueryLengthDeciles3 0.009

TABLE III
TOP-10 DISCRIMINATIVE FEATURES (NEXTDNS)

Rank Balanced Data Imbalanced Data

Feature Mean Feature Mean

1 QueryIntervalTimeDeciles1 0.086 ResponseIntervalTimeMin 0.082
2 QueryIntervalTimeMedian 0.082 QueryIntervalTimeMedian 0.078
3 ResponseIntervalTimeMin 0.070 QRIntervalTimeCoefficientVariation 0.068
4 QueryIntervalTimeMin 0.069 QueryIntervalTimeVariance 0.057
5 ResponseIntervalTimeMedian 0.068 ResponseLengthDeciles1 0.054
6 QRIntervalTimeMean 0.060 QRIntervalTimeMedian 0.053
7 QueryIntervalTimeMean 0.057 QRIntervalTimeMin 0.050
8 ResponseIntervalTimeMean 0.056 QRIntervalTimeMean 0.049
9 QRIntervalTimeMedian 0.043 ResponseIntervalTimeMedian 0.049
10 QRPktLength 0.038 QueryIntervalTimeMax 0.047

V. COUNTERMEASURES

From the previous baseline results, a promising approach
is to control the inter-arrival distribution and packet length
for the mitigation. To randomize the inter-arrival time, the
easiest way is to add different random delays to the query
or response. Also, as standardized in RFC 8467 [14], DNS
payload padding is useful in controlling the packet length.
Thus, we discuss these two countermeasures that affect the
identification performance of DoQ.

A. Random Delay

We conduct an experiment to understand the random delay
effect as the first countermeasure. We add a random delay on
the returning path at the DNS proxy to the client, to ensure that
the random delay is added to the encrypted traffic. The random
delay is followed by uniformly distributed random values. The
range of random delay varies from 0-3 milliseconds to 0-300
milliseconds.

As shown in Fig.3, we confirm the classification perfor-
mance degradation (10% - 21%) with random delays. The
degradation of NextDNS (21%) is a little higher than that of
Bind (19%). This is likely because of the different geographi-
cal locations between the client and the resolver. NextDNS is
a public DNS resolver that can be somewhere in the network,
though Bind is the local resolver in the home network. Thus,
in the more realistic situation that DoQ is provided by a public
resolver, we expect better mitigation. The results demonstrate



that adding random delays could decrease the performance.
However, the effect is still considerably small. Also, the higher
random delay might affect the user experience.

�&* �&* �.
&* �.��&
*
�.��&

*
�.
�&

*
�.���

&*
�.	��

&*
�.
��

&*��!
%�-

���

���

��	

��


���

���

��


���

���

���

���

�
!�
'�
��
��
�(
)!
���

$'
 �

�&* �&* �.
&* �.��&
*
�.��&

*
�.
�&

*
�.���

&*
�.	��

&*
�.
��

&*��!
%�-

���

���

��	

��


���

���

��


���

���

���

���

�&* �&* �.
&* �.��&
*
�.��&

*
�.
�&

*
�.���

&*
�.	��

&*
�.
��

&*��!
%�-

��%�'�! ���+�

���

���

��	

��


���

���

��


���

���

���

���

�
!�
'�
��
��
�(
)!
���

!,
+�
�
��

�&* �&* �.
&* �.��&
*
�.��&

*
�.
�&

*
�.���

&*
�.	��

&*
�.
��

&*��!
%�-

�&��%�'�! ���+�

���

���

��	

��


���

���

��


���

���

���

���

��' (&�()!*+
� ��((*+
���((*+
�$"#+��

Fig. 3. Classification performance for random delays (Bind and NextDNS)

B. Payload Padding

Here, we focus on DNS payload padding standardized in
RFC 8467 [14]. DNS padding has not been supported by
all the DNS software. We notice that a newer version (ver.
9.19) of Bind supports the EDNS(0) padding option, though
NextDNS does not. Thus, we take two evaluations with Bind:
1) Only padding at the ongoing direction (from the client to
the resolver), and 2) Padding at both ongoing and returning
direction (between the client and the resolver). The former
corresponds to the case that the resolver does not support the
padding, and the latter is the case that both the client and the
resolver are aware of the padding.

As shown in Fig.4, we confirm that the padding affects
the classification performance. For padding the DNS message
both on the client and server, we obtain the lowest results;
the performances of balanced data decrease from 0.9 to 0.8
with padding query and response. Also, about the imbalanced
data, the results decrease from 0.95 to 0.88. However, the
performance degradation is limited to the case of ongoing
padding only. Thus, padding the DNS message for both
directions is effective, though the wide deployment of padding
is required for the caching resolvers.

C. Combination of Two Countermeasures

From the results of adding random delay and payload
padding, we find they have some positive effects on the perfor-
mance degradation. Finally, we add the random delay (0-60ms
and 0-100ms) and pad the query/response with Bind. As shown
in Fig.5, we find a significant change with padding and adding
100ms delay regardless of balanced and imbalanced data. The
average reduction is about 25% with two countermeasures.

RandomForest AdaBoost XGBoost LightBM
Balanced Data

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.897 0.92
0.904

0.889
0.873 0.881 0.878

0.871

0.802 0.823
0.807 0.818

Mean F1 Scores

Unpadded
Padded Query
Padded Query + Response

RandomForest AdaBoost XGBoost LightBM
Imbalanced Data

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 0.963 0.974

0.95 0.948
0.903 0.921

0.873 0.912
0.873 0.888

0.861 0.881

Mean F1 Scores

Unpadded
Padded Query
Padded Query + Response

Fig. 4. Classification performance for padding (Bind)

The results conclude that adding some random delays and
padding at the same time can protect users’ information from
attacks to a certain extent though the delay affects the user
experience.

We also show the top-10 discriminative features in Table IV.
We notice that the effective features change, not only related
to inter-arrival time and packet length. Other features such
as ’QueryPktCount’ and ’RPerSecondMax’ related to packet
count also appear in the list. We also observe that the mean
value of the top-10 important features decreases compared
to the Bind (Table II) and NextDNS (Table III) without
the countermeasures, regardless of balanced and imbalanced
datasets. Thus, our approach mitigating the inference ability
works as expected.

RandomForest AdaBoost XGBoost LightBM
Balanced Data

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.897 0.92 0.904 0.889

0.757 0.782 0.758 0.766

0.644 0.678 0.659 0.661

Mean F1 Scores

Unpadded
Padded+60ms delay
Padded+100ms delay

RandomForest AdaBoost XGBoost LightBM
Imbalanced Data

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 0.963 0.974 0.95 0.948

0.803 0.823 0.811 0.818

0.691 0.717 0.703 0.698

Mean F1 Scores

Unpadded
Padded+60ms delay
Padded+100ms delay

Fig. 5. Classification Performance for random delays and padding (Bind)

TABLE IV
TOP-10 DISCRIMINATIVE FEATURES (RANDOM DELAYS AND PADDING)

Rank Balanced Data Imbalanced Data

Feature Mean Feature Mean

1 QueryIntervalTimeMax 0.015 QueryLengthDeciles8 0.015
2 QueryLengthDeciles7 0.013 QueryIntervalTimeMax 0.015
3 FlowSentRate 0.012 ResponseLengthMin 0.013
4 QRIntervalTimeStandard 0.011 ResponseLengthDeciles3 0.012
5 QueryLengthMode 0.011 QueryPktCount 0.010
6 QRIntervalTimeCoefficientVariation 0.010 ResponseLengthDeciles5 0.009
7 QueryIntervalTimeStandard 0.009 Duration 0.009
8 QueryPktCount 0.009 RPerSecondMax 0.009
9 QRIntervalTimeMax 0.009 QueryLengthMax 0.009

10 ResponseIntervalTimeDeciles5 0.008 DFIntervalTimeDeciles2 0.008

VI. LIMITATION

We discuss the limitations of our experiments. The first
limitation of our work is that the physical measurement point
of the experiment is close to the client. Also, we conducted
these experiments in only one location (Tokyo, Japan). For the



general scenario, we will consider more platforms and sites to
measure classification performance in future work.

Another limitation of our work is that our padding experi-
ments are only conducted with the bind resolver, because other
public DNS resolvers (i.e., NextDNS, Google) do not support
the padding, at the time of writing.

Finally, we only consider the binary (sensitive or non-
sensitive) classification performance of our work. The binary
classification is easier than the multi-class classification for
the adversary. In this sense, we tackled the more serious case
for users. For a more realistic situation, we will investigate the
performance of multi-classification in the future.

VII. CONCLUSION

Privacy leakage on the web is a serious problem with
the current Internet. In this work, we intended to understand
whether the DoQ protocol could protect user privacy while
visiting the webpage.

We investigated the information leakage by analyzing the
DoQ traffic with Bind and NextDNS resolvers to discuss
the countermeasure to mitigate this threat. We show that the
classification performances of the websites are very high both
in these two resolvers to infer whether the category of websites
is sensitive. We pointed out that discriminative features are
mainly related to the inter-arrival time of packets and the
packet length. On the basis of this finding, we investigated
two countermeasures: adding the random delay and padding
the DNS message. Adding the random delay decreased the
classification performance by 19% (from 0.9 to 0.71) with
Bind and 21% (from 0.9 to 0.69) with NextDNS. When
we padded the DNS payload with Bind, the performances
decreased by 10% (from 0.9 to 0.8). In the end, we confirmed
reasonable degradation (approx 25%) with padding and adding
a 100ms delay regardless of balanced and imbalanced data.

Our analysis clarified that both countermeasures are promis-
ing to mitigate privacy harm from users, having a 0.25
reduction in the F1 score with Bind. However, adding a delay
is a tradeoff between the privacy and user experience. Also,
DNS padding has not yet been widely deployed in public DNS.
For the more realistic situation (i.e., NextDNS), we hope to
get more decrease. Therefore, in future work, we will consider
adding an appropriate delay and building a tool to pad DNS
queries or responses in the server.

REFERENCES

[1] S. Farrell, “Pervasive Monitoring Is an Attack,” RFC 7258, 2014.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc7258

[2] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman,
“Specification for DNS over Transport Layer Security (TLS),” RFC
7858, 2016.

[3] P. Hoffman and P. McManus, “DNS Queries over HTTPS (DoH),” RFC
8484, 2018.

[4] C. Huitema, “Specification of DNS over Dedicated QUIC Connections,”
RFC 9250, 2022. [Online]. Available: https://datatracker.ietf.org/doc/
rfc9250/

[5] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” RFC 9000, May 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc9000

[6] [Online]. Available: https://developers.google.com/speed/public-dns/
[7] [Online]. Available: https://cloudflare-dns.com/

[8] [Online]. Available: https://www.quad9.net/
[9] [Online]. Available: https://adguard.com

[10] [Online]. Available: https://nextdns.io/
[11] R. Houser, Z. Li, C. Cotton, and H. Wang, “An Investigation on

Information leakage of DNS over TLS,” in ACM CoNEXT’19, Orlando,
Florida, USA, 2019, pp. 123 – 137.

[12] S. Siby, M. Juarez, C. Diaz, N. Vallina-Rodriguez, and C. Troncoso, “En-
crypted DNS ⇒ Privacy? A Traffic Analysis Perspective,” in NDSS’20,
San Diego, CA, USA, 2020.

[13] S. D. Siby, M. Juárez, N. Vallina-Rodriguez, and C. Troncoso, “DNS
Privacy not so private: the traffic analysis perspective,” in HotPETs’18,
2018.

[14] A. Mayrhofer, “Padding Policies for Extension Mechanisms for
DNS (EDNS(0),” RFC 8467, 2022. [Online]. Available: https:
//datatracker.ietf.org/doc/rfc8467

[15] 2020. [Online]. Available: https://www.alexa.com
[16] J. Hayes and G. Danezis, “K-fingerprinting: a Robust Scalable Website

Fingerprinting Technique,” in USENIX Security’16, Austin, TX, 2016,
pp. 1187 – 1203.

[17] D. Herrmann, R. Wendolsky, and H. Federrath, “Website Fingerprinting:
attacking popular privacy enhancing technologies with multinomial
naı̈ve-bayes classifier,” in ACM Workshop on Cloud Computing Security
(CCSW’09), Chicago, Illinois, USA, 2009, pp. 31 – 42.

[18] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a
distance: Website fingerprinting attacks and defenses,” in ACM CCS’12,
Raleigh, NC, USA, 2012, pp. 605 – 616.

[19] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A
systematic approach to developing and evaluating website fingerprinting
defenses,” in ACM CCS’14, Scottsdale, AZ, USA, 2014, pp. 227 – 238.

[20] S. Shan, A. N. Bhagoji, H. Zheng, and B. Y. Zhao, “A Real-time Defense
against Website Fingerprinting Attacks,” arXiv, vol. abs/2102.04291,
2021.

[21] J.-P. Smith, P. Mittal, and A. Perrig, “Website Fingerprinting in the age
of QUIC,” Computer Networks, vol. 200, pp. 48 – 69, 2021.

[22] P. Zhan, L. Wang, and Y. Tang, “Website Fingerprinting on Early QUIC
Traffic,” arXiv preprint arXiv:2101.11871, 2021.

[23] C. Lu, B. Liu, Z. Li, S. Hao, H. Duan, M. Zhang, C. Leng, Y. Liu,
Z. Zhang, and J. Wu, “An End-to-End, Large-Scale Measurement
of DNS-over-Encryption,” in ACM IMC’19, Amsterdam, Netherlands,
2019, pp. 22 – 35.

[24] S. Garcı́a, K. Hynek, D. Vekshin, T. Čejka, and A. Wasicek, “Large Scale
Measurement on the Adoption of Encrypted DNS,” in arXiv 2107.04436,
2021.

[25] C. Deccio and J. Davis, “DNS Privacy in Practice and Preparation,” in
ACM CoNEXT’19, Orlando, FL, USA, 2019, pp. 138 – 143.

[26] M. Lyu, H. H. Gharakheili, and V. Sivaraman, “A Survey on DNS
Encryption: Current Development, Malware Misuse, and Inference Tech-
niques,” arXiv preprint arXiv:2201.00900, 2022.

[27] D. Vekshin, K. Hynek, and T. Cejka, “DoH Insight: Detecting DNS over
HTTPS by Machine Learning,” in ARES’20, New York, USA, 2020, pp.
1 – 8.

[28] J. Bushart and C. Rossow, “Padding Ain’t Enough: Assessing the Privacy
Guarantees of Encrypted DNS,” in 10th USENIX Workshop on Free and
Open Communications on the Internet (FOCI’20), 2020.

[29] A. Meshkov, 2021. [Online]. Available: https://github.com/
AdguardTeam/dnsproxy

[30] [Online]. Available: https://www.isc.org/bind
[31] [Online]. Available: {https://www.mozilla.org}
[32] [Online]. Available: https://fortiguard.com/webfilter
[33] B. Muthukadan, 2018. [Online]. Available: https://selenium-python.

readthedocs.io/
[34] [Online]. Available: https://imbalanced-learn.org/stable/references/

generated/imblearn.over sampling.SMOTE.html
[35] K. Carmen, J. Paul, Q. Shela, W. Cathy, and B. Cecylia, “Exploring

Simple Detection Techniques for DNS-over-HTTPS Tunnels,” in
Proceedings of the ACM SIGCOMM 2021 Workshop on Free and Open
Communications on the Internet (FOCI’21), ser. FOCI’21. New York,
NY, USA: Association for Computing Machinery, 2021, pp. 37 – 42.
[Online]. Available: https://doi.org/10.1145/3473604.3474563

[36] [Online]. Available: https://scikit-learn.org/stable/modules/cross
validation.html

[37] [Online]. Available: https://scikit-learn.org/stable/modules/generated/
sklearn.model selection.RandomizedSearchCV.html

[38] D. Cournapeau, 2007. [Online]. Available: https://scikit-learn.org


