
An Efficient Approach for Maintaining and Mining

Frequent Episodes

Show-Jane Yen

Dept. of Computer Science & Information Engineering

Ming Chuan University

Taoyuan, Taiwan

sjyen@mail.mcu.edu.tw

Yue-Shi Lee

Dept. of Computer Science & Information Engineering

Ming Chuan University

Taoyuan, Taiwan

leeys@mail.mcu.edu.tw

Abstract—Data mining technology plays a crucial role in the

area of data analysis. Mining frequent episodes stands out as a

pivotal task within this domain, enabling users to forecast future

events based on present occurrences. Conventional methods for

discovering frequent episodes typically follow a hierarchical

approach, involving the generation of candidate episodes and

subsequent scanning of sequence data to count their frequency,

which can be quite time-consuming, as it necessitates repeated

scans of the sequence data and the search for candidate episodes.

In this paper, we introduce a novel approach for episode

mining in a data stream. Our method distinguishes itself by

scanning newly added data to update existing frequent episodes,

all without the need for scanning the original data or searching

for candidate episodes. The experiments also show that our

approach is more efficient compared to other existing methods.

Keywords—data mining, frequent episode, data stream

I. INTRODUCTION

Data mining aims to extract valuable insights from vast
datasets. Mining frequent episodes [2, 3, 4, 5, 6, 7, 8, 9]
involves the identification of frequent patterns in a series of
events. Specifically, it seeks to determine the likelihood of one
event occurring following another. This capability allows us to
make predictions when an event occurs. For instance, in
network error detection, frequent episodes can be employed to
anticipate error occurrences. Likewise, in meteorology, they
can aid in forecasting weather changes.

An event sequence, as depicted in Fig.1, consists of event
types denoted by letters and the corresponding time points
represented by numbers. An event sequence can be recorded as
a combination of event types and their occurrence times. For
example, the event sequence shown in Figure 1 can be
recorded as (A,25)(B,27)(C,28)(A,30)(C,31). Therefore, an
event sequence is represented as ⟨(a1,t1) (a2,t2)…(an,tn)⟩ (n≥1),
where t1<t2<…<tn and ai∈E (1≤i≤n), with E being the set of all
possible events.

A sequence of events occurring in a specific order is
referred to as an episode, which can be categorized into two
main types: Serial episodes and Parallel episodes. In the case
of serial episodes, the events are temporally related to one
another. For instance, in Figure 2 (a), event B occurs after
event A and before event C, denoted as <ABC>. Consequently,
the two serial episodes <ABC> and <CAB> are distinct from
each other. In contrast, parallel episodes involve events that

have no temporal sequence relationship. Figure 2 (b) serves as
an illustration of a parallel episode, in which all events occur
without regard to their order of occurrence. This is represented
as (ABC). Therefore, the two parallel episodes (ABC) and
(CAB) are considered identical. The length of an episode refers
to the number of events within the episode. For example, the
length of the episode <ABC> is 3.

Fig.1 Example of event sequence

(a) Serial episode (b) parallel episode

Fig.2 Examples of episodes

The occurrences of an episode encompass the time span
extending from the beginning to the end of the events
comprising the episode [2, 5, 7, 8]. To illustrate, in Fig.1, the
serial episode <AC> manifests two occurrences: (25, 28) and
(30, 31), respectively. When considering any two occurrences
for an episode E, which denote them as O1=(t1, s1) and O2=(t2,
s2), if t1≤t2 and s1>s2 or t1<t2 and s1≥s2, it signifies that
occurrence O1 contains occurrence O2. This suggests that the
relationship between the events within E is comparatively
distant and weak in occurrence O1, while the relationship
between the events in occurrence O2 is closer and stronger.
Therefore, O2 provides a more representative depiction of the
temporal range of the events within E than O1.

If a particular occurrence, denoted as MO, of episode E
does not contain any other occurrences of E, it is referred to as
a minimal occurrence of E and is considered the most
representative occurrence. For instance, in Fig.3, the minimal
occurrence for the episode <BC> is (25, 27), which stands
alone without containing any other occurrences. On the
contrary, (21, 27) does not qualify as a minimal occurrence
because it includes another occurrence (25, 27). Consequently,

there exist two distinct minimal occurrences for the episode
<BC>: (25, 27) and (30, 33).

When the count of minimal occurrences for an episode in
an event sequence satisfies a user-defined min_count threshold,
the episode is called a frequent episode [2, 7, 8]. In the event
sequence shown in Fig.3, suppose the min_count threshold is

set to 2, <BC> is a frequent episode, which enables us to
anticipate the occurrence of event C when event B occurs.

Fig. 3 Another example of event sequence

Given that events will persistently occur, the events within
an event sequence will steadily accumulate over time, and the
set of frequent episodes will evolve accordingly. To stay
current with the latest frequent episodes, it becomes imperative
to promptly identify these episodes as new events are added.
Nevertheless, traditional methods for mining frequent episodes
[2, 5, 6, 7, 8] entail the need to rediscover existing frequent
episodes each time new events are introduced. This results in a
considerable waste of time and undermines overall efficiency.
Therefore, we explore methods for updating the existing
episodes in response to newly added events in a data stream,
obviating the necessity to revisit the original event sequence.

This paper presents a novel algorithm designed to swiftly
identify the most recent frequent episodes as new events are
introduced into the event sequence. Our approach employs a
tree structure, housing each event in the initial-level nodes
while reserving other nodes for the storage of frequent
episodes. Upon adding an event, if the last event within a
frequent episode matches the newly introduced event, an
update action is triggered. By exclusively storing and handling
frequent episodes and new events, our method not only
accelerates the mining process but also substantially reduces
memory consumption.

II. RELATED WORK

Mannila et al. [7] employed a sliding window approach to
progressively extract frequent episodes from a sequence of
events using the Apriori framework. To begin, the user needs
to specify an appropriate window size to prevent excessive
time gaps between events within a frequent episode. Following
this, candidate episodes that encompass a single event can be
generated. If the count of windows containing a candidate
pattern reaches a user-defined threshold, it is identified as a
frequent episode. To generate candidate episodes comprising k
events, they are formed by combining with the frequent
episodes that encompass k-1 events.

Mannila et al. [8] have expanded and refined their prior
approach, introducing a novel algorithm that distinguishes
between the extraction of serial episodes and parallel episodes.
In the context of serial episodes, a state table is utilized to
verify the presence of candidate episodes within the window.
This is necessitated by the sequential relationships between

events within a serial episode. Consequently, there are certain
events that are initially awaited. To illustrate, consider the
serial episode <ABC>. In this algorithm, the system first waits
for the appearance of event A. As the window shifts, if the
newly added event is A, it signifies the emergence of event A,
and the system proceeds to anticipate event B. The arrival of
the final event, C, signals that the window now contains
<ABC>.

Conversely, in the case of parallel episodes, it is only
imperative to count the number of events within the episode
since there are no temporal dependencies among the events in
the episode. However, it is essential to allocate a substantial
amount of memory space for concurrently storing numerous
state tables. Additionally, as this algorithm is based on the
Apriori algorithm [1], it necessitates revisiting the original
event sequence each time a new event is added. Furthermore,
the window size has to be specified prior to frequent episode
mining from an event sequence. When the window size is
adjusted, it demands the re-mining of frequent episodes, such
that this algorithm exhibits inefficiencies.

Fig. 4 Example of different window size

Casa-Garriga, et al. [2], introduced an innovative approach
aimed at addressing the limitation of the previous method
which necessitated the determination of a fixed window size.
This constraint resulted in an inability to identify frequent
episodes exceeding the length of the window. For instance, in
Fig.4, if the window size is set at 4 time units, it allows the
detection of the episode <ABCD>. Conversely, when the
window size is restricted to 2 time units, the episode <ABCD>
cannot be discovered. To overcome this challenge, they
proposed the concept of an unbounded episode, incorporating
user-defined time units between adjacent events. For instance,
Fig.5 illustrates a serial episode <ABC> with a length of 3 and
a window size of 2 time units. For a serial episode with a
length k, the window size is extended to k-1 time units. As a
result, the window size expands as the increasing length of
frequent episodes. This adaptive window size ensures that
frequent episodes are not missed due to the window size
constraint. However, it's important to note that despite solving
the window size issue, this method retains the Apriori
framework's characteristics, which entail the substantial storage
of candidate episodes and the need to re-examine the event
sequence as new events are added.

Fig.5 An example of unbounded episode

Mannila et al. [6] introduced the MINEPI algorithm, a
pioneering approach that introduces the concept of minimal
occurrence for the extraction of frequent episodes. Unlike the
sliding window method, MINEPI is based on the Apriori
algorithm [1], but it deviates from the process of initially
defining a window size and then counting the number of
windows containing the candidate episode within the event
sequence. Instead, MINEPI directly computes the number of
minimal occurrences within an event sequence.

However, it's important to note that each minimal
occurrence for a candidate episode in an event sequence comes
with distinct start and end times. This leads to the generation of
numerous minimal occurrences for a single candidate episode,
demanding a significant amount of memory space for storage.
Additionally, MINEPI doesn't set a threshold to restrict the
maximum duration, potentially resulting in extensive time
intervals for minimal occurrences of a candidate episode. For
instance, consider the example of <AB>: (5,105), where it
indicates that after event A occurs at the fifth time point, event
B follows after 100 time units. This extended time gap between
the two events may not necessarily imply a meaningful
relationship, but MINEPI includes such minimal occurrences
in its calculations.

Xi Ma and colleagues [5] introduced the Episode Prefix
Tree (EPT) and Position Pair Set (PPS) as improvement to the
MINEPI algorithm which needs the storage of numerous
candidate episodes. These two methods, EPT and PPS,
eliminate the need to generate candidate episodes by focusing
on mining frequent episodes based on episode prefixes. To
illustrate, let's consider an event sequence depicted in Fig.6.
For instance, if the prefix is <A>, the episodes and their
occurrences within the event sequence are as follows: <AB>:
(25,26), <AD>: (25,27), <AC>: (25,28), (25,31), (30,31), and
<AA>: (25,30). Notably, occurrence (25,31) contains the
occurrence (25,28) for the episode <AC>, therefore it non-
minimal for this episode. Similarly, when the prefix is <AD>,
the episodes and their occurrences in the event sequence are as
follows: <ACD>: (25,28), (25,31) and <ADA>: (25,30). In this
case, occurrence (25,31) contains occurrence (25,28) for the
episode <ACD>, signifying it as a non-minimal occurrence for
<ACD>.

Fig. 6 Another example of event sequence

The EPT algorithm employs a prefix tree structure to
extract frequent episodes, where each node in the tree keeps
track of an event and the count of minimal occurrences for
each episode. In the Episode Prefix Tree, if the number of
minimal occurrences for the final node in a particular path fails
to meet a user-specified threshold, then there's no need to
further extend that path. This is because it's unable to discover
additional frequent episodes within that specific path. The
notable advantage of the EPT algorithm is that it eliminates the
necessity to generate candidate episodes, leading to reduced
memory consumption. However, it is necessary to repeatedly

scan the event sequence when a path requires extending to a
longer path.

Therefore, Xi Ma and colleagues [5] introduced an
alternative method known as PPS to address the issue of
repetitive event sequence scanning posed by the EPT
algorithm. PPS initially identifies frequent episodes of length 1
within the event sequence in Fig.6, such as <A>, , <C>,
and <D>. These identified frequent episodes are then utilized
as prefixes, combined with other frequent episodes of length 1.
For instance, episodes <AA>, <AB>, <AC>, and <AD> are
generated through this process. Employing a depth-first
approach, each frequent episode of length k-1 serves as a
prefix, and in combination with all frequent events to generate
episodes of length k. If the count of minimal occurrences for a
generated episode fails to meet the specified threshold, it is
deemed non-frequent and subsequently eliminated. However,
PPS encounters the challenge of continuous re-scanning of the
event sequence if new events are continually added, which may
hinder its ability to efficiently generate frequent episodes.

Mielikäinen [4] introduced a technique for mining frequent
episodes in scenarios where events are continuously appended
to the event sequence. This algorithm has the capability to
dynamically update existing episodes upon the addition of an
event. However, it does not take into account the concept of
minimal occurrences. This method amalgamates all the
existing episodes with the newly added event. For instance, if
the current episodes comprise <A>, <C>, and <AC>, the
addition of event B results in the generation of new episodes
like <AB>, <CB>, and <ACB>. Nevertheless, when events are
added continuously, this approach may lead to the storage of a
substantial number of episodes, which can result in space
wastage and a considerable drop in efficiency.

III. OUR APPROACH

In this section, we describe our proposed algorithm SFET.
The main storage structure of SFET is the Suffix Frequent
Episode Tree (SFE Tree) which store all frequent episodes so
far and their minimal occurrences. Starting from the root of the
tree, there will be zero or more child nodes under each node.
The child nodes of the root node store all the events in the
event sequence, and each other node represents a frequent
episode in which the order of the events is from the node to
root node. In Fig. 7, there is node A under the root node and
nodes B and C under node A, where node B represents
frequent episode <BA> and node C represents frequent episode
<CA>.

Fig. 7 The structure of SFE Tree

In the structure of SFE Tree, each event and frequent
episode have a TT (Time Table) structure. The two fields S and
E in TT(N) of a node N representing a frequent episode X
record start time and end time of the minimal occurrences of
the frequent episode X, respectively. The TT(e) of each event e
has a field T which records the time point of the occurrence of
the event e. Fig. 7 shows an example of TT structure of SFE
Tree. In addition, each node also records the current number of
minimal occurrences of the frequent episode in the node N,
which is denoted as count(N).

When an event e is added to the event sequence and time
point is t, if e does not exist in the child node of the tree root,
SFET creates a child node e of the root, records time t in TT(e)
of the node and set count(e) to 1. Otherwise, SFET adds time t
to the time table TT(e) and accumulate count(e) by 1. If
count(e) is equal to min_count, then e is a frequent event and e
is combined with each frequent event x to form a candidate
episode <xe> and the minimal occurrences are generated. The
minimal occurrence generation method is as follows: For each
time point t in TT(e), search from TT(x) to find the set of time
points which is smaller than t and retrieve the largest time point
t’ in the set. Therefore, time point t’ and t are the start time and
end time of a minimal occurrence of <xe>, and count(xe) is
accumulate by 1. If count(e) is greater than min_count, then x
may already be a child node of e, that is, <xe> may already be
a frequent episode. If x is already a child node of e, then
retrieve the values u and v of S and E of the last record in
TT(xe), and apply the minimal occurrence generation method
to update TT(xe) from value u of TT(x) and value v of TT(e).

After generating all the minimal occurrences of <xe>, if
count (xe)=min_count, then <xe> is a frequent episode. SFET
creates child node x under node e and TT(xe), and retrieves the
frequent episode by traversing SFE Tree from the child node x
of root to the child node y of node x, that is <yx>. The two
frequent episodes <yx> and <xe> can be joined to generate a
length 3 candidate episode <yxe>, and TT(yxe) is generated as
follows: For each time point t in TT(xe), search from the field
E of TT(yx) to find the set of time points which is smaller than
t and retrieve the largest time point p in the set. Suppose the
corresponding start time of p in TT(yx) is t’. (t’, t) is a minimal
occurrence of <yxe>, and count(yxe) is accumulated by 1.

If count(xe)>min_count and there is no child node y under
node x of <xe>, which means that <yxe> is not a frequent
episode, SFET calculate minimal occurrences of <yxe> from
TT(xe) and TT(yx) as above. If count(xe)>min_count and there
is child node y under node x of <xe>, that is, <yxe> is already
a frequent episode, then SFET does not re-generate TT(yxe)
but updates original TT(yxe) as follows: SFET retrieves the
two time points ts and te from the two fields S and E of the last
record in TT(yxe), and starts from the next record of ts in field
S of TT(yx) and the next record of te in field E of TT(xe) to
calculate minimal occurrences of <yxe> and added to TT(yxe)
according to the minimal occurrence generation method.

If <yxe> is a frequent episode, then SFET searches for
length 3 frequent episodes ending with <yx> from SFE Tree,
that is a frequent episode <zyx> formed by following each

child node z of node y in the path x→y under the root, which

can be joined with frequent episode <yxe> to generate a
candidate episode <zyxe> whose minimal occurrences also can

be generated as above. For a length k (k≥3) frequent episode
<e1 e2… ek>, SFET retrieves a frequent episode <y e1 e2…ek-1>

by following the path ek-1→ek-2→…→e2→e1 under the root
node and find the child node y of e1, and the two length k
frequent episodes can be joined to generate a candidate episode
<y e1 e2… ek>. SFET generate frequent episodes by the above
way until there is no frequent episodes can be generated.

In the following, we illustrate our SFET algorithm by using

a simple example. Assume that the event sequence is S＝
<BCABAB> and min_count = 2. When events B, C and A at
time points 1, 2 and 3 arrive, the nodes B, C and A and their
time table (TT) are created under the root node of SFE Tree.
Since the count of the three events do not satisfy min_count,
there is nothing to do. When the event B at time point 4 arrives,
time point 4 is added to TT(B) and count(B)=min_count,
which event B is a frequent event. Since current frequent event
is only B, event B and event B can be joined to generate
candidate episode <BB>, which is shown in Fig. 8.

Fig. 8 SFE Tree after processing <BCAB> of event sequence S

Fig.9 SFE Tree after event A arrives at time point 5

When event A in even sequence S at time point 5 arrives,
time point 5 is added to TT(A) and event A is a frequent event
since count(A) is equal to min_count 2. The two frequent
events A and B can be joined to generate candidate episodes

<AA> and <BA>, and their minimal occurrences are {(3, 5)}
and {(1, 3)(4, 5)}, respectively, in which <BA> is a frequent
episode since count(BA) is equal to min_count 2. Therefore,
SFET creates child B of node A and TT(BA), and then
searches for child node of node B under the root node. Because
there is no child node of node B, that is, there is no frequent
episode ending with event B that can be joined with <BA>,
which is shown in Fig. 9.

When event B in S at time point 6 arrives, which is added

to TT(B), because count(B) > min_count and there is no child
node of node B under the root, event B is joined with all the
frequent events, which are <BB> and <AB> and their time
tables are TT(BB)= {(1, 4),(4, 6)} and TT(AB)= {(3, 4), (5,
6)}. Because count(BB) and count(AB) are equal to min_count
2, <BB> and <AB> are newly generated frequent episodes.
SFET creates child nodes B and A of the node B under the root
node, and searches for length 2 frequent episodes to join with
the two frequent episodes <BB> and <AB>. For frequent
episode <BB>, because there are two child nodes B and A of
node B under the root (Fig.10), that is, there are two frequent
episodes <BB> and <AB>, which can be joined with <BB> to
generate candidate episodes <BBB> and <ABB> and their
minimal occurrences are {(3,6)} and {(4,6)}, respectively.

For frequent episode <AB>, because there is a child node B
of node A under the root, that is, there is a frequent episode
<BA>, which can be joined with <AB> to generate a candidate
episode <BAB> and TT(BAB)={(1,4) (4,6)}. Since count
(BAB) is equal to min_count 2, <BAB> is a newly generated
frequent episode. Because there is no child node of node B in

the path A→B under the root, that is, there is no length 3
frequent episode ending with <BA>, the frequent episode
<BAB> cannot joined with the other frequent episodes.
Therefore, all the frequent episodes generated from the event
sequence S are <BB>, <AB>, <BAB> and <BA>. Fig. 10
shows the SFE Tree after processing all the events in event
sequence S.

Fig.10 SFE Tree after processing all the events in S

IV. EXPERIMENTS

We generate synthetic datasets for conducting our
experiments. We first defined two parameters: Et, representing
the number of events, and S, representing the average number
of events in the event sequence. Next, we set the average
length, denoted as E, of frequent episodes, and generated all
possible frequent episodes in the set C. We first randomly
select a frequent episode from the set C and inserting it into the
event sequence S. We then made a random decision to either
select another frequent episode or repeat the insertion of the
same frequent episode into the event sequence. This process
continued until the desired event sequence length was
achieved. We then proceeded to compare the execution time
and memory usage of our algorithm with that of the SE-stream
algorithm [4], which is designed to discover frequent episodes
within streams of events.

Due to the substantial storage requirements for non-
frequent episodes and the generation of a significant number of
candidate episodes, the SE-stream algorithm tends to consume
excessive memory space and execution time when the event
sequence becomes longer. To address this issue in our
experiments, we standardized the values. We fixed the number
of events (Et) and the potential set of frequent episodes (C) at
200 and 100, respectively, while maintaining the length of the
event sequence (S) at 100. Furthermore, we specified varying
average lengths for the frequent episodes: 3, 5, and 7. This
enabled us to generate three distinct synthetic event sequences,
denoted as E3S100, E5S100, and E7S100, respectively.

We initiated the process by selecting the initial 10 events
from each of the three event sequences. Subsequently, we
augmented the event sequences by adding 10 events at a time,
and set a minimum count threshold of 4. Fig. 11, 12 and 13
illustrate the execution times for both algorithms as events
were added in increments of 10 on the three datasets. Notably,
as the event sequence grew to encompass 60 to 100 events, the
execution time for SE-stream exhibited a sudden and
substantial increase, which is attributed to a significant upsurge
in the number of candidate episodes, leading to an extended
search process.

In contrast, our SFET algorithm operates without the need
to store candidate episodes, eliminating the necessity for time-
consuming candidate searches. SFET's primary task involves
updating nodes associated with the newly added events within
the tree structure. Our approach ensures that the execution
time remains consistent, regardless of any alterations in the
event sequence length. As a result, our algorithm consistently
outperforms SE-stream and offers superior stability in
comparison.

The experiment in Fig.14 clearly demonstrates that SE-
stream demands a greater amount of memory space compared
to our SEFT algorithm. This discrepancy arises from the fact
that SE-stream must accommodate a substantial volume of
candidate episodes, whereas our tree structure only stores
frequent episodes. Consequently, as the length of the event
sequence extends, SE-stream generates an excessive number of
candidate episodes. In contrast, SEFT merely requires
additional storage space for SFE Tree to maintain frequent
episodes, thereby causing the disparity in memory usage

between the two algorithms to widen as the event sequence
length increases, which is shown in Fig.14.

Fig.11 Execution time for the two algorithms on E3S100

Fig.12 Execution time for the two algorithms on E5S100

Fig.13 Execution time for the two algorithms on E7S100

Fig.14 Memory usages for the two algorithms

V. CONCLUSIONS

In this paper, we present a novel algorithm designed for
the extraction of frequent episodes when the events are
continuously added into event sequence. Our approach stands
out from existing algorithms in that it eliminates the need for
searching candidate episodes and re-scanning the event
sequence, it allows for direct updates to the nodes in our tree
structure and generate frequent episodes upon the addition of a
new event. The experiments show that our algorithm is
remarkable efficiency in terms of both execution time and
memory usage.

REFERENCES

[1] R. Agrawal, and R. Srikant, “Fast Algorithms for Mining Association
Rules,” Proc. of 20th International Conference on Very Large
Databases, Santiago, Chile, pp. 487-499, September 1994.

[2] G. Casas-Garriga, Discovering unbounded episodes in sequential data,
Knowledge Discovery in Databases:PKDD 2003, volume 2838 of
Lecture Notes in Artificial Intelligence, pp. 83–94. Springer-Verlag,
2003.

[3] Wu, Cheng-Wei, et al. "Mining high utility episodes in complex event
sequences." Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining. 2013.

[4] T. Mielikäinen, Discovery of serial episodes from streams of events,
Proceedings of the 16th International Conference on Scientific and
Statistical Database Management (SSBDM), pp. 447-448, 2014.

[5] X. Ma, H. PANG, K. L. TAN, Finding constrained frequent episodes
using minimal occurrences, Proceedings of the Fourth IEEE
International Conference on Data Mining, pp. 471-474, 2004.

[6] H. Mannila and H. Toivonen, Discovering generalized episodes using
minimal occurrences, In Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining (KDD'96), pp.
146-151, 1996.

[7] H. Mannila, H. Toivonen and A. I. Verkamo, Discovering frequent
episodes in sequences, In Proceedings of the First International
Conference on Knowledge Discovery and Data Mining (KDD'95), pp.
210-215, 1995.

[8] H. Mannila, H. Toivonen and A. I. Verkamo, Discovering frequent
episodes in sequences, Data Mining and Knowledge Discovery(DMKD)
1(3): 259-289, November 1997.

[9] Gan, Wensheng, et al. "Utility-driven mining of high utility episodes."
2019 IEEE International Conference on Big Data (Big Data). IEEE,
2019.

