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Abstract—Data mining technology plays a crucial role in the 

area of data analysis. Mining frequent episodes stands out as a 

pivotal task within this domain, enabling users to forecast future 

events based on present occurrences. Conventional methods for 

discovering frequent episodes typically follow a hierarchical 

approach, involving the generation of candidate episodes and 

subsequent scanning of sequence data to count their frequency, 

which can be quite time-consuming, as it necessitates repeated 

scans of the sequence data and the search for candidate episodes. 

In this paper, we introduce a novel approach for episode 

mining in a data stream. Our method distinguishes itself by 

scanning newly added data to update existing frequent episodes, 

all without the need for scanning the original data or searching 

for candidate episodes. The experiments also show that our 

approach is more efficient compared to other existing methods. 
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I. INTRODUCTION  

Data mining aims to extract valuable insights from vast 
datasets. Mining frequent episodes [2, 3, 4, 5, 6, 7, 8, 9] 
involves the identification of frequent patterns in a series of 
events. Specifically, it seeks to determine the likelihood of one 
event occurring following another. This capability allows us to 
make predictions when an event occurs. For instance, in 
network error detection, frequent episodes can be employed to 
anticipate error occurrences. Likewise, in meteorology, they 
can aid in forecasting weather changes. 

An event sequence, as depicted in Fig.1, consists of event 
types denoted by letters and the corresponding time points 
represented by numbers. An event sequence can be recorded as 
a combination of event types and their occurrence times. For 
example, the event sequence shown in Figure 1 can be 
recorded as (A,25)(B,27)(C,28)(A,30)(C,31). Therefore, an 
event sequence is represented as ⟨(a1,t1) (a2,t2)…(an,tn)⟩ (n≥1), 
where t1<t2<…<tn and ai∈E (1≤i≤n), with E being the set of all 
possible events. 

A sequence of events occurring in a specific order is 
referred to as an episode, which can be categorized into two 
main types: Serial episodes and Parallel episodes. In the case 
of serial episodes, the events are temporally related to one 
another. For instance, in Figure 2 (a), event B occurs after 
event A and before event C, denoted as <ABC>. Consequently, 
the two serial episodes <ABC> and <CAB> are distinct from 
each other. In contrast, parallel episodes involve events that 

have no temporal sequence relationship. Figure 2 (b) serves as 
an illustration of a parallel episode, in which all events occur 
without regard to their order of occurrence. This is represented 
as (ABC). Therefore, the two parallel episodes (ABC) and 
(CAB) are considered identical. The length of an episode refers 
to the number of events within the episode. For example, the 
length of the episode <ABC> is 3. 

 

Fig.1 Example of event sequence 

    

    

(a) Serial episode           (b) parallel episode 

Fig.2 Examples of episodes 

 

The occurrences of an episode encompass the time span 
extending from the beginning to the end of the events 
comprising the episode [2, 5, 7, 8]. To illustrate, in Fig.1, the 
serial episode <AC> manifests two occurrences: (25, 28) and 
(30, 31), respectively. When considering any two occurrences 
for an episode E, which denote them as O1=(t1, s1) and O2=(t2, 
s2), if t1≤t2 and s1>s2 or t1<t2 and s1≥s2, it signifies that 
occurrence O1 contains occurrence O2. This suggests that the 
relationship between the events within E is comparatively 
distant and weak in occurrence O1, while the relationship 
between the events in occurrence O2 is closer and stronger. 
Therefore, O2 provides a more representative depiction of the 
temporal range of the events within E than O1. 

If a particular occurrence, denoted as MO, of episode E 
does not contain any other occurrences of E, it is referred to as 
a minimal occurrence of E and is considered the most 
representative occurrence. For instance, in Fig.3, the minimal 
occurrence for the episode <BC> is (25, 27), which stands 
alone without containing any other occurrences. On the 
contrary, (21, 27) does not qualify as a minimal occurrence 
because it includes another occurrence (25, 27). Consequently, 



there exist two distinct minimal occurrences for the episode 
<BC>: (25, 27) and (30, 33). 

When the count of minimal occurrences for an episode in 
an event sequence satisfies a user-defined min_count threshold, 
the episode is called a frequent episode [2, 7, 8]. In the event 
sequence shown in Fig.3, suppose the min_count threshold is 

set to 2, <BC> is a frequent episode, which enables us to 
anticipate the occurrence of event C when event B occurs. 

 

Fig. 3 Another example of event sequence 

 

Given that events will persistently occur, the events within 
an event sequence will steadily accumulate over time, and the 
set of frequent episodes will evolve accordingly. To stay 
current with the latest frequent episodes, it becomes imperative 
to promptly identify these episodes as new events are added. 
Nevertheless, traditional methods for mining frequent episodes 
[2, 5, 6, 7, 8] entail the need to rediscover existing frequent 
episodes each time new events are introduced. This results in a 
considerable waste of time and undermines overall efficiency. 
Therefore, we explore methods for updating the existing 
episodes in response to newly added events in a data stream, 
obviating the necessity to revisit the original event sequence. 

This paper presents a novel algorithm designed to swiftly 
identify the most recent frequent episodes as new events are 
introduced into the event sequence. Our approach employs a 
tree structure, housing each event in the initial-level nodes 
while reserving other nodes for the storage of frequent 
episodes. Upon adding an event, if the last event within a 
frequent episode matches the newly introduced event, an 
update action is triggered. By exclusively storing and handling 
frequent episodes and new events, our method not only 
accelerates the mining process but also substantially reduces 
memory consumption. 

II. RELATED WORK 

Mannila et al. [7] employed a sliding window approach to 
progressively extract frequent episodes from a sequence of 
events using the Apriori framework. To begin, the user needs 
to specify an appropriate window size to prevent excessive 
time gaps between events within a frequent episode. Following 
this, candidate episodes that encompass a single event can be 
generated. If the count of windows containing a candidate 
pattern reaches a user-defined threshold, it is identified as a 
frequent episode. To generate candidate episodes comprising k 
events, they are formed by combining with the frequent 
episodes that encompass k-1 events. 

Mannila et al. [8] have expanded and refined their prior 
approach, introducing a novel algorithm that distinguishes 
between the extraction of serial episodes and parallel episodes. 
In the context of serial episodes, a state table is utilized to 
verify the presence of candidate episodes within the window. 
This is necessitated by the sequential relationships between 

events within a serial episode. Consequently, there are certain 
events that are initially awaited. To illustrate, consider the 
serial episode <ABC>. In this algorithm, the system first waits 
for the appearance of event A. As the window shifts, if the 
newly added event is A, it signifies the emergence of event A, 
and the system proceeds to anticipate event B. The arrival of 
the final event, C, signals that the window now contains 
<ABC>. 

Conversely, in the case of parallel episodes, it is only 
imperative to count the number of events within the episode 
since there are no temporal dependencies among the events in 
the episode. However, it is essential to allocate a substantial 
amount of memory space for concurrently storing numerous 
state tables. Additionally, as this algorithm is based on the 
Apriori algorithm [1], it necessitates revisiting the original 
event sequence each time a new event is added. Furthermore, 
the window size has to be specified prior to frequent episode 
mining from an event sequence. When the window size is 
adjusted, it demands the re-mining of frequent episodes, such 
that this algorithm exhibits inefficiencies. 

 

Fig. 4 Example of different window size 

Casa-Garriga, et al. [2], introduced an innovative approach 
aimed at addressing the limitation of the previous method 
which necessitated the determination of a fixed window size. 
This constraint resulted in an inability to identify frequent 
episodes exceeding the length of the window. For instance, in 
Fig.4, if the window size is set at 4 time units, it allows the 
detection of the episode <ABCD>. Conversely, when the 
window size is restricted to 2 time units, the episode <ABCD> 
cannot be discovered. To overcome this challenge, they 
proposed the concept of an unbounded episode, incorporating 
user-defined time units between adjacent events. For instance, 
Fig.5 illustrates a serial episode <ABC> with a length of 3 and 
a window size of 2 time units. For a serial episode with a 
length k, the window size is extended to k-1 time units. As a 
result, the window size expands as the increasing length of 
frequent episodes. This adaptive window size ensures that 
frequent episodes are not missed due to the window size 
constraint. However, it's important to note that despite solving 
the window size issue, this method retains the Apriori 
framework's characteristics, which entail the substantial storage 
of candidate episodes and the need to re-examine the event 
sequence as new events are added. 

 

Fig.5 An example of unbounded episode 



Mannila et al. [6] introduced the MINEPI algorithm, a 
pioneering approach that introduces the concept of minimal 
occurrence for the extraction of frequent episodes. Unlike the 
sliding window method, MINEPI is based on the Apriori 
algorithm [1], but it deviates from the process of initially 
defining a window size and then counting the number of 
windows containing the candidate episode within the event 
sequence. Instead, MINEPI directly computes the number of 
minimal occurrences within an event sequence. 

However, it's important to note that each minimal 
occurrence for a candidate episode in an event sequence comes 
with distinct start and end times. This leads to the generation of 
numerous minimal occurrences for a single candidate episode, 
demanding a significant amount of memory space for storage. 
Additionally, MINEPI doesn't set a threshold to restrict the 
maximum duration, potentially resulting in extensive time 
intervals for minimal occurrences of a candidate episode. For 
instance, consider the example of <AB>: (5,105), where it 
indicates that after event A occurs at the fifth time point, event 
B follows after 100 time units. This extended time gap between 
the two events may not necessarily imply a meaningful 
relationship, but MINEPI includes such minimal occurrences 
in its calculations. 

Xi Ma and colleagues [5] introduced the Episode Prefix 
Tree (EPT) and Position Pair Set (PPS) as improvement to the 
MINEPI algorithm which needs the storage of numerous 
candidate episodes. These two methods, EPT and PPS, 
eliminate the need to generate candidate episodes by focusing 
on mining frequent episodes based on episode prefixes. To 
illustrate, let's consider an event sequence depicted in Fig.6. 
For instance, if the prefix is <A>, the episodes and their 
occurrences within the event sequence are as follows: <AB>: 
(25,26), <AD>: (25,27), <AC>: (25,28), (25,31), (30,31), and 
<AA>: (25,30). Notably, occurrence (25,31) contains the 
occurrence (25,28) for the episode <AC>, therefore it non-
minimal for this episode. Similarly, when the prefix is <AD>, 
the episodes and their occurrences in the event sequence are as 
follows: <ACD>: (25,28), (25,31) and <ADA>: (25,30). In this 
case, occurrence (25,31) contains occurrence (25,28) for the 
episode <ACD>, signifying it as a non-minimal occurrence for 
<ACD>. 

 

Fig. 6 Another example of event sequence 

The EPT algorithm employs a prefix tree structure to 
extract frequent episodes, where each node in the tree keeps 
track of an event and the count of minimal occurrences for 
each episode. In the Episode Prefix Tree, if the number of 
minimal occurrences for the final node in a particular path fails 
to meet a user-specified threshold, then there's no need to 
further extend that path. This is because it's unable to discover 
additional frequent episodes within that specific path. The 
notable advantage of the EPT algorithm is that it eliminates the 
necessity to generate candidate episodes, leading to reduced 
memory consumption. However, it is necessary to repeatedly 

scan the event sequence when a path requires extending to a 
longer path. 

Therefore, Xi Ma and colleagues [5] introduced an 
alternative method known as PPS to address the issue of 
repetitive event sequence scanning posed by the EPT 
algorithm. PPS initially identifies frequent episodes of length 1 
within the event sequence in Fig.6, such as <A>, <B>, <C>, 
and <D>. These identified frequent episodes are then utilized 
as prefixes, combined with other frequent episodes of length 1. 
For instance, episodes <AA>, <AB>, <AC>, and <AD> are 
generated through this process. Employing a depth-first 
approach, each frequent episode of length k-1 serves as a 
prefix, and in combination with all frequent events to generate 
episodes of length k. If the count of minimal occurrences for a 
generated episode fails to meet the specified threshold, it is 
deemed non-frequent and subsequently eliminated. However, 
PPS encounters the challenge of continuous re-scanning of the 
event sequence if new events are continually added, which may 
hinder its ability to efficiently generate frequent episodes. 

Mielikäinen [4] introduced a technique for mining frequent 
episodes in scenarios where events are continuously appended 
to the event sequence. This algorithm has the capability to 
dynamically update existing episodes upon the addition of an 
event. However, it does not take into account the concept of 
minimal occurrences. This method amalgamates all the 
existing episodes with the newly added event. For instance, if 
the current episodes comprise <A>, <C>, and <AC>, the 
addition of event B results in the generation of new episodes 
like <AB>, <CB>, and <ACB>. Nevertheless, when events are 
added continuously, this approach may lead to the storage of a 
substantial number of episodes, which can result in space 
wastage and a considerable drop in efficiency. 

III. OUR APPROACH 

In this section, we describe our proposed algorithm SFET. 
The main storage structure of SFET is the Suffix Frequent 
Episode Tree (SFE Tree) which store all frequent episodes so 
far and their minimal occurrences. Starting from the root of the 
tree, there will be zero or more child nodes under each node. 
The child nodes of the root node store all the events in the 
event sequence, and each other node represents a frequent 
episode in which the order of the events is from the node to 
root node. In Fig. 7, there is node A under the root node and 
nodes B and C under node A, where node B represents 
frequent episode <BA> and node C represents frequent episode 
<CA>. 

 



Fig. 7 The structure of SFE Tree 

In the structure of SFE Tree, each event and frequent 
episode have a TT (Time Table) structure. The two fields S and 
E in TT(N) of a node N representing a frequent episode X 
record start time and end time of the minimal occurrences of 
the frequent episode X, respectively. The TT(e) of each event e 
has a field T which records the time point of the occurrence of 
the event e. Fig. 7 shows an example of TT structure of SFE 
Tree. In addition, each node also records the current number of 
minimal occurrences of the frequent episode in the node N, 
which is denoted as count(N). 

When an event e is added to the event sequence and time 
point is t, if e does not exist in the child node of the tree root, 
SFET creates a child node e of the root, records time t in TT(e) 
of the node and set count(e) to 1. Otherwise, SFET adds time t 
to the time table TT(e) and accumulate count(e) by 1. If 
count(e) is equal to min_count, then e is a frequent event and e 
is combined with each frequent event x to form a candidate 
episode <xe> and the minimal occurrences are generated. The 
minimal occurrence generation method is as follows: For each 
time point t in TT(e), search from TT(x) to find the set of time 
points which is smaller than t and retrieve the largest time point 
t’ in the set. Therefore, time point t’ and t are the start time and 
end time of a minimal occurrence of <xe>, and count(xe) is 
accumulate by 1. If count(e) is greater than min_count, then x 
may already be a child node of e, that is, <xe> may already be 
a frequent episode. If x is already a child node of e, then 
retrieve the values u and v of S and E of the last record in 
TT(xe), and apply the minimal occurrence generation method 
to update TT(xe) from value u of TT(x) and value v of TT(e). 

After generating all the minimal occurrences of <xe>, if 
count (xe)=min_count, then <xe> is a frequent episode. SFET 
creates child node x under node e and TT(xe), and retrieves the 
frequent episode by traversing SFE Tree from the child node x 
of root to the child node y of node x, that is <yx>. The two 
frequent episodes <yx> and <xe> can be joined to generate a 
length 3 candidate episode <yxe>, and TT(yxe) is generated as 
follows: For each time point t in TT(xe), search from the field 
E of TT(yx) to find the set of time points which is smaller than 
t and retrieve the largest time point p in the set. Suppose the 
corresponding start time of p in TT(yx) is t’. (t’, t) is a minimal 
occurrence of <yxe>, and count(yxe) is accumulated by 1. 

If count(xe)>min_count and there is no child node y under 
node x of <xe>, which means that <yxe> is not a frequent 
episode, SFET calculate minimal occurrences of <yxe> from 
TT(xe) and TT(yx) as above. If count(xe)>min_count and there 
is child node y under node x of <xe>, that is, <yxe> is already 
a frequent episode, then SFET does not re-generate TT(yxe) 
but updates original TT(yxe) as follows: SFET retrieves the 
two time points ts and te from the two fields S and E of the last 
record in TT(yxe), and starts from the next record of ts in field 
S of TT(yx) and the next record of te in field E of TT(xe) to 
calculate minimal occurrences of <yxe> and added to TT(yxe) 
according to the minimal occurrence generation method.  

If <yxe> is a frequent episode, then SFET searches for 
length 3 frequent episodes ending with <yx> from SFE Tree, 
that is a frequent episode <zyx> formed by following each 

child node z of node y in the path x→y under the root, which 

can be joined with frequent episode <yxe> to generate a 
candidate episode <zyxe> whose minimal occurrences also can 

be generated as above. For a length k (k≥3) frequent episode 
<e1 e2… ek>, SFET retrieves a frequent episode <y e1 e2…ek-1> 

by following the path ek-1→ek-2→…→e2→e1 under the root 
node and find the child node y of e1, and the two length k 
frequent episodes can be joined to generate a candidate episode 
<y e1 e2… ek>. SFET generate frequent episodes by the above 
way until there is no frequent episodes can be generated. 

In the following, we illustrate our SFET algorithm by using 

a simple example. Assume that the event sequence is S＝
<BCABAB> and min_count = 2. When events B, C and A at 
time points 1, 2 and 3 arrive, the nodes B, C and A and their 
time table (TT) are created under the root node of SFE Tree. 
Since the count of the three events do not satisfy min_count, 
there is nothing to do. When the event B at time point 4 arrives, 
time point 4 is added to TT(B) and count(B)=min_count, 
which event B is a frequent event. Since current frequent event 
is only B, event B and event B can be joined to generate 
candidate episode <BB>, which is shown in Fig. 8. 

 

 

Fig. 8 SFE Tree after processing <BCAB> of event sequence S 

 

 

Fig.9 SFE Tree after event A arrives at time point 5 

When event A in even sequence S at time point 5 arrives, 
time point 5 is added to TT(A) and event A is a frequent event 
since count(A) is equal to min_count 2. The two frequent 
events A and B can be joined to generate candidate episodes 



<AA> and <BA>, and their minimal occurrences are {(3, 5)} 
and {(1, 3)(4, 5)}, respectively, in which <BA> is a frequent 
episode since count(BA) is equal to min_count 2. Therefore, 
SFET creates child B of node A and TT(BA), and then 
searches for child node of node B under the root node. Because 
there is no child node of node B, that is, there is no frequent 
episode ending with event B that can be joined with <BA>, 
which is shown in Fig. 9. 

When event B in S at time point 6 arrives, which is added 

to TT(B), because count(B) > min_count and there is no child 
node of node B under the root, event B is joined with all the 
frequent events, which are <BB> and <AB>  and their time 
tables are TT(BB)= {(1, 4),(4, 6)} and TT(AB)= {(3, 4), (5, 
6)}. Because count(BB) and count(AB) are equal to min_count 
2, <BB> and <AB> are newly generated frequent episodes. 
SFET creates child nodes B and A of the node B under the root 
node, and searches for length 2 frequent episodes to join with 
the two frequent episodes <BB> and <AB>. For frequent 
episode <BB>, because there are two child nodes B and A of 
node B under the root (Fig.10), that is, there are two frequent 
episodes <BB> and <AB>, which can be joined with <BB> to 
generate candidate episodes <BBB> and <ABB> and their 
minimal occurrences are {(3,6)} and {(4,6)}, respectively. 

For frequent episode <AB>, because there is a child node B 
of node A under the root, that is, there is a frequent episode 
<BA>, which can be joined with <AB> to generate a candidate 
episode <BAB> and TT(BAB)={(1,4) (4,6)}. Since count 
(BAB) is equal to min_count 2, <BAB> is a newly generated 
frequent episode. Because there is no child node of node B in 

the path A→B under the root, that is, there is no length 3 
frequent episode ending with <BA>, the frequent episode 
<BAB> cannot joined with the other frequent episodes. 
Therefore, all the frequent episodes generated from the event 
sequence S are <BB>, <AB>, <BAB> and <BA>. Fig. 10 
shows the SFE Tree after processing all the events in event 
sequence S.  

 

Fig.10 SFE Tree after processing all the events in S 

 

IV. EXPERIMENTS 

We generate synthetic datasets for conducting our 
experiments. We first defined two parameters: Et, representing 
the number of events, and S, representing the average number 
of events in the event sequence. Next, we set the average 
length, denoted as E, of frequent episodes, and generated all 
possible frequent episodes in the set C. We first randomly 
select a frequent episode from the set C and inserting it into the 
event sequence S. We then made a random decision to either 
select another frequent episode or repeat the insertion of the 
same frequent episode into the event sequence. This process 
continued until the desired event sequence length was 
achieved. We then proceeded to compare the execution time 
and memory usage of our algorithm with that of the SE-stream 
algorithm [4], which is designed to discover frequent episodes 
within streams of events. 

Due to the substantial storage requirements for non-
frequent episodes and the generation of a significant number of 
candidate episodes, the SE-stream algorithm tends to consume 
excessive memory space and execution time when the event 
sequence becomes longer. To address this issue in our 
experiments, we standardized the values. We fixed the number 
of events (Et) and the potential set of frequent episodes (C) at 
200 and 100, respectively, while maintaining the length of the 
event sequence (S) at 100. Furthermore, we specified varying 
average lengths for the frequent episodes: 3, 5, and 7. This 
enabled us to generate three distinct synthetic event sequences, 
denoted as E3S100, E5S100, and E7S100, respectively. 

We initiated the process by selecting the initial 10 events 
from each of the three event sequences. Subsequently, we 
augmented the event sequences by adding 10 events at a time, 
and set a minimum count threshold of 4. Fig. 11, 12 and 13 
illustrate the execution times for both algorithms as events 
were added in increments of 10 on the three datasets. Notably, 
as the event sequence grew to encompass 60 to 100 events, the 
execution time for SE-stream exhibited a sudden and 
substantial increase, which is attributed to a significant upsurge 
in the number of candidate episodes, leading to an extended 
search process. 

In contrast, our SFET algorithm operates without the need 
to store candidate episodes, eliminating the necessity for time-
consuming candidate searches. SFET's primary task involves 
updating nodes associated with the newly added events within 
the tree structure. Our  approach ensures that the execution 
time remains consistent, regardless of any alterations in the 
event sequence length. As a result, our algorithm consistently 
outperforms SE-stream and offers superior stability in 
comparison. 

The experiment in Fig.14 clearly demonstrates that SE-
stream demands a greater amount of memory space compared 
to our SEFT algorithm. This discrepancy arises from the fact 
that SE-stream must accommodate a substantial volume of 
candidate episodes, whereas our tree structure only stores 
frequent episodes. Consequently, as the length of the event 
sequence extends, SE-stream generates an excessive number of 
candidate episodes. In contrast, SEFT merely requires 
additional storage space for SFE Tree to maintain frequent 
episodes, thereby causing the disparity in memory usage 



between the two algorithms to widen as the event sequence 
length increases, which is shown in Fig.14. 

 

 

Fig.11 Execution time for the two algorithms on E3S100 

 

 

Fig.12 Execution time for the two algorithms on E5S100 

 

 

Fig.13 Execution time for the two algorithms on E7S100 

 

Fig.14 Memory usages for the two algorithms 

 

V. CONCLUSIONS 

In this paper, we present a novel algorithm designed for 
the extraction of frequent episodes when the events are 
continuously added into event sequence. Our approach stands 
out from existing algorithms in that it eliminates the need for 
searching candidate episodes and re-scanning the event 
sequence, it allows for direct updates to the nodes in our tree 
structure and generate frequent episodes upon the addition of a 
new event. The experiments show that our algorithm is 
remarkable efficiency in terms of both execution time and 
memory usage. 
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