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Abstract—Motion capture data is crucial but creating a large
dataset can be challenging due to complexities in acquisition.
Generative Adversarial Network (GAN)-based motion data aug-
mentation offers a potential solution to this issue. However,
GANs often struggle with learning from limited data, resulting in
poor quality output. In this study, we propose a Dynamic Time
Warping (DTW) filtering method that filters out generated data
significantly deviating from real-world examples. Through this
approach, we have achieved an improvement in the fidelity of the
generated data, even with dataset size constraints, as evidenced
by an increase in action recognition accuracy.
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I. INTRODUCTION

As artificial intelligence (AI) progresses, the importance of
data for training AI models has been increasingly emphasized.
This is particularly significant in fields where data acquisi-
tion presents considerable challenges, leading to an interest
in AI generative models for data augmentation. One such
challenging area is motion capture, which plays a pivotal role
in wearable robotics design [1], gaming, animation [2], sports
science [3], ergonomics [4], and training AI models related
to human motion [5], [6]. However, collecting large datasets
of motion capture is challenging due to cost constraints and
complexities involved in the acquisition process [7], [8].

Generative Adversarial Networks (GANs) are renowned for
their successful application in image generation research [9]–
[11], a technique that can be effectively applied to motion
generation tasks. Although GANs have demonstrated promis-
ing results with extensive open datasets for motion generation
[12], acquiring large-scale motion datasets specific to certain
tasks or users is prohibitively expensive in real-world settings.
The nature of GANs is such that utilizing small amounts of
data often leads to lower-quality results [13]. Consequently,
there is an evident demand for methods capable of enhancing
the quality of motion capture data generated by GANs, even
when the available data is limited.

Dynamic Time Warping (DTW) is an algorithm that has
been widely used in comparing time-series data like speech
recognition signals [14] or wearable sensor data [15]. Its
strength lies in the ability to compare sequences of different
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lengths while taking shifts during similarity evaluation into
account. Although DTW has been applied successfully onto
motion capture data primarily within classification tasks [16],
[17], its potential towards improving generation tasks remains
largely unexplored.

This study introduces a novel DTW filtering method de-
signed to enhance the fidelity of augmented motion data
effectively. Although the DTW filtering method was applied
to GAN in this study, it is versatile and can be utilized
with any other generative models without requiring significant
architectural changes or being constrained by data size. In
addition, we explored the impact of the filter threshold on
the fidelity and diversity of the generated motion data by
comparing action recognition accuracy and Fréchet Inception
Distance (FID) across various filter threshold values.

II. METHODS

A. Dataset

In our experiments, we utilized the H3.6M dataset [18],
a popular open resource in motion generation and prediction
research. This dataset includes 15 human activities such as
walking, sitting, and discussing, enacted by 7 actors with
each activity performed twice. Adapting the data processing
methods from previous studies, we converted the skeleton
joint angle data into the exponential map representation [19],
[20] and removed the global rotation and translation of the
root joint, as well as any joints with constant angles [21],
[22]. For the purposes of training the GAN and evaluating
the generated motion data, we selected 5 activities (directions,
discussion, greeting, sitting, walking) commonly observed in
daily life. Each activity contained 14 sequences, a relatively
small number for conventional GAN training.

B. Conversion of Skeleton Sequence to Pseudo-images

We adopted a transformation approach from joint angle
motion data to a 2D image format that is suitable for GANs to
learn and generate. This method is referred to as pseudo-image
representation in previous studies [12], [23]. Each component
of the exponential map vector, which represents 3D joint
angles, was converted into the R, G, and B channels of the
2D image. In this pseudo-image format, time frame and joint
types were represented as rows and columns, respectively. This
arrangement allowed the convolutional filters used in GANs



to capture both temporal and spatial features of the skeleton
sequence data. The details of this transformation process are
provided in Fig. 1.

C. GAN-based Motion Generation

We used Wasserstein GAN with gradient penalty (WGAN-
GP) [11] for generating motion data. Our model was trained
over 50,000 epochs with a batch size of 14. The noise
dimension was 128 and the shape of the generated images
was defined as (256, 256, 3). We employed the Adam opti-
mizer with a learning rate of 0.0001 for both generator and
discriminator components.

D. Dynamic Time Warping (DTW) Distance Filtering

To address the issue of low-fidelity data generation when
training GANs with a limited amount of data, we proposed a
novel approach: incorporating DTW distance filtering into the
data generation process.

DTW excels at comparing two time-series data of varying
lengths or time shifts. Rather than merely calculating the
difference between two values at the same time frame, DTW
considers values surrounding the time step to minimize the
distance and find an optimal path for comparing the two time-
series data.

Essentially, goal of the DTW algorithm is to find optimal
warping path which minimize cost function calculated from
local cost matrix associated with the optimal warping path
[24]. For two time-series data X = (x1, x2, ..., xN ) and Y =
(y1, y2, ..., yM ), local cost matrix Cl is:

Cl ∈ RN×M : ci,j = ∥xi − yj∥, i ∈ [1 : N ], j ∈ [1 : M ] (1)

For a given warping path p = (p1, p2, ..., pK) with pl =
(ni,mj) ∈ [1 : N ] × [1 : M ] for l ∈ [1 : K], warping path
must satisfy following criteria:

• Boundary condition

p1 = (1, 1), pK = (N,M) (2)

• Monotonicity condition

n1 ≤ n2 ≤ ... ≤ nK , m1 ≤ m2 ≤ ... ≤ mK (3)

• Step size condition

pl+1 − pl ∈ {(1, 1), (1, 0), (0, 1)} (4)

cost function of the warping path with respect to the local
cost matrix cpis:

cp(X,Y ) =

K∑
l=1

c(xnl
, yml

) (5)

If we denote the optimal warping path as P ∗ which has
minimal cost among the warping paths, the DTW distance
function will be

DTW (X,Y ) = cp∗(X,Y )

= min{cp(X,Y ), p ∈ PN×M} (6)

Fig. 1. Transformation from (a) skeleton sequence motion data to (b) pseudo-
image representation.

Due to the inefficiency of comparing every possible cost
function for each warping path, DTW utilize dynamics
programming-based algorithm. An accumulated cost matrix or
global cost matrix D is defined as follows:

• First row

D(1, j) =

j∑
k=1

c(x1, yk), j ∈ [1,M ] (7)

• First column

D(i, 1) =

i∑
k=1

c(xk, y1), i ∈ [1, N ] (8)

• All other elements

D(i, j) = min{D(i−1, j−1), D(i−1, j), D(i, j−1)}
+ c(xi, yj), i ∈ [2, N ], j ∈ [2,M ] (9)

Once accumulated cost matrix is calculated, optimal warp-
ing path could be found by backtracking minimal values
among adjacent from the end point.

Our method is designed to enhance the fidelity of gener-
ated data by calculating the dynamic time warping distance
between each generated and real data instance. This measure
provides an indication of their similarity in terms of temporal
dynamics. If the DTW distance exceeds a certain threshold -
indicating substantial dissimilarity - we discard that particular
instance and prompt the generator to create new data. This
filtering loop can be integrated with any generative models, as
illustrated in Fig. 2, allowing for improved control over the
fidelity and diversity of generated motion capture data. In this
experiment, we examined motion data generated both with and
without the DTW filtering method, using filter thresholds of
1.2, 1.6, 2.0, and 2.4 radian. We conducted both qualitative
and quantitative analyses.

E. Action recognition accuracy for fidelity evaluation

To quantitatively evaluate the fidelity of the generated mo-
tion data, we trained an action recognition model and verified
its classification accuracy with respect to the generated data.
Given the ease of training and superior performance of 1D
convolution-based models, even with small amounts of data
[25], we trained a 1D convolution-based action recognition



Fig. 2. The DTW distance filtering process.

model on five types of activity data. As the sequence length
varied in each motion data, we conducted preprocessing to
standardize all sequences to 600 timesteps through interpo-
lation, facilitating learning and classification. To ascertain
the accuracy of the action recognition model on real data,
we performed 5-fold cross-validation. As a result, the model
demonstrated an average classification accuracy of 88.57%
and a standard deviation of 3.50% across the five actions.
We then had the trained action recognition model classify
data generated for each activity, 100 instances each, based on
whether the DTW filter method was applied. This allowed us
to quantify the fidelity based on how similar the features of
the generated data were to those of the actual data used for
training.

F. Fréchet Inception Distance (FID)

FID is one of the most widely used metrics for evaluating
generative models, encompassing both fidelity and diversity
[26]. We calculated the FID values for the generated pseudo-
images. By comparing the FID values before and after the
application of the DTW filtering method, as well as across
different filter threshold values, we were able to analyze the
impact of the proposed method on the fidelity and diversity of
the generated motion data.

III. RESULTS

A. Qualitative evaluation of generated motions

We conducted a qualitative evaluation by visualizing the
skeleton motion data for the walking activity. The visualization
results can be seen in Fig. 3. When compared with real data,
the motion data generated without DTW filtering exhibits
lower fidelity, as evidenced by skewed bodily postures. The
generated motion is somewhat awkward to perceive as a
human’s walking motion.

In contrast, the motion data generated with the application
of DTW filtering demonstrates characteristics of human walk-
ing motion that are relatively similar to the actual data. As we
apply stricter standards to fidelity, i.e., lower filter threshold
values, the generated actions visually resemble the real data
more closely. However, when comparing the visual results of
data generated with higher filter threshold values, we observe
a reduction in diversity and the generation of more similar
actions.

B. The Impact of DTW Filtering on the fidelity and diversity
of Generated Data

To evaluate the effectiveness of the proposed DTW filtering
method, we comprehensively assessed fidelity through action
recognition model accuracy and both fidelity and diversity
through FID values, each under various filtering threshold
values (Table I, Table II).

The action data generated without applying the DTW
method had an accuracy of 81.20%, lower than the 5-fold
cross-validation result (88.57%) of the action recognition
model. This suggests that the data generated without applying
the DTW method lacked sufficient features for the action
recognition model to identify each action, indicating insuf-
ficient fidelity. This aligns with the results of the quantitative
analysis, where the visualized actions were hard to identify as
walking motions by human observers. The action data gener-
ated with the application of the DTW filtering method showed
over 90% accuracy with the trained action recognition model.
Moreover, lower filtering threshold values resulted in more
accurate action classification, implying a closer resemblance
of features between the generated and real data.

Contrary to the improvement in action recognition accuracy
with lower DTW filter thresholds, the FID values increased.
This could be inferred as the filtering method limiting the
diversity of the generated data. Therefore, indiscriminately
applying lower filter threshold values to improve the overall
quality of the generated data may reduce diversity, suggesting
the need for careful adjustment.

These results demonstrate that integrating DTW distance
filtering into GAN models can effectively enhance their ability
to generate high-fidelity motion sequences even under condi-
tions where training data are scarce while highlighting need
for balance between similarity enforcement and maintaining
sample diversity.

TABLE I
ACTION RECOGNITION ACCURACY OF GENERATED DATA WITH AND

WITHOUT DTW FILTERING METHOD

DTW filtering method
Not

applied
Threshold

2.4
Threshold

2.0
Threshold

1.6
Threshold

1.2
Action

recognition
accuracy

81.20% 93.80% 96.60% 96.60% 97.40%



Fig. 3. Visualization of real and generated skeleton data (walking motion), with and without the DTW filtering method, across different filter threshold values:
(a) Real motion data, (b) Generated data without the DTW filter, and generated data with DTW filter thresholds of (c) 1.2, (d) 1.6, (e) 2.0, and (f) 2.4 radians.



TABLE II
FRÉCHET INCEPTION DISTANCE WITH & WITHOUT DTW FILTER

without DTW filtering
with DTW filtering
(Threshold value)

(2.4) (2.0) (1.6) (1.2)
FID 35.873 37.867 37.947 40.244 42.949

IV. CONCLUSION

Our exploration of DTW distance filtering as a technique
to improve fidelity of the generated data with limited data has
yielded promising results. We demonstrated that incorporating
this method into the process of generating motion datasets
can significantly enhance the fidelity of motion data even with
small amount of data.

Considering the importance of motion capture data and the
difficulties in acquiring it, which often limits the availability
of large-scale data, the proposed method appears promising.
It can contribute to research on motion capture data augmen-
tation by improving the fidelity of GAN models that may
struggle to secure sufficient fidelity when trained with limited
data.

However, we also noted an important caveat: over-restricting
diversity within generated samples can lead to higher FID
scores. This suggests a need for balance between enforcing
similarity to real-world examples and maintaining sufficient
diversity within generated samples.

In conclusion, while our results confirm that DTW distance
filtering can improve both the fidelity of generated data when
training on limited datasets, they also underscore the impor-
tance of careful threshold selection to avoid compromising
sample diversity. Future work may explore more sophisticated
approaches for dynamic threshold adjustment that could po-
tentially yield even better results.
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