
Automated Fact Checking Using A Knowledge
Graph-based Model

Arghya Kundu and Uyen Trang Nguyen
Department of Electrical Engineering and Computer Science

York University, Toronto, Canada
{arghyak, unguyen}@yorku.ca

Abstract—Misinformation is a growing threat to the economy,
social stability, public health, democracy, and national security.
One of the most effective methods to combat misinformation is
fact checking. Fact checking is the process of verifying the factual
accuracy of a statement or claim. Fact checkers employ rigorous
methodologies to scrutinize claims, verify sources, and expose
falsehoods. However, the huge volume of content circulating
online makes it challenging for humans to identify misinfor-
mation manually. Automated tools can analyze large datasets
to detect patterns in misinformation content, scaling up fact
checking efforts. This paper proposes a knowledge graph-based
fact checking model that uses two separate knowledge graphs, one
containing true claims and the other, false claims. The model uses
knowledge graph embeddings which are based on convolutional
neural networks. The deep learning model is trained on the above
two knowledge graphs to learn distinguishing patterns between
true and false claims. Additionally, we employ explainable ar-
tificial intelligence (XAI) techniques to provide explanations for
the model’s classification, reducing cost of errors and increasing
transparency and user trust in the system.

Index Terms—Misinformation, disinformation, fake news, fact
checking, knowledge graphs, machine learning, natural language
processing.

I. INTRODUCTION

Misinformation is a pervasive and serious problem with
far-reaching consequences. Misinformation poses a threat to
democratic processes by manipulating public opinion and in-
fluencing elections [1]. When false information is deliberately
spread, it erodes trust in institutions, leading to social divisions
and polarization. Furthermore, the impact of misinformation
extends to public health and safety. Misinformation about
health conditions and treatments can result in harmful behavior
and a decline in vaccination rates [2]. This issue has been
particularly evident during the COVID-19 pandemic, where
misinformation has hindered public health efforts and caused
confusion among the general public. For example, a rumor
caused the death of 800 people after the consummation of
alcohol-based cleaning products as a cure for Covid-19 [3].

Thus, misinformation identification is very important. Mis-
information identification, specifically through fact checking,
plays a crucial role in mitigating the spread of false infor-
mation. Fact checking is the process of verifying the factual
accuracy of a statement or claim. Fact checkers help combat
the spread of misinformation and promote informed decision
making among the public [4]. Fact checking organizations

and independent researchers employ rigorous methodologies
to scrutinize claims, and expose falsehoods.

Recognizing the time consuming and difficult nature of
manual fact checking, automated tools using advancements in
machine learning and natural language processing (NLP) have
emerged as valuable resources [5]. These tools can analyze
large datasets, detect patterns, and identify misinformation at
a much faster pace, assisting humans in the process of fact
checking.

Existing methods for fact checking employ a range of
techniques [6], including language analysis, evidence retrieval
techniques and knowledge graphs. These approaches use dif-
ferent sources of evidence for fact checking.

Among these methods, one approach that has gained sig-
nificant attention is the use of knowledge graphs (KGs) [7],
[8]. Knowledge graphs are structured representations of facts
that capture relationships between entities and their attributes.
In the context of knowledge graphs, a triplet is a fundamental
unit of information, consisting of three components (‘h’, ‘r’,
‘t’): a head entity (‘h’), a tail entity (‘t’), and ‘r’ signifies
the relationship between them.

These methods use graph embedding methods to distinguish
between true and false claims [9]. One advantage of the
knowledge graph approach is its ability to capture complex
relationships and dependencies between entities [9]. Further-
more, knowledge graphs can be continuously updated with
new information, ensuring the system remains adaptable.

In this paper, we develop a fact checking system that uses
knowledge graphs to verify the veracity of claims. To achieve
this, we propose a model consisting of two KGs: one created
using true claims and the other created using false claims.
Two separate models are trained on these two KGs using
convolutional neural networks (CNN)-based knowledge graph
embedding (KGE), enabling the system to distinguish between
of true and false claims.

In this study we limit fact checking to the following: given
a claim, classify it as true or false. For instance, given a
claim, “Earth has not warmed for the last 17 years.”, our
fact checking model classifies the claim as false. Additionally,
it points out the false and true triplets in the claim in a colour
coded manner and provides the confidence scores for each
triplet. Figure 1 shows a sample output of our model given a
claim along with the confidence scores.

Figure 1. Sample output of our model given a claim

The remainder of this paper is structured as follows: Section
III presents our methodology and the proposed fact checking
model. Section IV discusses the XAI features. Section V
describes the dataset. Section VI presents evaluation results
and analysis. Section VII discusses limitations of the research
presenyed in this paper. Section VIII concludes the paper.

II. RELATED WORK

Previous research has demonstrated the potential of knowl-
edge graphs in improving fact checking. For instance, Shi-
ralkar [10] used a method that flows information from the
subject to the object through different paths in the graph
and compares the amount of information with a threshold to
decide the truthfulness. Shi [8] proposed a method that finds
different paths from the subject to the object in the graph
and ranks them based on how well they can separate true
and false claims. The paper then combines the ranked paths
into a feature vector and feeds it to a binary classifier to
predict the veracity of the content. Ciampaglia [7], proposed
a weighted knowledge stream/segment based method to check
the truthfulness of a given claim.

Nevertheless, existing models use knowledge graphs build
from only true news/claims. However, by using additional
knowledge graphs built from false content, a wider range
of information and relationships can be captured. However,
limited research has been done in this direction. Pan [11]
used two knowledge graphs built from fake news and true
news and trained two TransE models on the knowledge graphs
for fake news detection. They used the max bias of triplets
for detecting the veracity of news articles. However, their
approach of using news articles to construct the knowledge
graphs has limitations. Fake news may contain true claims,
resulting in the inclusion of such claims in the fake news
knowledge graph. This can create confusion and inaccuracies
in the representation of knowledge. Additionally, their use of a
translational embedding model (TEM) has several limitations
that make it less suitable for fact checking. TEM struggles with
modeling complex relationships beyond simple translations,
and it is unable to handle one-to-many or many-to-one rela-
tions, as well as symmetric relations [12], [13]. Fact checking
on the other hand, requires addressing inconsistencies, under-
standing complex relationships, and performing inference. For
these purposes, more advanced deep learning-based embed-

ding models that incorporate logical reasoning and semantic
constraints are more appropriate for fact checking.

III. METHODOLOGY

In this section, we describe the methodology of the proposed
model in detail. We present the steps used for creation and
storage of the knowledge graphs, the classification models
used and the training setup of the models.

A. Overview of ConvE

ConvE (convolutional 2D knowledge graph embedding) is
a popular model in the field of knowledge graph embedding
that uses convolutional neural networks (CNNs) to learn em-
beddings. Introduced by Dettmers [14], ConvE combines the
strengths of CNN and knowledge graph embeddings to achieve
competitive performance across various knowledge graph-
related tasks, including link prediction and entity classification.
The core idea revolves around using 2D convolutional layers
to capture local patterns and interactions among entities and
relations within a knowledge graph.

ConvE represents entities and relations in a knowledge
graph using one-dimensional embeddings of size d. This com-
pact embedding representation significantly reduces memory
requirements and enables efficient processing of large-scale
knowledge graphs. ConvE’s architecture consists of three main
components: an input layer, a convolutional layer, and a fully
connected layer. The input layer reshapes the embeddings of
the head entity, relation, and tail entity into two-dimensional
matrices. The convolutional layer applies multiple filters to
these matrices, capturing local patterns and interactions. The
resulting feature maps are then flattened and fed into a fully
connected layer, which generates the final embeddings.

ConvE strikes a favorable balance between embedding qual-
ity and computational complexity. By using significantly fewer
parameters compared to fully connected neural networks,
ConvE is well-suited for resource-constrained environments
and handling large knowledge graphs. This is particularly ad-
vantageous when dealing with limited computational resources
or processing large-scale datasets [14].

B. Knowledge Graph Creation

For creating the knowledge graphs, we use true and false
claims seperately. From the true claims we create the true
claims knowledge graph (TCKG) which is later used to train
the true claims ConvE model (TCCM), and the false claims
are used to create the false claims knowledge graph (FCKG)
which is later used to train the false claims ConvE model
(FCCM).

For creating the knowledge graphs, we first pre-process
the claims, then we extract triplets. We use these triplets to
create the knowledge graphs. The following sections details
the individual processes.

Figure 2. The overall architecture of the classification model

1) Data pre-processing: Pre-processing is an essential step
in building a knowledge graph from a corpus. The following
are the pre-processing steps involved,

• Tokenization: Split each sentence into individual words
or tokens.

• Co-reference resolution: Resolve co-references in the text
to determine which pronouns or noun phrases refer to
the same entity. This step helps in establishing consistent
references and connections between entities.

• Lemmatization: Convert each token to its base or dic-
tionary form (lemma) to normalize the words. This step
reduces the inflectional forms of words to their common
base form, which helps in entity matching and reducing
redundancy.

• Stop word removal: Remove common words, known as
stop words, that do not carry significant semantic meaning
and are not useful for extracting information. Examples
of stop words include “and”, “the”, “is” etc.

2) Triplet extraction: For triplet extractions from the pre-
processed data, we use the following steps:

• Named entity recognition (NER): NER is a crucial task
that identifies mentions of named entities in each text,
such as people, organizations, locations, and other types.
The entities recognized by NER serve two main purposes
within the knowledge graph construction process. Firstly,
they can be used to generate new candidate nodes, al-
lowing the incorporation of the identified entities into the
graph. Secondly, these entities can be linked to existing
nodes through the named entity linking task, establishing
connections and enriching the knowledge graph.

• Named entity linking (NEL): NEL associates mentions of
entities in a text with the existing nodes of a target knowl-
edge graph. This task involves resolving and disambiguat-
ing entity mentions and linking them to their respective
entities in a knowledge base. Additionally, as part of
the NEL, entity disambiguation (ED) is also performed
to determine the correct entity for each mention. To do
this, we use the Wikification process, where Wikipedia

is used as a knowledge base to disambiguate entities.
However, due to the potential presence of multiple entities
in Wikipedia with similar titles, we include both the
Wikipedia entity title and their unique ID in the resulting
linkage. In cases where a Wikipedia entry is not available,
such as for very recent entities, a randomy generated
unique ID is provided to represent the entity in the
knowledge graph.

• Relation extraction (RE): RE identifies and extracts re-
lationships between entities mentioned in the text. This
task involves two subtasks, parts-of-speech (POS) tag-
ging and dependency parsing. POS tagging assigns a
grammatical category (e.g., noun, verb, adjective) to
each word or token, providing contextual information
about their functions within a sentence. Dependency
parsing analyzes the sentence’s grammatical structure,
revealing the relationships and syntactic dependencies
between words. By combining the outputs of POS tagging
and dependency parsing, the relation extraction process
accurately identifies and extract meaningful relationships
between entities.

• End-to-end triplet extraction Triplet extraction is a chal-
lenging task that requires dealing with complex linguis-
tic phenomena, such as long-distance dependencies and
syntactic variations. Along with the previous mentioned
steps, we use REBEL [15], an end-to-end sequence-
to-sequence model that generates relation triplets from
raw text, without relying on predefined relation schemas
or hand-crafted features. REBEL is based on BART, a
pre-trained language model that can both encode and
decode natural language. REBEL can handle more than
200 different relation types and has been pre-trained on
various RE benchmarks, including a large-scale distantly
supervised dataset curated by the authors of REBEL. We
merge the triplets extracted earlier with those obtained
using REBEL, retaining only the distinct triplets.

3) Regular updating of knowledge graphs: By continu-
ously incorporating new information, the knowledge graphs

remain up to date with the latest knowledge. To this end, we
collect both true and false claims from three different fact-
checking websites, namely “Polygraph.info”, “Politfact.com”
and “Snopes.com”. We use the previously mentioned pre-
processing steps and the triplet generation pipeline for up-
dating the knowledge graphs.

• “Polygraph.info” 1 is a fact-checking website that focuses
on debunking false or misleading claims with a particular
emphasis on disinformation related to global affairs.

• “Politifact.com” 2 is a highly reputable fact-checking
platform known for its thorough evaluation and rating
of the accuracy of various claims, ensuring that readers
have access to reliable information and aiding in the fight
against misinformation.

• “Snopes.com” 3 is a well-known website that verifies and
debunks urban legends, rumors, and various misinforma-
tion circulating online.

C. Overall Architecture of the Proposed Model
Figure 2 depicts the overall architecture of our proposed

model. Given a new claim C, we follow a series of steps
to process the claim and make a prediction. The steps are
described as follows:

1) Triplets extraction: Firstly, we extract triplets from the
claim. Each triplet is represented as (h, r, t), where ‘h’
represents the head entity or subject, ‘r’ represents the
relation or predicate, and ‘t’ represents the tail entity or
object.

2) Combined ConvE model: These extracted triplets vector is
then passed through the combined ConvE model (CCM)
to produce the 2D score matrix. Where each record in
the matrix denotes the scores of the corresponding triplet.
For a given triplet (h,r,t), the score is represented as (ts,
fs), where ts is the score generated by the true claims
ConvE model (TCCM) and fs is the score generated by
the false claims ConvE model (FCCM). The scores in the
matrix are determined by the CCM’s ability to learn the
underlying patterns and relationships between the entities
and relations, enabling it to assess the plausibility of each
triplet based on the given claim.

3) Feature vector generation: From the 2D score matrix
obtained from the CCM, we derive a 1D feature vector.
This feature vector serves as a condensed representation
of the extracted triplets and their respective scores. It
captures the important information necessary for making
predictions.

4) Classifier: Finally, we pass the feature vector to a trained
multi-layer perceptron (MLP) classifier. The MLP classi-
fier is a supervised learning algorithm used for classifica-
tion tasks. It takes the feature vector as input and predicts
the final outcome or label for the given claim. The MLP
classifier has been trained on labeled data to learn the
patterns and characteristics of true and false claims.

1www.polygraph.info
2www.politifact.com
3www.snopes.com

The following sections will provide detailed descriptions of
each individual module in our model, shedding light on their
inner workings and the techniques.

D. Combined ConvE Model

First, we create two separate ConvE models, one from true
claims, referred to as the true claims ConvE model (TCCM)
and the other from false claims, referred to as the false claims
ConvE model (FCCM). Subsequently, we build the combined
ConvE model (CCM) using the combination of TCCM and
FCCM. The combined ConvE model (CCM) incorporates the
true claims ConvE model (TCCM) and the false claims ConvE
model (FCCM) to improve performance on knowledge graph-
related tasks. By training these models separately on the
true claims knowledge graph (TCKG) and the false claims
knowledge graph (FCKG) respectively, we use the strengths of
both models and achieve higher accuracy, precision, and recall.
These models are trained independently and then combine
TCCM and FCCM in parallel to form the CCM, refer Figure
3. The combined ConvE model (CCM) takes advantage of the
complementary information learned from TCCM and FCCM.

Figure 3. Combined ConvE model for one triplet (h,r,t), where ts and fs are
the scores calculated for the triplet from TCCM and FCCM respectively.

E. Score Generation for One Triplet

The high level ConvE architecture consists of an encoding
component and a scoring component. Given an input triplet
(h, r, t), the encoding component maps entities h, t ∈ E to
their distributed embedding representations eh, et ∈ Rd, with
d being the embedding dimension.

In the scoring component, the two entity embeddings eh and
et are scored by a function ψr. The score of a triple (h, r, t)
is defined as ψ(h, r, t) = ψr(eh, et) ∈ Rd.

Formally, the scoring function is defined as Equation 1:

ψr(eh, et) = f(vec(f([ēh, r̄r] ∗ ω))W)et (1)

where rr ∈ Rd is a relation parameter depending on r, ēh
and r̄r denote a 2D reshaping of eh and rr, respectively: if
eh, rr ∈ Rd , then ēh, r̄r ∈ Rdw × dh , where d = dw × dh.

In the feed-forward pass, the model performs a row-vector
look-up operation on two embedding matrices, one for entities,
denoted Eε×d and one for relations, denoted RR×d′

, where d
and d′ are the entity and relation embedding dimensions, and
|ε| and |R| denote the number of entities and relations.

The model then concatenates eh and rr, and uses it as an
input for a 2D convolutional layer with filters ω. Such a layer
returns a feature map tensor τ ∈ Rc×m×n, where c is the
number of 2D feature maps with dimensions m and n. The
tensor τ is then reshaped into a vector vec(τ) ∈ Rc×m×n,
which is then projected into a d-dimensional space using
a linear transformation parameterised by the matrix W ∈
Rc×m×n×d and matched with the object embedding et via
an inner product. The parameters of the convolutional filters
and the matrix W are independent of the parameters for the
entities h and t and the relationship r. After which we apply the
sigmoid function, σ(·) to the scores, that is p = σ(ψr(eh, et))

It is important to note that the parameters for the con-
volutional filters and the matrix W are independent of the
parameters for the entities and relations. This means that they
are learned separately during the training process and do not
directly depend on the entity and relation embeddings.

To generate the combined score, the CCM first passes the
triplet through TCCM and FCCM independently, as shown
in Figure 3. Each model calculates a score based on its
learned embeddings, capturing the relationship between the
head entity, relation, and tail entity in the triplet. These scores
represent the models’ confidence for the likelihood of the
triplet, with higher scores indicating a higher likelihood of
the triplet being true or false according to each model’s
perspective.

Next, scores from TCCM and FCCM are passed through an
aggregator function, which produces a tuple (ts, fs), where ts
represents the score from TCCM and fs represents the score
from FCCM.

F. Score Generation for a Claim
Each claim may consists of multiple triplets. A given

claim C can be expressed as a set of triplets T =
{ t1, t2, t3, . . . , tn }. Each of the triplets (t) are passed
through the scoring module to produce the score of a claim
(S), as shown in Equation 2.

S = {score(t) : t ∈ T} (2)

Here, S is the 2D matrix of scores, and score(t) denotes the
score generated for each individual triplet t within the claim
as shown in Figure 4.

G. Feature Vector Extraction
From the 2D score matrix we extract feature vector V, the

input to the classifier.
1) Number of triplets: This denotes the number of triplets

present in the claim.

numtriplets = |[S]| (3)

where S is the 2D score matrix.

Figure 4. Combined score calculation of a claim

2) Weighted combined score: This feature represents the
degree of veracity of the triplets within the claim. Additionally,
the weight component factors in the importance of a subject
in the triplet relative to the claim.

Consider a triplet (h, r, t). The combined score (cs) is first
derived by:

cs = |ts− fs| (4)

where (ts, fs) represents the tuple of scores of the triplet
(h, r, t) obtained from the combined model CCM. Let W
represent the frequency of the head entity of the triplet relative
to the claim, such that W ∈ {|eh| , |et|}. The vectors W and
CS consist of the weights (W) and combined scores (cs) of
all the triplets in the claim, i.e., W = [W] and CS = [cs].
Here, |W | = |CS| = numtriplets.

The weighted combined score (WCS) is computed as the
dot product of W and CS, as depicted by the formulae:

WCS = W · CS (5)

3) True score bias: This is defined as follows,

Tbias = max(|tsi − tsj |) (6)

where i ̸= j and 1 ≤ i, j ≤ numtriplets.
This represents the maximum score difference among all the

triplets in respect to the true claims ConvE model (TCCM).
This is used to denote the degree of variation of truthfulness
of the triplets.

4) False score bias: This is defined as follows,

Fbias = max(|fsi − fsj |) (7)

where i ̸= j and 1 ≤ i, j ≤ numtriplets.
This represents the maximum score difference among all the

triplets in respect to the false claims ConvE model (FCCM).
This is used to denote the degree of variation of falsehood of
the triplets.

H. Classification of Claims

The feature vector is then passed through a multi-layer
perceptron (MLP) classifier, which predicts the veracity of
the claim. The MLP classifier is a feed-forward neural net-
work used in supervised learning for classification tasks. It
comprises three or more layers of nodes: an input layer, one
or more hidden layers, and an output layer. MLP is capable
of modeling complex, non-linear relationships in data and is
often utilized in a variety of classification problems. In this
study, we use a MLP classifier with two hidden layers with
(5,2) nodes respectively.

IV. EXPLAINABILITY OF THE MODEL

Given a claim, we represent the claim as a set of triplets.
T = {t1, t2, t3. . . , tn}. For every triplet (ti), we find the
combined score tuple (ts, fs).

Given triplet ti, the triplet veracity TVi and confidence score
CSi of the model are calculated as folows:

TVi =

{
True, ts > fs

False, fs > ts

}
(8)

CSi =

{
ts, ts > fs

fs, fs > ts

}
(9)

Using TVi we render the triplets as true or false in a color-
coded scheme and use CSi to provide the model’s confidence
score for each triplet, as illustrated in Figure 1.

V. DATASET

In this study we use the LIAR dataset. Liar dataset was
created by Wang et al., (2017) [16], which is one of the largest
fact checking datasets, containing 12,836 claims along with
its veracity determined by human evaluators. The dataset is
labelled with a discrete set of values from one to six, corre-
sponding to pants-fire, false, mostly-false, half-true, mostly-
true, and true. As our problem is based on binary class
classification, we transform these into two labels. Pants-fire
and false are contemplated as false and mostly-true, and true
as true.

The dataset is split into 80:20 for training and testing. The
training data contains 56% true and 44% false statements, and
the testing data contains 56% true and 44% false statements.
Thus, there is not much imbalance between the different labels.

The dataset provides some additional metadata like the
subject, speaker, job, state, party, context, history. However, in
the real-life scenario, we may not have this metadata always
available. Therefore, we experiment only on the textual data
of the dataset.

VI. RESULTS AND DISCUSSION

All experiments are conducted on a machine with Intel(R)
Core(TM) i7-8750H 2.20GHz CPU, 16 GB of RAM and
NVIDIA GeForce RTX 4090 GPU running Windows 11.

Table I depicts the classification report of our model. We can
observe from the table that precision is higher for “True” class

whereas recall is higher for “False” class. A higher precision
value for the “True” class means that the model has a lower
tendency to make false positive predictions for true claims.
It indicates that when the model predicts the veracity of a
claim as true (positive prediction for the “True” class), it is
more likely to be correct. In other words, the model is better
at avoiding false claims or misinformation while identifying
true claim instances. At the same time a higher recall for the
“False” class indicates that the model is better at capturing
most of the actual false claims present in the dataset, reducing
the risk of false negatives for false information.

Table I
CLASSIFICATION PERFORMANCE OF THE PROPOSED MODEL

Precision Recall F1 score
Class True 0.88 0.86 0.86
Class False 0.84 0.92 0.87
Macro 0.86 0.89 0.87

A. Ablation Study

To study the contribution of the individual knowledge
graphs we carry out ablation experiments. The experimental
results are shown in Table II.

The ablation experiments include the following three vari-
ants of the proposed model:

• With only true claims knowledge graph (TCKG)
• With only false claims knowledge graph (FCKG)
• With both knowledge graphs
For the first two experiment the respective scores from the

FFCM and TFCM are set to zero for each triplet.

Table II
ABLATION STUDY RESULTS

Our model Precision Recall Accuracy F1 Score
With only False KG 0.78 0.83 0.76 0.80
With only True KG 0.84 0.81 0.81 0.82
With both KGs 0.86 0.89 0.89 0.87

From Table II, we can observe that with the accuracy of
with only false claims knowledge graph is the least. This can
be attributed to the fact that the knowledge graph constructed
from false claims lacks the necessary factual relationships and
context, leading to limitations in identifying reliable patterns
and distinguishing false claims accurately. Without a compre-
hensive representation of true claims and their associations, the
model’s ability to differentiate between reliable and misleading
information is compromised.

On the other hand, the accuracy with only the true knowl-
edge graph is higher, showcasing the importance of a knowl-
edge graph built from verified and reliable claims. The true
knowledge graph contains valuable structured information,
capturing genuine relationships between entities and their at-
tributes, which aids in the identification of trustworthy patterns
in factual claims. Consequently, the model trained on the
true knowledge graph demonstrates improved performance in
detecting true claims with higher precision and accuracy.

However, the highest accuracy is achieved when the model
uses both the true claims knowledge graph and the false
claimns knowledge graph, with an increase of almost 8%
to that of only using true knowledge graph. Integrating
knowledge from both sides provides a more comprehensive
and balanced representation of information. By combining
the knowledge of true and false claims, the model gains a
broader understanding of the entire information landscape.
This enables the combined model CCM to effectively leverage
contrasting patterns and identify distinctive features between
reliable and misleading claims.

B. Comparison with Baseline Models

We conducted a comparative analysis of our proposed
model against six state-of-the-art MDM classification baseline
models, all of which were evaluated using the same LIAR
dataset by their authors as documented in their respective
publications.

• Jayaraman [17]: XLNet base fine-tuning model for fake
news detection. This model uses permutation language
modeling to capture the right and left context information
jointly and computes contextualized input representation.

• Khan [18]: Explored several advanced pre-trained lan-
guage models for misinformation detection along with
the traditional and deep learning ones. They found that
that BERT and similar pre-trained models perform the
best for misinformation detection, especially RoBERTa
for the LIAR dataset.

• Mehta [19]: In this work BERT is fine-tuned for domain-
specific datasets, incorporating human justification and
metadata to enhance model performance. The approach
involves employing multiple BERT models with shared
weights to manage various inputs and use extra justifica-
tion and metadata.

• Yang [20]: An unsupervised learning framework, UFD,
which utilizes a probabilistic graphical model to model
the truths of news and the users’ credibility. An efficient
collapsed Gibbs sampling approach is proposed to solve
the inference problem.

• Bhatt [21]: The authors used an enhance sequence model
with four branches having inputs as statement (S branch),
metadata (M branch), justification (J branch) and credit
score (C branch) for classification. The authors use
credibility information and metadata associated with the
article.

• Nida [22]: The authors used a multi-modal deep learning
model for misinformation detection. For the textual at-
tributes Bi-LSTM-GRU-dense deep learning model was
used, while for the remaining attributes, dense deep
learning model was used.

Table III
PERFORMANCE COMPARISON BETWEEN THE PROPOSED MODEL AND

STATE-OF-THE-ART MODELS

Model Accuracy Precision Recall F1 Score
Khan [18] 0.62 0.63 0.62 0.63
Jayaraman [17] 0.72 0.52 0.39 0.45
Mehta [19] 0.74 0.70 0.85 0.77
Yang [20] 0.76 0.75 0.75 0.75
Nida [22] 0.89 0.87 0.88 0.87
Bhatt [21] 0.82 0.73 0.71 0.72
Our model 0.89 0.86 0.89 0.87

Table III presents a comparison between our approach and
baseline models. The results suggest that the proposed model
demonstrates superior performance compared to the majority
of state-of-the-art approaches. Notably, our model achieves an
accuracy of 89%, which is on par with the best performing
model presented by Nida [22].

Importantly, it should be highlighted that Nida [22] used
supplementary features, including author information and con-
tent metadata, which might not always be available in real
world scenarios. In contrast, our model exclusively relies on
textual features of the content.

VII. LIMITATIONS OF THE MODEL

Our model has the following limitations:
• The accuracy of our model heavily depends on the quality

and completeness of the underlying knowledge graphs.
Inaccurate or biased information within these graphs
could lead to erroneous predictions.

• The interpretability provided by explainable artificial in-
telligence techniques might not always cover all aspects
of the model’s decision making process. For instance, it
does not attribute the sources of the information.

• Although our model benefits from periodic updates to the
knowledge graphs, it remains constrained by the intervals
between updates.

VIII. CONCLUSION

The paper presents a method for fact checking using CNN-
based knowledge graph embeddings. This method involves the
creation of two KGs constructed from verified true and false
claims, respectively, which are later used for training two sep-
arate KGE models. By employing the ConvE technique, which
is based on convolutional neural networks, in conjunction with
feature vector generation and classification methods, the model
predicts the veracity of claims. Experimental results show that
the proposed model outperforms the baseline models.

The output of the model is further enhanced by XAI
techniques. True and false triplets are highlighted by different
colors, green and red, respectively. In addition, the model
generates confidence scores for triplets. XAI output allows end
users to understand the reasons behind the model’s predictions.

This work can be extended in the following directions:
• To evaluate the model’s performance across a broader

range of datasets, especially those from different domains.
• To investigate further into XAI techniques for the model’s

predictions.

REFERENCES

[1] H. Allcott and M. Gentzkow, “Social media and fake
news in the 2016 election,” Journal of Economic
Perspectives, vol. 31, no. 2, pp. 211–36, May 2017.
[Online]. Available: https://www.aeaweb.org/articles?id=
10.1257/jep.31.2.211

[2] S. Lewandowsky, U. K. H. Ecker, C. M. Seifert,
N. Schwarz, and J. Cook, “Misinformation and
its correction: Continued influence and successful
debiasing,” Psychological Science in the Public Interest,
vol. 13, no. 3, pp. 106–131, 2012. [Online]. Available:
http://www.jstor.org/stable/23484653

[3] A. Coleman. (2020) ‘hundreds dead’ because of covid-
19 misinformation. Accessed: 2021-07-15. [Online].
Available: https://www.bbc.com/news/world-53755067

[4] G. Pennycook and D. G. Rand, “Fighting misinformation
on social media using crowdsourced judgments of news
source quality,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 116, no. 7,
pp. 2521–2526, 2019.

[5] K. Shu, A. Sliva, S. Wang, J. Tang, and H. Liu,
“Fake news detection on social media: A data
mining perspective,” SIGKDD Explor. Newsl., vol. 19,
no. 1, p. 22–36, sep 2017. [Online]. Available:
https://doi.org/10.1145/3137597.3137600

[6] E. Lazarski, M. Al-Khassaweneh, and C. Howard,
“Using nlp for fact checking: A survey,” Designs,
vol. 5, no. 3, 2021. [Online]. Available: https:
//www.mdpi.com/2411-9660/5/3/42

[7] G. L. Ciampaglia, P. Shiralkar, L. M. Rocha, J. Bollen,
F. Menczer, and A. Flammini, “Computational fact
checking from knowledge networks,” PLOS ONE,
vol. 10, no. 6, pp. 1–13, 06 2015. [Online]. Available:
https://doi.org/10.1371/journal.pone.0128193

[8] B. Shi and T. Weninger, “Discriminative predicate
path mining for fact checking in knowledge graphs,”
Knowledge-Based Systems, vol. 104, pp. 123–133,
2016. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0950705116300570

[9] P. Lin, S. Qi, Y. Wu, and J. Pi, “Discovering patterns
for fact checking in knowledge graphs,” Journal of Data
and Information Quality, vol. 11, pp. 1–27, 05 2019.

[10] P. Shiralkar, A. Flammini, F. Menczer, and G. L.
Ciampaglia, “Finding streams in knowledge graphs to
support fact checking,” 2017.

[11] J. Z. Pan, S. Pavlova, C. Li, N. Li, Y. Li,
and J. Liu, “Content based fake news detection
using knowledge graphs,” in International Workshop
on the Semantic Web, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:52900831

[12] A. Bordes, N. Usunier, A. Garcia-Durán, J. Weston, and
O. Yakhnenko, “Translating embeddings for modeling
multi-relational data,” in Proceedings of the 26th Inter-
national Conference on Neural Information Processing
Systems - Volume 2, ser. NIPS’13. Red Hook, NY, USA:

Curran Associates Inc., 2013, p. 2787–2795.
[13] Y. Dai, S. Wang, N. N. Xiong, and W. Guo, “A survey on

knowledge graph embedding: Approaches, applications
and benchmarks,” Electronics, vol. 9, no. 5, 2020.
[Online]. Available: https://www.mdpi.com/2079-9292/
9/5/750

[14] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel,
“Convolutional 2d knowledge graph embeddings,” in
Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence and Thirtieth Innovative Applica-
tions of Artificial Intelligence Conference and Eighth
AAAI Symposium on Educational Advances in Artificial
Intelligence, ser. AAAI’18/IAAI’18/EAAI’18. AAAI
Press, 2018.

[15] P.-L. Huguet Cabot and R. Navigli, “REBEL:
Relation extraction by end-to-end language generation,”
in Findings of the Association for Computational
Linguistics: EMNLP 2021. Punta Cana, Dominican
Republic: Association for Computational Linguistics,
Nov. 2021, pp. 2370–2381. [Online]. Available:
https://aclanthology.org/2021.findings-emnlp.204

[16] W. Y. Wang, ““liar, liar pants on fire”: A new benchmark
dataset for fake news detection,” in Proceedings of
the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers).
Vancouver, Canada: Association for Computational
Linguistics, Jul. 2017, pp. 422–426. [Online]. Available:
https://aclanthology.org/P17-2067

[17] A. K. Jayaraman, T. Trueman, and E. Cambria, “Fake
news detection using xlnet fine-tuning model,” 11 2021,
pp. 1–4.

[18] J. Y. Khan, M. T. I. Khondaker, S. Afroz, G. Uddin,
and A. Iqbal, “A benchmark study of machine learning
models for online fake news detection,” Machine
Learning with Applications, vol. 4, p. 100032, jun 2021.
[Online]. Available: https://doi.org/10.1016%2Fj.mlwa.
2021.100032

[19] D. Mehta, A. Dwivedi, A. Patra, and M. Kumar, “A
transformer-based architecture for fake news classifica-
tion,” Social Network Analysis and Mining, vol. 11, 12
2021.

[20] S. Yang, K. Shu, S. Wang, R. Gu, F. Wu, and
H. Liu, “Unsupervised fake news detection on social
media: A generative approach,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33,
no. 01, pp. 5644–5651, Jul. 2019. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/4508

[21] S. Bhatt, N. Goenka, S. Kalra, and Y. Sharma, “Fake
news detection: Experiments and approaches beyond
linguistic features,” in Data Management, Analytics and
Innovation. Springer Singapore, sep 2021, pp. 113–128.

[22] N. Aslam, I. Khan, F. Alotaibi, L. Aldaej, and A. Al-
dubaikil, “Fake detect: A deep learning ensemble model
for fake news detection,” Complexity, vol. 2021, pp. 1–8,
04 2021.

