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Abstract—This paper addresses the problem of noisy labels
in chest X-ray datasets, which significantly impact the training
of deep neural network models. Noisy labels often occur due
to errors in reports from experts or the use of algorithms to
extract labels from medical reports written in natural language.
To tackle this issue, we compared the effectiveness of O2U-net, a
state-of-the-art noisy label detection method, and NVUM, a noise-
resistant model training technique in identifying noisy samples.
We contrasted these methods with a heuristic approach which
uses a simple classification model to flag samples with large
differences between predicted and actual labels as noisy. Our
findings indicated that NVUM outperformed the other methods
in identifying noisy labels, providing a promising solution to the
challenge of noisy labels in medical image analysis.

Index Terms—Noisy label detection, Chest X-ray image, noise
robust training, multi-label classification

I. INTRODUCTION

Noisy labels, referring to samples in a dataset with incorrect
labels, pose a significant challenge when training deep neural
network models for medical image analysis [9]. The acqui-
sition of high-quality manually labeled images from experts
requires substantial investments of time and funds. While
natural language processing (NLP) tools are commonly used
to extract information from radiologists’ reports in a cost-
effective manner, this approach tends to introduce significant
noise into the dataset [6], [13]. Furthermore, the task of
identifying lesions in medical images is inherently challenging
and even reports from experts can contain errors [9], further
complicating the model training process.

To address the problem of noisy labels, two main ap-
proaches are commonly used: training a noise-robust model
and employing a noisy label detection method. The first
approach focuses on preventing overfitting on samples with
noisy labels during the model training process [10], while the

latter aims to identify samples with noisy labels, enabling re-
labeling or removal from the dataset [5].

In this study, our primary focus was on finding the most
effective way to identify noisy label samples, which can
then be re-labeled by experts, resulting in a cleaner dataset
for deep learning model training. The key contribution of
this paper lies in the comparative analysis of noisy label
detection methods within the context of the Thai hospital’s
chest X-ray database. To this end, we utilized O2U-net, a
state-of-the-art noisy label detection method, which uses a
cyclical learning rate schedule and tracks each sample’s loss
throughout training to find noisy labels [5]. We also adapted
a noise-resistant model training technique, NVUM, which
stores the model’s initial state during training where it fits
with easy samples and uses the memory to calculate loss
regularization to prevent the model from overfitting with noisy
labels. We identified noisy samples using NVUM by noting
samples where model predictions significantly differed from
their labels or by tracking each sample’s NVUM loss across all
epochs. We compared these methods to a heuristic approach,
where a simple image classification model flags samples with
significant probability differences as noisy labels. Our results
demonstrated that NVUM was more effective at identifying
noisy labels compared to other methods.

II. RELATED WORK

Numerous strategies have been proposed to address the
noisy label issue. Han et al. [3] incorporated two deep
neural networks (DNNs) in the training procedure, using
disagreements between them to identify and reject noisy labels.
Similarly, Jiang et al. [7] employed two DNNs, bifurcated
into MentorNet and StudentNet. The MentorNet dynamically
adjusts the sample weight for the StudentNet during training,
whilst the StudentNet serves as the primary classification



network. Li et al. [8] utilizes semi-supervised learning and
treating noisy labels as unlabeled samples.

Among these methods, Huang et al.’s [5] O2U-net demon-
strates outstanding performance in addressing noisy labels.
The approach relies on a simple concept that during the
early stage of training, or while the model is underfitting,
it predominantly aligns with clean samples, and at the later
stage of the training, the model tends to overfit the noisy
label samples. From this concept, they propose a cyclical
learning rate schedule that begins with a high learning rate,
linearly declining to a low rate, and abruptly reverts to a
high rate when it hits the minimum desired learning rate.
This schedule cyclically shifts the model state from overfitting
to underfitting when learning rate suddenly changes from
minimum to maximum. During training, the loss of each
sample is collected and normalized in each epoch using that
epoch’s average. The cumulative loss, or the sum of sample
losses from all epochs, is then calculated. Samples with high
cumulative loss are flagged as noisy labels.

The Non-Volatile Unbiased Memory (NVUM) approach
proposed by Liu et al. [10] relies on the same concept of
O2U-net that the model initially fits with clean samples during
the early training stages. To take advantage of this concept,
the NVUM method introduces a memory matrix, denoted as
t, which retains the sample logits from the earlier epochs.
This memory is then used in loss regularization computation
to prevent the model from overfitting with noisy labels. Fur-
thermore, NVUM addresses the imbalanced data issue, which
is prevalent in medical image datasets, by combining a class
distribution, denoted as π, with the stored logits to act as class
weight factors during training.

III. METHODOLOGY

A. Dataset

We employed two benchmark datasets in this study. The first
dataset, referred to as the COVID-19 dataset, was curated by
a team of researchers from Qatar University [2], [11], which
is accessible through the Kaggle database. This dataset com-
prises frontal-view chest X-ray images obtained from various
online databases, specifically focusing on COVID-19 cases.
The COVID-19 dataset consists of 10,192 normal images and
10,973 abnormal images. The abnormal images are annotated
based on 3,616 COVID-19 positive cases, 6,012 non-COVID-
19 lung infections, and 1,345 cases of viral pneumonia. The
original authors achieved a classification accuracy of 0.99
using the DenseNet201 model for the task of normal-abnormal
classification [2]. In our implementation, we employed the
DenseNet121 model and obtained an accuracy score of 0.948.
Given its high level of classification feasibility, we selected this
dataset as a preliminary testing dataset to establish a baseline
comparison among all the noise detection methods we studied.

The second dataset used in this study was the Siriraj30k
dataset, which comprises 29,849 high-quality chest X-ray
images and corresponding radiologist reports from Siriraj
Hospital in Bangkok, Thailand. We randomly selected images
of individuals aged 15 years and older from the database and

excluded any low-quality images. To annotate the images in
this dataset, a two-step process was followed. First, NLP tools
were used to label the images based on the radiologist reports.
Then, trained annotators reviewed the labeler’s results, along
with the radiologist reports and images, to assign 7 classes
to each image. These classes included Cardiomegaly, Edema,
Pleural Effusion, Atelectasis, Mass, Nodule, and Lung Opacity
Group (Infiltration, Consolidation, and Lung Opacity).

The Siriraj30k dataset contains realistic noisy labels origi-
nating from multiple sources, including instances where an-
notators missed keywords mentioned in radiologist reports
(report annotation noise), as well as cases where the radiologist
reports themselves overlooked lesions present in the chest X-
ray images (report noise). Additionally, the dataset includes
challenging cases with small lesions that even radiologists
find difficult to identify (hard case noise) which may confuse
classification models.

The two datasets were split into a 90% training set and a
10% validation set. The training set was used in noisy label
detection experiments, while the validation set was used to
determine the appropriate stopping epoch for training models.
The distribution of annotations in both datasets can be seen in
Table I and Table II.

TABLE I
COVID-19 DATASET DISTRIBUTION

Training set Validation set

Abnormal 9,837 1,136
Normal 9,211 981
Total 19,048 2,117

TABLE II
SIRIRAJ30K DATASET DISTRIBUTION

Training Set Validation Set

Cardiomegaly 4,815 478
Edema 249 14
Pleural Effusion 847 88
Atelectasis 322 32
Mass 494 54
Nodule 1,508 158
Lung Opacity Group 4,472 473
Normal 17,340 1,873
Total 30,047 3,170

B. Noisy label detection model development

This study examines four different strategies for finding
samples with incorrect or ‘noisy’ labels. The first method,
named Probability Difference, uses a deep learning model
trained to detect chest X-ray abnormalities to calculate the
absolute difference between the predicted label probabilities
and the actual labels. Samples with high differences are
flagged as noisy labels. This method serves as a heuristic
baseline. The second method, termed O2U-net Cumulative
Loss, uses the O2U-net training method and calculates a



‘noise score’ for each sample based on the cumulative loss
over training epochs. The final two methods use the NVUM
noise-robust model to calculate noise scores. One variant, the
NVUM Cumulative Loss, mirrors the O2U-net method by
collecting the loss of each sample throughout training to be
used as a noise score. The other, the NVUM Probability
Difference, uses a noise-robust model already trained with
a noisy dataset to calculate a probability difference score for
each sample, which is then used as a noise score.

The O2U-net approach, with its simplicity and effectiveness,
is ideal for our study on noisy labels in chest X-ray datasets.
Our implementation largely follows the original O2U-net
approach as described by Huang et al. [5]. However, to better
suit multi-label classification tasks, such as in chest X-ray
datasets, we have made a few modifications. Specifically, we
have adjusted the loss function to binary cross-entropy loss and
the activation function at the final model layer to a sigmoid
function. The end result of the O2U-net training loop is a
collection of cumulative sample loss. These losses are then
sorted in descending order, and the top k samples with the
highest loss are identified as noisy label samples. Here, k
represents the number of noisy label samples anticipated to
be captured.

For NVUM, our implementation closely aligns with the
original one presented in [10] using suggested hyperparameter
values proposed in the paper. We incorporated the parameter β
with a value of 0.9, where β ∈ [0, 1] serves as a parameter that
controls the influence of the memory matrix (t). This implies
that we assigned a weight of 0.9 to the previous logits and 0.1
to the current logits when computing the loss regularization
term.

In model training, we resized the images to 224 x 224 and
augmented them using horizontal flipping, linear and gamma
contrast, brightness enhancement, and affine transformation.
For the DNN model, we used the ImageNet [12] pre-trained
DenseNet121 [4] and Adam optimizer for all approaches. We
used binary cross entropy loss (BCE loss) as loss function in
model training and noise score for ranking noisy labels. Each
approach varies in technique and the training process, which
means batch sizes, learning rates, and epochs are not uniform
across all methods. Their specific settings are displayed in
Table III.

TABLE III
IMPLEMENTATION DETAIL IN EACH APPROACH.

Parameters
Baseline

(Probability
Difference)

O2U-net
(Cumula-
tive Loss)

NVUM
(Probability
Difference)

NVUM
(Cumula-
tive Loss)

Batch size 16 64 64 64

Learning
rate 1e-04

aCyclical
linear 1e-04 1e-04

Epoch Early stop 40 Early stop 40

aMaximum learning rate=1e-3, minimum learning rate = 1e-5,
cycle = 20 epoch

We used an early stop in Baseline (Probability Difference)

and NVUM (Probability Difference) approaches as both use
a fine-tuned model to determine the predicted probability.
We trained the model until the validation accuracy no longer
improved, then chose the model that demonstrated the highest
accuracy on the validation set.

C. Evaluation metric

As outlined in Section III-B, each noisy label detection
approach yields a sorted list of all samples, ranked by noise
score. To identify potential noisy labels, we designated a
parameter k and selected the top k samples from this sorted
list. We used Precision@k, which is the number of correctly
identified noisy labels (true positives) divided by k, as the main
evaluation metric.

For COVID-19 dataset, we injected the noisy label into this
relatively clean dataset by randomly flipping the labels. In this
study, we used 5%, 10%, 20%, and 40% noise proportion for
evaluation, with k equating to the respective noise proportion.

For Siriraj30k dataset, a multi-label classification dataset
where multiple classes in the same image can be flagged as
noisy, additional steps are required to select noisy labels. First,
we assigned each class in a sample its ranking noise score,
selecting the class with the highest noise score among seven
to represent that sample’s noise score. Then we sorted all
samples by this score and rejected the top k samples to the
noisy label group. Among the noisy label group, the minimum
sample’s noise score will serve as a threshold value. We use
this threshold value to recheck all other classes in the noisy
label group to determine if that class is a noisy label or not.
As Siriraj30K dataset is a real-world noisy dataset where we
do not know how many samples contain noisy labels, we set
k to 1,000 for fair comparison across methods.

TABLE IV
PRECISION OF NOISE DETECTION MODELS ON COVID-19 DATASET

Noise
proportion

Baseline
(Probability
Difference)

O2U-net
(Cumula-
tive Loss)

NVUM
(Probability
Difference)

NVUM
(Cumula-
tive Loss)

952 (5%)
samples 0.689 0.816 0.789 0.843

1,904 (10%)
samples 0.790 0.812 0.724 0.821

3,809 (20%)
samples 0.794 0.814 0.808 0.838

7,619 (40%)
samples 0.663 0.701 0.771 0.799

IV. RESULTS

A. Results from COVID-19 Dataset

As described in III, the COVID-19 dataset is used to eval-
uate how different methodologies perform under conditions
where noisy and clean instances are clearly discernible. The
original dataset was divided into a training set of 19,048
examples and a validation set of 2,117 examples. Synthetic
noise was introduced into the training set via random label
inversion at varying fractions of 5%, 10%, 20%, and 40% of



the total training set. For instance, in the 10% scenario, this
implies the inclusion of 1,904 noisy label instances and 17,144
original instances within the training set.

As shown in Table IV, the results obtained across all noise
proportion settings consistently demonstrated high precision
in all our noisy label detection approaches. This indicates that
our developed approaches are correctly implemented and they
can identify approximately 80% of the noisy labels in a simple
task. Notably, the NVUM (Cumulative Loss) approach, which
combines elements from the O2U-net and NVUM methods,
emerged as the most effective among all approaches.

B. Results from Siriraj30k Dataset

Unlike the COVID-19 dataset, the Siriraj30K dataset posed
a more realistic challenge in identifying noisy labels. To
analyze the results, we picked 1,000 samples with the highest
noise scores in each approach and investigated them in detail.
We reviewed chest X-ray images, radiologist reports, labels
from annotators, and heatmaps from in-house chest X-ray im-
age classifier [1] in detail to categorize the selected potentially
noisy samples into 4 groups: (1) Annotation Noise Group,
where our review shows that annotators have made a mistake
in their interpretation of radiologist reports, (2) Report Noise
Group, where our examination reveals missing lesions in the
diagnostic reports, (3) Hard Case Noise Group, which includes
instances where radiologists have mentioned in the reports that
lesions are small or unclear, suggesting their uncertainty in the
presence of the lesions, (4) “Non-noisy Group” are samples
that are already correctly labeled.

We anticipate that the Probability Difference method will
effectively detect Hard Case Noise, where lesions are ambigu-
ous or unclear as indicated by radiologists in their reports.
However, Hard Case Noise samples are easy to detect using
a keyword detection model applied to the radiologist reports,
and therefore they are not the primary focus of our study. We
are more concerned about the Annotation Noise and Report
Noise which are more subtle and difficult to detect.

As depicted in the Table V, when considering only the
Annotation Noise Group and Report Noise Group, it is evident
that the approaches incorporating NVUM surpass the baseline
and O2U-net in performance. Specifically, the total precision
(excluding hard cases) is approximately 16% superior to the
other two approaches. Surprisingly, when considering total
precision, O2U-net was the least efficient in detecting noisy
samples, even less effective than the heuristic approach.

In the COVID-19 dataset, the limitations of O2U-net might
not be readily apparent because the noise in the data was
artificially introduced. Artificial noise tends to be more random
and less correlated compared to real-world noise. If the model
fits the systematic errors in the dataset, it could be hard to
distinguish between correct and incorrect signals, especially
in imbalance environments where the majority class dominates
the loss calculation.

NVUM’s strength lies in using an adaptive loss regulariza-
tion term while training. On noisy samples where the model is
less sure, the regularization term increases, actively preventing

the model from overfitting noisy labels. NVUM can maintain
a high loss for noisy samples, aiding in noisy-label detection.
Additionally, it uses class distribution which could improve its
detection of noisy labels in a data imbalance situation, which
is common in medical image analysis.

In a comparison between NVUM (Probability Difference)
and NVUM (Cumulative Loss), the findings are consistent
with the COVID-19 dataset. It is evident that the use of cu-
mulative loss from all epochs is more effective than predicted
probability. Predicted probability solely utilizes the final state
of the model post-training, whereas cumulative loss captures
all states of the model throughout the training process, thereby
enhancing the detection of noisy label samples.

To better understand the advantages of our approach, we
split noisy samples into negative (normal) and positive (ab-
normal) based on its label. As shown in the Table VI, our
approach is particularly helpful in cases where radiologists
may have under-reported abnormal features in the chest X-
ray images. Upon closer inspection, we found that the ma-
jority of cases in the Report Noise Group belong to the
Cardiomegaly class, which necessitates a time-consuming car-
diothoracic ratio (CTR) measurement for disease identifica-
tion. Consequently, the primary radiologist protocol typically
prioritizes on the other diseases, potentially resulting in a
higher likelihood of overlooking Cardiomegaly compared to
other conditions.

V. CONCLUSION

Our study demonstrated NVUM’s superiority over O2U-
net and the baseline approach in handling real-world noise
in chest X-ray datasets. In the real-world dataset, incorporat-
ing terms such as loss regularization and class distribution
within NVUM proves more beneficial than modifying the
learning rate schedule, as observed in O2U-net. Furthermore,
our analysis of the Thai hospital’s database revealed that
the predominant noisy cases are associated with the Report
Noise Group. Incorporating an AI diagnostic assistant into
diagnostic and annotation workflows could reduce errors in
future batches of data. Lastly, It’s important to note that the
aspiration of 100% clean data is practically unattainable in
the realm of medical imaging, as image interpretation is often
subjective and can vary between observers. Consequently, the
true effectiveness of noisy label detectors is hard to measure,
as there’s no perfect ground truth. Nevertheless, our findings
underscore the potential of NVUM in handling noisy labels in
medical imagery, providing valuable guidance to practitioners
in the field.
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Fig. 1. Overall procedure of all noisy label detection approaches

TABLE V
BREAKDOWN OF NOISE TYPES IN THE TOP 1,000 DETECTED NOISY CASES FOR EACH MODEL

Scenarios Baseline
(Probability Difference)

O2U-net
(Cumulative Loss)

NVUM
(Probability Difference)

NVUM
(Cumulative Loss)

Annotation
Noise Group 28 (0.028) 30 (0.030) 33 (0.033) 35 (0.035)

Report
Noise Group 77 (0.077) 71 (0.071) 151 (0.151) 154 (0.154)

Hard Case
Noise Group 579 (0.579) 567 (0.567) 512 (0.512) 538 (0.538)

Non-noisy
Noise Group 316 (0.316) 332 (0.332) 304 (0.304) 273 (0.273)

Total precision 684 / 1000
(0.684)

668 / 1000
(0.668)

696 / 1000
(0.696)

727 / 1000
(0.727)

Total precision
(w/o hard cases)

105 / 421
(0.249)

101 / 433
(0.233)

184 / 488
(0.377)

189 / 462
(0.409)

TABLE VI
BREAKDOWN OF POSITIVE AND NEGATIVE CASES AMONG THE TOP 1,000 NOISY CASES, CATEGORIZED BY NOISE TYPES

Scenarios Baseline
(Probability Difference)

O2U-net
(Cumulative Loss)

NVUM
(Probability Difference)

NVUM
(Cumulative Loss)

Neg Pos Neg Pos Neg Pos Neg Pos
Annotation
Noise Group 4 24 3 27 6 27 9 26

Report
Noise Group 55 22 45 26 135 16 129 25

Hard Case
Noise Group 0 589 0 579 0 524 0 550

Non-noisy
Noise Group 15 316 5 339 5 314 6 280

Total precision 0.797 0.668 0.906 0.651 0.966 0.644 0.958 0.682

No. KMUTT-IRB-COE-2021-043) performed in line with the
international guidelines of human research protection.
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