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Abstract—Myocardial Infarction is a disease requiring im-
mediate treatment. ECG examination has the disadvantage of
diagnosing MI signals. This research used phonocardiogram
signals to classify myocardial infarction, specifically STEMI, and
NSTEMI based on auscultation position. Signals were acquired
from four auscultation positions: APEX, LLSB, LUSB, and
RUSB for 30 seconds. The filtered signal is segmented each
cycle using Shannon Energy (SE). The feature extraction obtains
12 time-frequency-statistic matrices from the segmented cycles.
Normalized z-score used to evaluate all feature values. A random
forest was applied to classify normal and abnormal signals.
The findings indicated that the proposed approach has the best
performance accuracy of 86%, precision of 84%, sensitivity of
85%, and F1 score of 84% at the LUSB (Pulmonary) position.
This is in accordance with previous research observations that
there was a pansystolic murmur in MI patients with optimal
audibility at the LUSB. These findings can be used for reference
examination of patients with pathological symptoms of MI. Our
future research will improve the performance by focusing on
features with low redundancy and essential information for each
signal feature.

Index Terms—detection, myocardial infarction, phonocardio-
gram, auscultation

I. INTRODUCTION

The second cause of death in Indonesia was an ischemic
heart or cause of heart attack, with 95.68 cases. The mortal-
ity rate among individuals with Acute Myocardial Infarction
(AMI) is approximately 30%, with half of these fatalities oc-
curring before the patient arrives at the hospital [1]. MI based
on electrocardiograph examination results can be divided into

two, namely ST-Elevation Myocardial Infarction (STEMI)
and Non-ST-Elevation Myocardial Infarction (NSTEMI) [2].
STEMI was characterized as a myocardial infarction (MI)
displaying ST segment elevations in two adjacent ECG leads,
with specific criteria varying based on the leads affected. In
contrast, NSTEMI is described by ST depression or other
ischemic ECG changes that did not fulfill the criteria for
STEMI [3].

Another study applied a deep learning-based artificial in-
telligence (DLA) algorithm to detect MI, with specificity
results of 83.0% and 89.4% [4]. ECG examination has the
disadvantage that diagnosis of MI from ECG signal is more
difficult when there is a left bundle branch block since it is
similar to STEMI changes. The research investigated machine
learning, including k-NN, SVM, Naive Bayes, and Random
Forest-based automatic classification systems, utilizing heart
sounds to diagnose cardiac disorders [5]. A previous study
used Phonocardiogram (PCG) signals to classify the classi-
fication of normal and AWMI, IPWMI, and NSTEMI using
MFCCs and Ensemble KNN with an accuracy value of 94.9%.
However, this study did not describe the procedure for placing
the stethoscope position on the pulmonary, aortic, mitral, and
tricuspid valves [6]. Several important features to determine
the difference between normal and MI signals include the time
and energy features [7].

The Random Forest (RF) algorithm is a well-established
and widely adopted supervised ensemble machine learning
technique, primarily employed in real-time classification and
related domains [8]. RF algorithm has robustness and high



prediction [9], [10]. Gosh et al. present a methodology for
the automated identification of heart valve disorders, em-
ploying the RF algorithm. Their findings yielded accuracy
(IA) rates of 98.83% for the normal class, 97.66% for AS,
91.16% for MS, and 92.83% for MR [11]. The time and
frequency characteristics of heart sound signals were leveraged
to construct utilizing the RF method. Notably, the accuracy
achieved by this proposed algorithm surpassed the state-of-
the-art approaches by approximately 12% [12]. PCG signal
analysis was performed at various auscultation locations, such
as the right upper sternal border (RUSB), left upper sternal
border (LUSB), and left lower sternal border (LLSB). Previous
research has differentiated normal and abnormal PCG signals
using a convolutional neural network (CNN) with an accuracy
of 86.8% [13]. However, there is no specific description of
the auscultation position. Four hundred ninety-seven features
will impact the computational complexity and time required
for data analysis [14].

The ten essential features, the interquartile range, autocor-
relation, mean absolute difference, zero crossing rate, entropy
frequency, frequency, median frequency, spectral variation,
spectral roll-off, and minimum, were used to differentiate
the signals. Furthermore, this study will compare the APEX,
LLSB, LUSB, and RUSB auscultation positions of normal and
MI PCG signals.

II. RELATED WORK

Existing research has used four-auscultation position data in
the auscultation process (recording heart sound signals using a
digital stethoscope). It has been investigated by differentiating
the signal at each position. The lowest value of sensitivity is
found in the signal recorded at the mitral auscultation position,
with a sensitivity of 71.2%, and specificity at the aortic
auscultation position, with a value of 89.4% [15]. In a previous
study, patients who exhibited a pathological systolic murmur
with an intensity level exceeding two and were best heard
at the LUSB, digital recordings obtained from that specific
location and indicating possible pathology [16]. Detection
of Acute Myocardial Infarction (AMI) using Deep Learning-
Enabled Electrocardiograms, resulting in precision, sensitivity,
specificity, and F1 values of the deep learning model for
AMI diagnosis of 0.827, 0.824, 0.950, and 0.825 [1]. The
method underwent testing on a dataset containing ECG records
associated with MI. In summary, the method achieved remark-
able performance metrics, including a sensitivity 92.4%, and
specificity of 97.7% [17].

Many studies have developed MI classification using ECG
signals recorded by applying deep learning and machine
learning. However, few studies explain the classification of
MI signals in PCG signal auscultation results. This study
has explored PCG signals for Myocardial Infarction classi-
fication based on extracting PCG signals recorded on four
auscultation positions. The extraction results are then classified
using machine learning to obtain dominant features for MI
classification.

TABLE I
CHARACTERISTIC OF THE SUBJECTS

Characteristics Statistics
Normal subjects (year) 20-25

Abnormal subjects (year) 46-78
Female subject 7.5%
Male subject 92.5%

Normal Blood Pressure:
Avg. Systolic (bpm) 121.5 ± 3.24
Avg. Diastolic (bpm) 80.2 ± 2.48

STEMI, NSTEMI Blood Pressure:
Avg. Systolic (bpm) 112.8 ± 17.94
Avg. Diastolic (bpm) 73.9 ± 11.56

Therapies of Myocardial Infarction no
(Cormobidities) No. Hypertension 11 (27.5%)

(Cormobidities) No. Diabetes mellitus 3 (7.5%)

III. PROPOSED METHOD

Fig.1. illustrates the sequential procedures, with a detailed
description of the following steps. The following process used
bandpass filtering on the normal signal to filter the 20-400 Hz
[11]. The filtered signal has been segmented each cycle using
Shannon Energy (SE) (1) [7]:

SE[k] = −xŝ[k]2log(xŝ[k])2 (1)

In this study, there are three data classes, namely normal
signals and MI signals, divided into STEMI and NSTEMI.
Segmented signal data for Normal-APEX: 690 cycles, LLSB:
778 cycles, LUSB: 810 cycles, RUSB: 600 cycles. Number of
segmented signal data for STEMI-APEX: 450 cycles, LLSB:
390 cycles, LUSB: 420 cycles, RUSB: 420 cycles. Number of
segmented signal data for NSTEMI-APEX signals: 165 cycles,
LLSB: 265 cycles, LUSB: 270 cycles, RUSB: 240 cycles.

A. PCG Signal Collection and Preprocessing

The PCG signals are collected at the Cardiac Center of Hadi
Sadikin Hospital-Bandung Indonesia under ethical registra-
tion LB.02.01/X6.5/75/2022. The database contains 360 PCG
recordings in audio (.wav). Table I shows the characteristics
of the subject. The number of normal subjects is 30, and
MI-stenosis is 60. The auscultation process uses a Littmann
Cardiology IV electronic stethoscope. The sampling frequency
(fs) is 8000 Hz.

B. Feature Extraction

As in previous studies, feature extractions were applied to
classify PCG signals for normal and abnormal classification
[18], [19].

• Time Domain: The autocorrelation (AR) feature can be
defined as a function of the time lag between the initial
signal and the delay signal (2) [20].

An(k) =

∞∑
i=−∞

x(i)z(j − i)x(i+ k)z(j − k − i) (2)

An(k) is the k-th autocorrelation “lag”, x(i) is the heart
sound signal, and z(j) is a window function. The negative
turning points (NT) feature reduces the sampling rate



Fig. 1. Block diagram of the proposed method for MI classification

by half, selectively saving peaks and valleys (turning
points) [21]. The mean absolute diff (MAD) is an average
difference value that measures the absolute difference
between the average amplitude values. ZCR (3) is the
rate of sign change across the signal. Larger ZCR values
are expected for abnormal signals [22]:

ZCR = 1/2

n∑
i=2

|sign(ai)− sign(ai−1)| (3)

• Frequency Domain: entropy based-features are calculated
from finite values, or signal segments of PCG signals
[23]. The frequency feature was calculated using Contin-
uous Wavelet Transform (CWT). Fig.2. shows the normal
and abnormal PCG scalograms. The scalogram provides
the time-frequency characteristics by representing CWT
(4). Mexican hat wavelet is appropriate for our study.

CWTM (i, j) =

∫ ∞

−∞
x(t)ψi,j(t) (4)

However, based on each class’s auscultation position,
there is no visible difference. Therefore, it is essential
to explore the data of each auscultation position further.
Consequently, some time domain features are needed
to differentiate more detailed characteristics, including
spectral distance (SD), median frequency (MF), spectral
variation (SV), and spectral roll-off (SRO). SD is a
measure to calculate the distance between the maximum
magnitudes. MF is used to obtain the center value of
the frequency spectrum. A measure of SV was applied
in this study to see the diversity of spectral values in
normal and MI signals. SRO (5) is defined as the Kth
percentile (85% or 95%) of the cumulative power spectral
distribution within the PCG signal [5].

Roll−off∑
i=1

At[i] = 85 (5)

At [i] is the frequency component value at the i-th
frequency bin and frame t.

• Statistical Domain: the interquartile range (IR) is a mea-
sure of statistical dispersion, which is the spread of the
data [24].

C. Classification

All feature values have been evaluated using the normalized
z-score [25]. After evaluating the feature values from the
matrix of each PCG cycle, the 12-dimensional value vector
of the features was further evaluated using a classifier. This
study used the RF Classifier. The value of the RF classifier
evaluation metric will be significantly influenced by several
vital parameters, including the number of splits, trees, tree
depth, and random state [11], [26]. This research has applied
200 random state and overall accuracy (OA) values to evaluate
the performance of the RF classifier. The tenfold cross-
validation methods are applied for selecting the training and
test PCG cycle instances of RF [27].

IV. RESULT AND DISCUSSION

Several comparison feature combination evaluations have
different accuracy values, as shown in Table II. This study
has evaluated 12 features with eight multi-feature combination
models at each auscultation position. The test results found
that the application of three features, namely minimum value,
frequency, and SRO, had the lowest accuracy value of 58.3%
on the RUSB, 59.2% on the LLSB, 61.6% on the APEX,
and 65.7% on the LUSB. Tests have been conducted using 12
features in this research, and there is an increase in accuracy
of 21.2% on the APEX, 19.2% on the LLSB, 19% on the
LUSB, and 20.3% on the RUSB. Each feature model has
been evaluated at each auscultation position, and the highest
accuracy results for all feature models are found on the
LUSB. The highest accuracy value has been obtained by 86%
using ten multiple features named model 7. Fig. 3 shows
a comparison of the average accuracy at each auscultation
position with eight feature combination models for MI signal
classification. Thompson et al. presented a classification sys-
tem wherein pansystolic murmurs of intensity grade exceeding
three, localized at LUSB [16].

These six discerning signs encompassed the following char-
acteristics: a murmur of intensity grade of more than 3, optimal
audibility at the LUSB, a harsh quality, a pansystolic timing
pattern, the presence of a systolic click, or the existence of an
abnormal second heart sound [31]. An ECG was employed to
ascertain the presence of an acute STEMI situated anteriorly,
and a novel pansystolic murmur was detected [32]. The RF
classifier performance for cross-validation is shown in Table
III. It is observed that the RF classifier has the highest accuracy



Fig. 2. PCG Scalogram (a) Normal-APEX, (b) Normal-LLSB, (c) Normal-LUSB, (d) Normal-RUSB, (e) STEMI-APEX, (f) STEMI-LLSB, (g) STEMI-LUSB,
(h) STEMI-RUSB, (i) NSTEMI-APEX, (j) NSTEMI-LLSB, (k) NSTEMI-LUSB, (l) NSTEMI-RUSB.

TABLE II
PERFORMACE EVALUATION BASED ON MULTIPLE FEATURES COMBINATION

Model
Multiple Features Accuracy (%)

IR Min AC NT MAD ZCR EF Freq SD MF SV SRO APEX LLSB LUSB RUSB

1 v v 61.6 59.2 65.7 58.3

2 v v v v 73.6 72.1 75.3 71.8

3 v v v v v 79.3 75.6 80.0 77.8

4 v v v v v v v 77.8 76.3 83.0 80.2

5 v v v v v v v v 81.6 82.6 82.7 79.0

6 v v v v v v v 75.1 78.0 79.7 74.6

7 v v v v v v v v v v 81.2 76.3 86.0 74.6

8 v v v v v v v v v v v v 82.8 78.4 84.7 78.6

Fig. 3. The performance of RF based on auscultation position

value on LUSB, which was 85.2%. Fig. 4. shows the confusion
matrix testing on RF using model 7.

Previous research has established that CAD is associated
with the production of murmurs [19]. Table IV. shows the
comparative study of PCG signal classification. The binary

Fig. 4. Confusion matrix testing RF

classification employs an ANN classifier. An accuracy level
of 82.57% is achieved when combining the signals acquired
from the tricuspid, mitral, and midaxillary regions [28]. In a
previous study with 94.9% accuracy for MI signal classifica-
tion using a KNN ensemble, the auscultation position was not



TABLE III
PERFORMACE EVALUATION BASED ON MULTIPLE FEATURES COMBINATION

Cross valida-
tion 10-fold

Model 1 (%) Model 2 (%) Model 3 (%) Model 4 (%) Model 5 (%) Model 6 (%) Model 7 (%) Model 8 (%)

APEX 65.3 ± 3.4 76. 5 ± 3.4 75.6 ± 2.5 78.4 ± 3.4 80.8 ± 4.1 79.3 ± 2.6 81.9 ± 2.5 83.3 ± 4.0
LLSB 64.1 ± 3.4 73.9 ± 3.5 71.6 ± 2.6 76.2 ± 3.4 77.8 ± 3.6 76.9 ± 3.0 80.9 ± 3.8 81.1 ± 3.3
LUSB 60.9 ± 2.7 85.2 ± 2.1 74.5 ± 3.5 78.9 ± 2.4 81.2 ± 2.3 80.2 ± 2.5 81.4 ± 2.4 82.5 ± 2.2
RUSB 59.2 ± 2.1 79.7 ± 4.3 48.4 ± 4.7 76.4 ± 2.0 80.9 ± 3.2 77.6 ± 4.7 81.6 ± 3.1 83.0 ± 4.4

TABLE IV
COMPARATIVE STUDY OF PCG SIGNAL CLASSIFICATION

Reference, year Feature Auscultation position Classifier Performance (%)
[19], 2015 Spectrum no QDA Sen = 72.00%, Spec = 65.20%
[28], 2019 Time-Freq domain yes ANN Acc = 82.57%, Sen = 85.61%, Spec = 79.55%
[29], 2019 MFCC no RNN+LSTM Acc = 80.80%
[6], 2020 MFCC no Ensemble Subspace KNN Acc = 94.9%
[13], 2020 497 features no CNN Acc = 86.8%, Sen = 87%, Spec = 86.6%
[30], 2020 CWT, SST, Entropy yes SSVM, KNN Acc = 81.92%, Sen = 82.79%, Spec = 81.04%
[15], 2021 no yes ResNet Sen = 76.3%, Spec = 91.4%

Proposed
Method

10 features yes Random Forest Acc = 86%, Prec = 84%, Sen = 85%, F1 Score = 84%

detailed yet, and the highest accuracy for each auscultation
position was discussed [6]. Chorba et al. detected clinically
significant murmurs and valvular heart disease. The highest
sensitivity value was found in the signal at the Pulmonic
auscultation position at 81.9% [15]. Existing research on
murmurs in CAD examining the position of each valve using
KNN and SVM classification gives the results of the Acc of
81.92% [30]. The absolute reduction in mortality was most
significant among patients who presented within one hour of
symptom onset (average delay 0.75 h) [33]. If the patient’s
symptoms lead to MI, further examination uses an ECG,
which takes 5-10 minutes, then waits for the results of the
cardiologist’s reading. Conversely, failure to address this issue
frequently leads to suboptimal medical procedure results and
increased mortality rates [34]. Furthermore, the troponin test
was applied, and the blood samples should be collected at
least 6-9 hours following the onset of symptoms to determine
cardiac troponin concentrations before making a definitive
diagnosis [35]. The time required using the proposed method
in this study is 3 minutes 56 seconds. MI has a golden hour
condition where the heart muscle begins to die within 80-
90 minutes after the blood supply is cut off [7]. This study
provides a classification system based on the position of the
auscultation examination; thereby, it can reduce diagnosis time
to treat patients quickly and adequately, prevent increased
heart muscle death, and, hence, reduce mortality rates.

Finally, we identified ten essential features in building ML
models to differentiate MI with an Acc: 86%, Prec: 84%, and
Sen: 85%. This research has produced a False Negative Rate
(FNR) value of 0.11. FNR’s score can substantially affect pa-
tients’ well-being in the medical field. A high FNR result may
fail to detect many cases [36]. Previous research has produced
FNR values on time domain features of 0.33, a frequency

domain of 0.25, and a time-frequency of 0.16 [37]. These
findings suggest the potential for simplified identification of
MI-stenosis monitoring systems to reduce hospitalization rates.

V. CONCLUSION

A method based on the evaluation of feature extraction in
the time, frequency, and statistical domain of the PCG signal
has been introduced to classify STEMI and NSTEMI patholo-
gies on four auscultation positions. Twelve features have been
used and validated, including autocorrelation, negative turning
points, mean absolute diff, ZCR, entropy frequency, frequency,
spectral distance, median frequency, spectral variation, spectral
roll-off, IQR, and minimum. The RF classifier has been used to
classify normal and MI signals. The classification performance
based on the proposed method results in an Acc: 86%, Prec:
84%, Sen: 85%, and F1-Score: 84% at the LUSB auscultation
position. Future research explores different types of features
and automatic feature selection methods to improve classifier
performance.
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S. De Waha, M. Mende, S. Desch, B. Metzler et al., “Impact of atrial
fibrillation during st-segment–elevation myocardial infarction on infarct
characteristics and prognosis,” Circulation: Cardiovascular Imaging,
vol. 11, no. 2, p. e006955, 2018.

[25] H. Wen and J. Kang, “Searching for effective neural network archi-
tectures for heart murmur detection from phonocardiogram,” in 2022
Computing in Cardiology (CinC), vol. 498. IEEE, 2022, pp. 1–4.

[26] P. Dutta, S. Paul, K. Cengiz, R. Anand, and M. Majumder, “A predictive
method for emotional sentiment analysis by machine learning from
electroencephalography of brainwave data,” in Implementation of Smart
Healthcare Systems using AI, IoT, and Blockchain. Elsevier, 2023, pp.
109–130.

[27] R. Tripathy, L. Sharma, and S. Dandapat, “Detection of shockable
ventricular arrhythmia using variational mode decomposition,” Journal
of medical systems, vol. 40, pp. 1–13, 2016.

[28] P. Samanta, A. Pathak, K. Mandana, and G. Saha, “Classification
of coronary artery diseased and normal subjects using multi-channel
phonocardiogram signal,” Biocybernetics and Biomedical Engineering,
vol. 39, no. 2, pp. 426–443, 2019.

[29] A. Raza, A. Mehmood, S. Ullah, M. Ahmad, G. S. Choi, and B.-W.
On, “Heartbeat sound signal classification using deep learning,” Sensors,
vol. 19, no. 21, p. 4819, 2019.

[30] A. Pathak, P. Samanta, K. Mandana, and G. Saha, “Detection of coronary
artery atherosclerotic disease using novel features from synchrosqueez-
ing transform of phonocardiogram,” Biomedical Signal Processing and
Control, vol. 62, p. 102055, 2020.

[31] K. M. Smith, “The innocent heart murmur in children,” Journal of
Pediatric Health Care, vol. 11, no. 5, pp. 207–214, 1997.

[32] E. Flores-Umanzor, G. Caldentey, and R. San Antonio, “New holosys-
tolic murmur after acute myocardial infarction,” European Heart Jour-
nal: Acute Cardiovascular Care, vol. 9, no. 5, pp. NP5–NP6, 2020.

[33] E. Boersma, A. C. Maas, J. W. Deckers, and M. L. Simoons, “Early
thrombolytic treatment in acute myocardial infarction: reappraisal of the
golden hour,” The Lancet, vol. 348, no. 9030, pp. 771–775, 1996.

[34] H. M. Ahn, H. Kim, K. S. Lee, J. H. Lee, H. S. Jeong, S. H. Chang, K. R.
Lee, S. H. Kim, and E. Y. Shin, “Hospital arrival rate within golden time
and factors influencing prehospital delays among patients with acute
myocardial infarction,” Journal of Korean Academy of Nursing, vol. 46,
no. 6, pp. 804–812, 2016.

[35] F. S. Apple and A. H. Wu, “Myocardial infarction redefined: role of
cardiac troponin testing,” pp. 377–379, 2001.

[36] M. Hassanuzzaman, N. A. Hasan, M. A. Al Mamun, M. Alkhodari,
K. I. Ahmed, A. H. Khandoker, and R. Mostafa, “Recognition of pe-
diatric congenital heart diseases by using phonocardiogram signals and
transformer-based neural networks,” in 2023 45th Annual International
Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC). IEEE, 2023.

[37] M. Milani, P. E. Abas, L. C. De Silva, and N. D. Nanayakkara,
“Abnormal heart sound classification using phonocardiography signals,”
Smart Health, vol. 21, p. 100194, 2021.


