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Abstract—Colposcopy can potentially improve diagnostic ca-
pabilities to guide cervical biopsies, contributing to improved
cervical cancer screening. The previous study compared diag-
nostic accuracy in histologic CIN between senior and junior col-
poscopists, the senior colposcopists showing higher sensitivity but
lower specificity than the junior. This research has significantly
contributed to categorizing CIN1, CIN2, and CIN3 by utilizing
features extracted from GLCM and L*a*b* color spaces, using
machine learning techniques to aid cervical pre-cancer diagnosis.
Three machine learning tools were random forest, decision tree,
and extra trees. The results of this study have shown that the
extra tress classifier has the best performance value by using
six GLCM features: contrast, correlation, energy, homogeneity,
dissimilarity, asm, and one L*a*b* feature, namely median l.
The performance results have improved to 0.98 accuracy, 0.97
sensitivity, and 0.98 specificity. Processing CIN1 data on GLCM
features took an average of 20.70 s and L*a*b* for 21.74 s.
The processing of CIN2 data on GLCM features is 27.57 s, and
L*a*b* is 27.37 s. The processing of CIN3 data on GLCM is
31.22 s, and L*a*b* is 31.38 s. In aggregate, the lowest average
processing time using the GLCM features was 26.20 s. Based
on the testing results, this research produces an FNR of 0.015,
which indicates that this research in the future, when applied
to medical care, has a slight possibility of diagnostic errors.
Abnormal vascular features such as punctation and mosaic are
the only significant if visible in limited acetowhite areas, making
it challenging for researchers to select more appropriate features.

Index Terms—colposcopy images, classification, cervical can-
cer, GLCM, L*a*b*, machine learning

I. INTRODUCTION

Cervical cancer constitutes a significant international public
health issue, holding the position as the fourth most preva-
lent malignancy among females worldwide. Approximately
527,624 women are diagnosed with cervical cancer each
year, resulting in 265,672 fatalities attributed to this disease.
Moreover, cervical cancer contributes to 4% of global cancer
diagnoses [1]. The predominant etiological factor responsible
for almost all instances of cervical cancer is Human Pa-
pillomavirus (HPV) infection. HPV is unequivocally linked
to nearly every case of cervical cancer. While HPV tests
demonstrated superior sensitivity when compared to cytology

(96.1% vs. 53.0%) and specificity (90.7% vs. 96.3%) [2].
Consequently, the cytology component contributed to merely
five cases per million women per year [3]. The screening pro-
tocol for cervical cancer adheres to a standardized workflow
encompassing HPV testing, cytology (commonly referred to
as PAP smear testing), colposcopy, testing, and biopsy [4].

Colposcopy is a widely adopted surgical intervention aimed
at preventing cervical cancer. The prompt detection and ac-
curate classification of this form of cancer can substantially
enhance the overall clinical management of patients [5]. Nu-
merous research endeavors have explored diverse methodolo-
gies for extracting colposcopy images [6]–[8]. The presence
of pathological regions can serve as potential indicators of
neoplastic conditions. These anomalous areas include ace-
towhite changes, irregular vascular patterns, mosaic patterns,
and punctate lesions [9], [10]. Several studies have explored
Cervical Intraepithelial Neoplasia (CIN) and its classifications
[11]–[13].

Previous studies have applied essential features to the clas-
sification process, including the Gray Level Co-occurrence
Matrix (GLCM) and L*a*b*. Utilizing GLCM proves to be a
potent method for scrutinizing texture characteristics, enabling
the extraction of various texture features, such as contrast,
correlation, entropy, uniformity, energy, and more, from the
source image of cervical cancer [14]. Previous research ex-
tracted 13 Haralick features for each GLCM [15]. Sukumar
et al. have performed feature extraction for pap smear images
in classifying normal and abnormal cervical cancer detection.
Some features include GLCM, law’s texture feature, wavelet,
and Local Binary Pattern (LBP) [16].

Cervigram images have been extracted with L*a*b* color
space features, Histogram of Oriented Gradients (HOG), and
LBP. Furthermore, classification is performed using a Convo-
lutional Neural Network (CNN), and the results are accuracy:
78.41%, sensitivity: 80.87%, and specificity: 75.94% [17].
Other studies have also applied CNN, Support Vector Machine
(SVM), Random Forest (RF), Adaboost, Gradient Boosting
(GB), Decision Tree (DT), and k-Nearest Neighbor (k-NN)
for cervical cancer classification [18], [19]. Based on the im-



Fig. 1. The proposed method including preprocessing (binary masking and inpainting), feature extraction process (GLCM, LBP, and L*a*b*), and classsification
process (RF, DT, and ET).

portance of early detection and preventive measures to prevent
cervical cancer, this study has contributed to classifying the
CIN category based on the feature results from GLCM and
L*a*b* by applying machine learning to determine the CIN
category to help diagnose cervical pre-cancer.

II. RELATED WORK

An automated machine vision system for the histological
grading of CIN was introduced [20]. Previous investigations
focused on localized and automated analysis of histological
images of the cervix to identify the degree of CIN. No-
table improvements include GLCM features such as contrast,
correlation, dissimilarity, entropy, homogeneity, and angular
second moment (ASM), in addition to area-based features.
However, it is essential to note that the limited sample size
precludes deriving conclusive findings regarding the efficacy
of the proposed methodology [14]. Color assumes a pivotal
role in the classification of cervical lesions, given that one
of the foremost visual attributes of the cervix with signifi-
cant diagnostic relevance is the presence of acetowhitening
regions. In conjunction with color and gradient attributes, a
novel addition to the feature set incorporates a LBP feature,
which adeptly captures localized textural characteristics to aid
cervical lesion classification. Notably, Ojala et al. initially
demonstrated the efficacy of LBP in texture classification [21].

Anwer et al. introduced a method to predict and identify
specular highlights within digital images, accurately delin-
eating the regions affected by highlighting and assigning
appropriate labels. Remarkably, the training duration for this
model was notably reduced to just 40 minutes compared
to the pre-existing methods [22]. Another study introduced

an innovative fuzzy reasoning model that leveraged temporal
grayscale and texture attributes within the acetowhite region
during an acetic acid test to classify CIN. The result of this
study was a sensitivity of 85.9% and specificity of 86.6% [12].
Numerous approaches have been explored for the analysis of
cervical images. Multi-parameter magnetic resonance imaging,
in conjunction with machine learning, has been employed
to automate the interpretation of colposcopic images [23].
A method used CNN with extreme learning machines to
classify cervical cancer [9]. A comprehensive review of image
analysis techniques and a machine learning-based framework
for automated cervical cancer screening using cervical smear
images was introduced [24]. However, the methodology out-
lined above relies primarily on cervical images. While cervical
images play a significant role in treating cervical cancer, it is
crucial to recognize that certain modifiable factors associated
with this condition can be predicted during the initial screening
stage at a relatively low cost.

III. PROPOSED METHOD

This study uses a Kaggle dataset with dimensions of
277×369 px and a resolution of 100×100 dpi. This dataset
contained 4,104 images divided into 1,296 CIN1, 1,296 CIN2,
and 1,512 CIN3 categories [25]. The initial challenge when
using this dataset are that each illustration has specular re-
flections around the cervical area, and the different locations
of reflection. Therefore, this study pre-processed the specular
reflection detection using binary masking by utilizing RGB to
YUV image color space conversion and separated the YUV
components into Y‘, U‘, and V‘. The Y‘ component alone
does not have specular reflection information, which makes



TABLE I
COMPARISON OF MATRIX.

Scheme Feature Extractions Feature Selections Model Accuracy Sensitivity Specificity
#1 GLCM contrast, correlation, energy, homogeneity, dissimilarity,

asm [6 features]
DT 0.89 0.85 0.93

#2 GLCM contrast, correlation, energy, homogeneity, dissimilarity,
asm [6 features]

RF 0.93 0.90 0.95

#3 GLCM contrast, correlation, energy, homogeneity, dissimilarity,
asm [6 features]

ET 0.96 0.95 0.97

#4 GLCM-LBP contrast, correlation, energy, homogeneity, dissimilarity,
asm, median lbp, ptp lbp, std lbp [9 features]

DT 0.68 0.72 0.80

#5 GLCM-LBP contrast, correlation, energy, homogeneity, dissimilarity,
asm, median lbp, ptp lbp, std lbp [9 features]

RF 0.75 0.80 0.65

#6 GLCM-LBP contrast, correlation, energy, homogeneity, dissimilarity,
asm, median lbp, ptp lbp, std lbp [9 features]

ET 0.81 0.84 0.75

#7 GLCM-L*a*b* contrast, correlation, energy, homogeneity, dissimilar-
ity, asm, median l, median a, median b, ptp l, ptp a,
ptp b, std l, std a, std b [15 features]

DT 0.82 0.85 0.75

#8 GLCM-L*a*b* contrast, correlation, energy, homogeneity, dissimilar-
ity, asm, median l, median a, median b, ptp l, ptp a,
ptp b, std l, std a, std b [15 features]

RF 0.93 0.96 0.87

#9 GLCM-L*a*b* contrast, correlation, energy, homogeneity, dissimilar-
ity, asm, median l, median a, median b, ptp l, ptp a,
ptp b, std l, std a, std b [15 features]

ET 0.95 0.96 0.93

#10 GLCM-LBP contrast, correlation, energy, homogeneity, dissimilarity,
asm, ptp lbp, std lbp [8 features]

ET 0.83 0.89 0.73

#11 GLCM-L*a*b* contrast, correlation, energy, homogeneity, dissimilarity,
asm, median l [7 features]

ET 0.98 0.97 0.98

it easier to perform binary masking of specular reflection
[26]. Following the specular reflection detection stage, binary
masking coordinates are used for image enhancement using
the inpainting method. After the pre-processing stage, in
performing CIN classification, it is necessary to select feature
extraction to obtain image information on texture, color, and
cervical lesions.

Referring to the colposcopic examination procedure to
determine whether the cervix is in the CIN1, CIN2, or
CIN3 category by swede score assessment, five parameters
of cervical features are needed, namely aceto uptake, margins,
vessels, lesions, and iodine uptake [27]. Therefore, this study
proposes using a combination of features from GLCM, LBP,
and L*a*b* and determines the most appropriate and best
features to improve the performance of the classification
model. In this study, the GLCM parameters are dissimilarity,
correlation, homogeneity, contrast, ASM, and energy. Deter-
mination of texture in LBP is done by determining parameters
by calculating the median value, standard deviation (std), and
peak-to-peak (ptp). Then, L*a*b* is separated into L*‘, a*‘,
and b*‘ components [28]. Each component is calculated based
on the median, std, and ptp values.

Following all the feature extraction processes, it is necessary
to separate the training and test data, so in this study, 80%
of the training data and 20% of the test data are performed.
The training data will be trained with the specified model
including RF, DT, and ET. The training in this study performs
a combination of schemes to see the performance of each
model. Then, 20% of the test data is tested by evaluating
the metrics on the three models. The block diagram of the
proposed method can be seen in Fig. 1.

IV. RESULT AND DISCUSSION

This chapter describes the results of feature testing, feature
selection, and classification. The 18 features have been ex-
tracted, including GLCM (contrast, correlation, energy, homo-
geneity, dissimilarity, and ASM), LBP (median lbp, ptp lbp,
and std lbp), and L*a*b* (median l, median a, median b,
ptp l, ptp a, ptp b, and std l, std a, and std b). The selection
of these features refer to several previous studies [14], [16],
[18]. The GLCM features, including contrast, have an aver-
age value of 288.49±167.50, correlation value of 0.96±0.02,
energy value of 0.13±0.06, homogeneity value of 0.29±0.07,
dissimilarity value of 7.89±2.48, ASM value of 0.02±0.01.
The average value of LBP features includes median lbp of
205.78±22.35, ptp lbp of 255±0, and std lbp of 86.48±3.17.
The mean values of L*a*b* features include median l of
241.73±101.24, median a of 0, median b of 0.008±0.22,
ptp l of 15317.33±6569.71, ptp a of 17543.84±6499.01,
ptp b of 18570.42±5530.67, and std l of 1033.45±336.36,
std a of 1420.37±290.07, std b of 1659.09±319.740. Fig. 2.
shows the distribution results of all extracted features on CIN1,
CIN2, and CIN3.

This study also discusses the processing time required to
process features from each method on each dataset. Fig. 3
shows the time performance data of GLCM, L*a*b*, and
LBP at 20 iterations. The processing of CIN1 data on GLCM
features takes an average time of 20.70 s, L*a*b* for 21.74
s, and LBP for 2,012.81 s. The processing of CIN2 data on
GLCM features takes an average time of 27.57 s, L*a*b* for
27.37 s, and LBP for 2,561. 63 s. The processing of CIN3
data on GLCM features takes an average time of 31.22 s,
L*a*b* for 31.38 s, and LBP for 2,645.69 s. Overall, the



Fig. 2. The distribution of feature extraction in this study, including (a) GLCM
is divided into contrast, correlation, energy, homogeneity, dissimilarity, and
ASM. (b) L*a*b* is divided into median l, median a, median b, ptp l, ptp a,
ptp b, and std l, std a, std b. (c) LBP is divided into median lbp, ptp lbp,
and std lbp.

lowest average processing time using GLCM features is 26.20
s. There are 11 scheme models of this research shown in Table
I.

The highest performance value resulted using scheme #11,
which combines GLCM and L*a*b* features with a total of
seven features using the Extra Trees classifier, resulting in an
accuracy value of 0.98, sensitivity of 0.97, and specificity of
0.98. Fig. 4 shows the comparison metric on CIN1, CIN2,
and CIN3 in scheme #11. Fig. 5 shows the results of training
and testing on scheme #11. Based on the testing results, this
research produces a False Negative Rate (FNR) of 0.015,
which indicates that this research in the future, when applied
to medical care, has a slight possibility of diagnostic errors.
Following research on biomedical diagnostics, a small FNR
value is significant [29]. Fig.6 shows the Receiver Operating

Fig. 3. The graph of feature extraction performance of CIN1, CIN2, and
CIN3.

Characteristic (ROC) curve resulting from scheme #11 by
comparing three classifiers, namely Random Forest, Decision
Tree, and Extra Trees. Based on the graph, the highest actual
positive rate is generated by Extra Trees, showing a small
false positive rate. Several previous studies have applied ROC
graphs to evaluate the research results on colposcopy images
[30]. Previous research has used the Inception-ResNet-V2
method, which resulted in an accuracy of 0.69, sensitivity of
0.66, and specificity of 0.70 [13].

Previous research using the ColpoNet method yielded an
accuracy of 0.81 [6]. Dash et al. introduced a multiple-scale



Fig. 4. Radar visualization of the classification results.

Fig. 5. The confusion matrix in CIN1, CIN2, and CIN3 using the ET classifier
based on Scheme#11.

TABLE II
COMPARISON OF THE METHODS IN THIS STUDY WITH SOME PREVIOUS

STUDIES.

Ref Method Datasets Metrics
[13] Inception-

ResNet-
V2

43 cancer images, 311
CIN3 images, 211 CIN2
images, 100 CIN1 images,
and 126 normal images.

Accuracy: 0.69
Sensitivity: 0.66
Specificity: 0.70

[6] ColpoNet 280 images of
CIN1/Normal, 280 images
of CIN2/CIN3/CIN4.

Accuracy: 0.81

[31] Inception-
Resnet-
V2

CIN1: 169, CIN2: 43, and
CIN3: 80.

Accuracy: 0.81
Sensitivity: 0.81
Specificity: 0.90

[32] DenseNet-
121

4,870 images (include
CIN1, CIN2, and CIN3).

Accuracy: 0.97
Sensitivity: 0.92
Specificity: 0.94

[25] DenseNet-
161 and
ResNet-
152

Intel & MobileODT Cervi-
cal Cancer Screening (Kag-
gle Competition)

Log loss: 0.76

Proposed
method

GLCM-
L*a*b*-
ET

1,296 images of CIN1,
1,296 images of CIN2, and
1,512 images of CIN3.

Accuracy: 0.98
Sensitivity: 0.97
Specificity: 0.98
Log loss: 0.20

Fig. 6. The ROC curve generated using the scheme#11.

feature fusion method using Inception-Resnet-V2, resulting in
an accuracy of 0.81, sensitivity of 0.81, and specificity of 0.90.
This cervical cancer screening approach circumvents the need
for a biopsy, in which a tissue sample is necessary for analysis
31. Another study using the same dataset as this study resulted
in an accuracy value of 0.97, sensitivity of 0.92, and specificity
of 0.94. This previous approach uses binary masking to detect
the glare region, and a finely adjusted U-Net model is applied
for segmentation [32]. Furthermore, compared to the results
of the Kaggle competition winner getting an evaluation using
a log loss of 0.76963 [25], this study obtained a log loss value
of 0.20981. This research produces higher performance values
than some previous studies shown in Table II.

V. CONCLUSION

The classification performance results of CIN1, CIN2, and
CIN3 strongly depend on the features used. This research has
pre-processed specular reflection detection using binary mask-
ing by utilizing RGB to YUV image color space conversion
and separating YUV components into Y’, U’, and V’. The
next step is to have extracted features using LBP, GLCM,
and L*a*b*. The combination of features to produce the
highest performance value resulted from GLCM and L*a*b*.
Evaluation of the performance of the three classifiers of this
study using the ROC graph. The AUC (Area Under the
Curve) indicates the classifier’s discriminative capability in
classification tasks. The AUC value on the RF is 0.98, the DT
is 0.87, and the ET is 0.99. Our future research will develop a
real-time system for diagnosing cervical cancer on colposcopy
images.
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