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Abstract—Radio access network (RAN) slicing has
been proposed to efficiently serve multiple services such
as mobile broadband, augmented reality, gaming and
low latency applications. The dynamic allocation of
resources typically make use of physical resource blocks
(PRBs) share configurations. However, there have been
limited studies on the side-effects and uncertainty of
dynamic changes in configurations. In this paper, we
present Praetorian, a probabilistic planning approach
to analyze RAN slice assurance. Detailed queuing net-
work models are used to extract the probabilistic effects
of domain actions. These are fed into probabilistic
planners to select optimal actions such as priority
changes, PRB share changes or dropping. Planning
techniques are proposed that improve the resilience
of slice assurance techniques under uncertainties. This
approach is applied on a real use case from a mobile
network operator requiring slice assurance.

Index Terms—Probabilistic planning, Radio Access
Network, Slice assurance, Queuing models.

I. Introduction
The emergence of 5G new radio [1] has increased

focus on multiple use cases including enhanced mobile
broadband, low latency applications and eXtended Reality
(XR). In order to meet the requirements of differentiated
Quality of Service (QoS) over a common physical network,
techniques such as network slicing [2] have been proposed.
Network slicing allows the physical radio access network
(RAN), transport network and core network to be virtu-
ally partitioned to meet differentiated requirements. The
slicing has to be done effectively to meet both service
guarantee as well as resource utilizations constraints.

A slicing technique used towards the RAN network is
to efficiently allocate Physical Resource Blocks (PRBs).
While a static allocation can be instantiated at design
time, to meet changing intent [3] and traffic require-
ments, the slice assurance process must dynamically make
changes to the PRB partitions. Specially with priority
services that require stringent Service Level Agreements
(SLAs), the slices must be continuously monitored and
assured to meet intents. Automation techniques using
Artificial Intelligence (AI) for slice assurance have been
proposed [4] [5].

Previous papers have looked at a deterministic plan-
ning approach for 5G slice allocation [6]. However, the
uncertainty in performance including changes in PRB
allocation, latency and throughput as a result of changes

have not been analyzed in detail. This paper presents
Praetorian, a probabilistic planning technique [7] to
analyze the configurations in RAN slicing. Via the use
of queuing network models [8], the probabilistic effects
of setting queue priority, dropping and partition changes
are analyzed in detail. Slice assurance is performed via
AI planning techniques [10] to determine optimal actions.
The queuing modeling inputs are critical to ensure that
uncertainty or changes are mitigated within the slice assur-
ance process using probabilistic planning techniques. Such
detailed modeling is crucial for dynamically varying envi-
ronments such as RAN. This technique is demonstrated
over a real mobile network operator slice specification. The
main contributions of this paper include:

– Detailed queuing network model to analyze the effect
of RAN partition, priority and packet drop setting.

– Probabilistic planning approach that takes in uncer-
tainty RAN slice configuration into consideration to
make more realistic slice assurance towards intents.

The rest of this paper is organized as follows: Section
II presents the RAN slice assurance use case and an
overview of Praetorian. Section III presents the queuing
network model and analysis for slice resource allocation.
An overview of the AI planning formulation is presented
in Section IV. The probabilistic planning formulation and
evaluation on slice assurance is presented in Section V.
Related work is presented in Section VI, followed by
conclusions in Section VII.

II. RAN Slice Assurance Use Case
In this section, we describe the RAN slicing use case

and associated intent requirements.

A. RAN Slicing
To ensure end-to-end 5G network slicing, one essential

network subnet is the Radio Access Network (RAN) [2].
To slice the RAN, an often used technique is allocation
of physical resource blocks (PRBs) [5], which is defined
as 12 consecutive subcarriers in the frequency domain of
the allocated spectrum [1]. The total available PRBs are
partitioned and allocated to various slices to meet the 5G
QoS Identifier (5QI) [1] requirements. A PRB partition is
the minimum guaranteed share of radio resources and may
be dynamically allocated/deallocated to slices.



Fig. 1. RAN Slice Partitioning Scenarios.

Figure 1 presents a RAN slicing scenario motivated
by Ericsson’s interaction with a mobile network operator
from Asia. The network supports four slices with Premium
eMBB Traffic (5QI8), Normal eMBB Traffic (5QI9), Fixed
Wireless Access Traffic (5QIx) over two partitions. Parti-
tion 1 has eMBB premium slice and eMBB normal slice;
Partition 2 has eMBB slice and FWA slice. Both partitions
are initially allocated 10% share each of the total available
PRBs with the residual pool of 80% PRBs allocated to
eMBB traffic outside of the slices.

Initially, the partitions are typically under-utilized; as
the user traffic increases, an over-utilized partition will
consume any residual resources that are available (Fig-
ure 1). With more slices and subscribed users, there is
always the risk of Premium SLA violation due to resource
contention: in the un-partitioned residual, premium users
may not receive the same priority as within exclusive
partitions. The slice assurance system should ensure that
the premium users’ SLAs do not deteriorate, while main-
taining fair allocation to normal category users. In order to
monitor and assure the RAN slices, the following metrics
are typically collected via performance counters:

1) Service Throughput: Average Downlink (DL)
Throughput, Average Uplink (UL) Throughput.

2) Resource Utilization: Partition Utilization, Average
number of user sessions.

3) Radio Link Quality: Channel Quality Indicator
(CQI), Modulation and Coding Scheme (MCS).

The 5G throughput and PRB allocations are done
according to [9]. Depending on the spectrum, allocated
bandwidth and selected subcarriers, the number of PRB
may be calculated. In addition to the number of PRB,
the throughput is affected by the modulation scheme.
The supported data rate is presented in [9, Sec. 4] and
reproduced here (in Mbps) as

10−6·
J∑

j=1

(
v(j) · f (j) · Q(j)

m · Rm · 12·N(j)
PRB

Tµ
·
(
1 − OH(j)))

S

(1)
– J is the number of aggregated carriers,
– v(j) is the number of MIMO layers per carrier,
– f (j) is the scaling factor per carrier in the range

[0.4, 1],
– Q

(j)
m is the modulation order per carrier,

– Rm is the modulation code rate divided by 2048,

Fig. 2. Praetorian RAN slice assurance framework.

– Tµ is the average OFDM symbol duration in a sub-
frame for numerology µ, calculated as 10−3/(14 · 2µ),

– N
(j)
PRB is the number of physical resource blocks per

carrier j, for the given bandwidth and numerology,
– OH is the overhead in range [0.08, 0.18],
– and S is the symbols allocation which determines how

much of a slot is dedicated to uplink or downlink.
In typical scenarios, parameters that can be configured are
NPRB and the modulation scheme (Qm and Rm). Each
PRB partition can be configured with a share of resources
for which the users belonging to the partition has priority.

B. RAN Slicing Intents
In conjunction with the RAN slicing use case, there are

intents [3] that are to be managed in an autonomous fash-
ion. These intents include protection of premium service
SLAs and dynamic resource management with optimal
usage of RAN resources. We specify two tiers of intents:

1) Service Requirements: There could be multiple ser-
vice requirements from the RAN slice services:
a. Maintain 5QI for premium customers at priority,

even with increasing traffic (SLA).
b. Ensure minimum guaranteed throughput for

normal tier customers (fairness).
2) Radio Resource Management Requirements: Efficient

PRB management to ensure optimal spectrum use,
that is minimize unused PRBs in allocated parti-
tions.

Intent violations may be caused due to new requirements
or a spike in traffic. The assurance system can automati-
cally reconfigure to mitigate the violations. However, the
changes to the RAN system (priorities, partition sizes,
drop rates) are not deterministic, causing side-effects to
other users of the system. To analyze the effect of this
model uncertainty, we introduce the Praetorian frame-
work.

C. Praetorian Framework
As presented in Figure 2, the Praetorian framework

consists of five components:
1) We start with the state and action models of the do-

main. The states reflect the throughput and latency
values of each slice resulting in intent satisfaction/vi-
olation. Actions that can taken are changes in PRB
allocation, service priority and drop rates.

2) The queueing model is a simulator for multiple slices
that can be used to compute the probabilities for the
Probabilistic Planning Domain Definition Language



TABLE I
Queueing network metrics.

Vi Average number of times packet visits resource i
Si Mean service time per packet at resource i
Ui Utilization of resource i
Qi Queue length at resource i
Xi Throughput of resource i
X Throughput of the system
Di Service demand of resource i
N Average number of packets in the system
R Average response time of the system
Z Mean think time of a terminal user

(PPDDL) domain actions. The evaluated outputs
are used to set the transition probabilities.

3) RAN slice specifications that are processed as in-
tents [3] within the planning formulation. The intent
specifications are used to generate the problem files
(goals) for the planning formulation.

4) Probabilistic planners are used to generate optimal
configurations to assure RAN slices. The current
state is the initial state - it is the state where an in-
tent is violated and triggers the planning algorithm.

5) The plan configuration executed and monitored for
RAN intent satisfaction.

Further details of the queuing models, AI planning for-
mulation and probabilistic plans are presented in the
following sections.

III. queueing
A. Queueing Model

Queueing network models have been used to perform
performance modeling and analysis of computer systems
and networks. Fundamental laws applicable to queuing
networks have been proposed using the metrics in Table
1. We briefly review them; an interested reader is referred
to [8] for further details.

– Utilization Law: Utilization U is the fraction of time
the resource is busy and is dependent on throughput
X and service times S. Resources with high utilization
cause bottlenecks.

Ui = Xi · Si (2)

– Service Demand Law: Total average service time
required by a packet at resource i, denoted Di is
dependent on the visits Vi and service times Si.

Di = Vi · Si = Ui

X
(3)

– Little’s Law: If there are N users in the system, each
with think times Z (time waiting between interactions
with the system) and the throughput rate X produc-
ing a wait time R, the following relationship applies:

N = X · (R + Z) (4)

Mean value analysis (MVA) [8] has been applied with
considerable success in the case of closed queuing networks
in order to predict performance at higher work loads. In
the single class case, the exact MVA Algorithm starts with
an empty network; it then increases the number of packets
by 1 at each iteration until there are the required number

Algorithm 1: Mean Value Analysis of Multi-Class.
1 Input: queueing stations, traffic distribution.
2 Output: throughput, latency, utilization.
3 for k ← 1 to K do
4 Set Q0

k ← 0; // Initializing queue length

5 for n← 1 to
C∑

c=1

Nc do

6 for population n = (n1, . . . nc do
7 for c← 1 to C do
8 for k ← 1 to K do
9 Rc,k ← Dc,k

[
1 + Q

(n−1)c
k

]
; // Latency

estimate with increasing queue length

10 Xc ← nc

Zc+
K∑

k=1

Rc,k

; // Throughput estimate

11 for k ← 1 to K do

12 Q
n
k ←

C∑
c=1

XcRc,k; // Queue length update

13 Return throughput and latency per class;

(N) of packets in the system. For each queuing station
k = 1, ..., K, the waiting time Rk is computed using the
static input service demands Sk and the number of jobs in
the queue Qk. The system throughput is then computed
using the sum of waiting times at each node and Little’s
law (eq. 4). This process is slightly more involved for the
case with multiple classes say 1, ...C. Algorithm 1 presents
the MVA technique for multi-class queues. The population
of each of the classes are increased proportionally.

B. Tools for Queue Analysis
In order to study the queueing network model of the

RAN resources, we make use of the Java Modeling Tools1

simulator. We present a few salient features that we make
use of in the RAN slice assurance model:

– Queueing Station: The arriving packets join the queue
and wait to receive service from the first idle server.

– Multiple class models consist of C classes, with vary-
ing traffic patterns and service demand at each sta-
tion. Packets are ordered according to their arrival
time but packets with higher priority jump ahead of
packets with lower priority.

– Routing Station: In the routing section, for each
class, the generated packets are routed to the devices
connected to the analyzed station according to various
routing strategies. The routing probability for each
outgoing link must be defined.

Figure 3 presents the closed queuing model of the RAN
slice assurance use case. Here, each queue represents 10%
of the partition shares with a routing station used to
divert traffic in proportion. Multiple classes of services
are simulated according to Figure 1, with priorities. Using
Mean Value Analysis techniques, the queueing models may
perform what-if analysis to estimate performance with
various traffic mixes.

1https://jmt.sourceforge.net



Fig. 3. Queueing model for slice assurance.

IV. AI Planning
AI Planning [10] focuses on composing a set of actions to

reach a goal state. AI Planning begins with the definition
of domains, plans and goals that are to be achieved.

Definition 1: Planning Domain A planning domain is
a state transition system Σ = (S, A, γ, C), where:

◦ S is a finite set of states of the system.
◦ A is a set of actions that may be performed by an

agent.
◦ γ : S × A → S is the state transition function. If

γ(s, a) is defined, than action a is applicable to state
s, with γ(s, a) being the predicted outcome.

◦ C : S × A → [0, ∞) is a cost function with the same
domain as γ. It can represent a cost function mini-
mizing monetary cost, latency or parameters within
the system.

Definition 2: Plan A plan is a finite set of actions:

π = ⟨a1, a2, . . . , an⟩

where the plan’s length |π| = n and cost is C(π) =
n∑

i=1
ai.

Definition 3: Planning Problem A planning problem
is specified as a triple P = (Σ, s0, g) where Σ is a planning
domain, s0 is the initial state and g is a set of ground literal
goals. A solution for P is a plan π = ⟨a1, a2, . . . , an⟩ such
that γ(s0, π) satisfies g.

Solutions to the classical planning problem may be
developed using forward-search or backward-search tech-
niques, with multiple heuristics proposed to reduce the
state space search [10]. The Planning Domain Definition
Language (PDDL) [11] [10] is an action centered language
that provides a standard syntax to describe actions and
the pre-conditions/effects of the actions. It consists of
two descriptions (i) the domain description that decouples
the parameters of actions from specific objects, initial
conditions and goals (ii) the problem description that
instantiates a grounded problem with objects, initializa-
tion, goals and metrics. The same domain description may
be paired with multiple problem instances, with varying
grounded objects, initial conditions and goals.

While conventional PDDL has only deterministic
action effects, real-world deployments typically have
uncertainties in observed outputs. In order to define
decision theoretic planning problems, we need to add
support for probabilistic effects. The syntax for PPDDL

effects is [7] specified:

probabilistic p1 e1 p2 e2 . . . pk ek

meaning that effect ei occurs with probability pi. We

require that the constraints
k∑

i=1
pi = 1 are fulfilled: a prob-

abilistic effect declares an exhaustive set of probability-
weighted outcomes. For example, the effect (probabilistic
0.9 (compliant)) means that with probability 0.9 the
state variable compliant becomes true in the next state,
while with probability 0.1 the state remains unchanged.

V. Probabilistic Planning for Slice Assurance
We initialize the planning problem with the slices pre-

sented in Figure 1. The two premium slices have latency
and throughput violated with a goal being intent compli-
ance (throughput targets, spectrum efficiency). To study
the effects of changing priority, drop and partition share
changes on various metrics, the queue model from Figure
3 is simulated in JMT. The multi-class MVA in Algorithm
1 is used to estimate the changes in throughput, latency
and queue utilization with increase in traffic.

As presented in Figures 4 and 5, increase in user traffic
coupled with configuration changes such as priority or
partition share changes can affect services differently. We
elaborate further on the following:

– Figures 4 and 5 (a) showcase the increase in queue
utilization with increased traffic. We notice that the
partition share case causes quicker queuing bottle-
necks compared to priority.

– Figures 4 and 5 (b) showcase the throughput for
premium and normal slices, that would be affected by
the configurations and increased traffic (note the drop
in throughput of normal services). Higher throughput
is observed for premium services with partition share
change compared to priorities.

– Figures 4 and 5 (c) showcase the latency computed via
Mean value analysis with corresponding throughput.

The premium eMBB services receive higher throughput
(coupled with lower latency) due to higher priority and
partition shares. The values are used to populate the tran-
sition probabilities within probabilistic planners. Repeated
experiments may be conducted on changes in priorities or
partition sizes. Note that we assume high MCS index for
users throughout the slice.

Table II provides an output of the probabilistic PDDL
formulation. Lines 1–11 presents an example of the prob-
lem file that is with violated throughput and latency. As
further seen in Table II lines 13–25, a PPDDL domain
file with actions such as change in priority, drop rates
and partition shares. Probabilities may be generated using
Bayes rules from the queueing network models outputs
of Figures 4 and 5. The problem specification has values
for throughput/latency compliance and violation using the
probabilistic specification. The objective of the planner
would be to then maximize the probability of reaching the
goal state. To solve the probabilistic formulation, we make



(a)

(b)

(c)

Fig. 4. Priority configuration with resulting changes in (a) Queue Utilization (b) Service Throughput (c) Service Latency.

(a)

(b)

(c)

Fig. 5. Partition share configurations with resulting changes in (a) Queue Utilization (b) Service Throughput (c) Service Latency.

(topup_partition p1 ) + (latency_violated p1 ) (throughput_violated p1 )

(topup_partition p2 )

+ (throughput_compliant p1 ) (latency_compliant p1 ) (topup_partition p1 )

+ (latency_compliant p1 ) (throughput_violated p1 )

(topup_partition p1 )

+ (throughput_compliant p1 ) (latency_violated p1 )

+ (throughput_violated p2 ) (latency_violated p2 )

+ (latency_compliant p2 ) (throughput_compliant p2 ) (topup_partition p2 )

+ (throughput_violated p2 ) (latency_compliant p2 )

(topup_partition p2 )

+ (latency_violated p2 ) (throughput_compliant p2 )

+ (throughput_compliant p1 ) (latency_violated p1 )

+ (latency_compliant p1 ) (throughput_violated p1 )

+ (latency_compliant p1 ) (throughput_violated p1 )

+ (throughput_compliant p1 ) (latency_violated p1 )

+ (latency_violated p2 ) (throughput_compliant p2 )

+ (throughput_violated p2 ) (latency_compliant p2 )

+ (throughput_violated p2 ) (latency_compliant p2 )

+ (latency_violated p2 ) (throughput_compliant p2 )

Fig. 6. Probabilistic plan output for RAN slice assurance.

use of the safe planner [12], a planner that can handle
PPDDL formulation. An example of the probabilistic plan
is presented in Table II lines 27–33 providing the required
steps needed to reach the goal state.

As further illustrated in Figure 6, the latency and
throughput requirements are evaluated based on the ac-
tions taken such as topup partition. This process ensures
that the non-deterministic effects of changing RAN parti-

tion shares or priorities are included within the slice as-
surance models. Unlike deterministic planning techniques,
the probabilistic planning formulation takes into account
the uncertainty in actions.

VI. Related Work
AI Driven Slice assurance: As specified in [4], AI

techniques for 5G network slicing may be used for: (i)



TABLE II
Probabilistic PDDL Specification.

1 ; PDDL Problem file snippet
2 (: init
3 ( throughput_violated eMBB_premium_P1 n5 P1)
4 ( latency_violated eMBB_premium_P1 n5 P1)
5 ( throughput_violated eMBB_premium_P2 n5 P2)
6 ( latency_violated eMBB_premium_P2 n5 P2))
7
8 (: goal (and ( throughput_compliant eMBB_premium_P1 n5

P1 )
9 ( latency_compliant eMBB_premium_P1 n5 P1 )

10 ( throughput_compliant eMBB_premium_P2 n5 P2 )
11 ( latency_compliant eMBB_premium_P2 n5 P2 ))))
12
13 ; Probabilistic PDDL Domain file snippet
14 (: action change_partition_share
15 : parameters (? slice - slice ?band - G5_band ?

partition - partition )
16 : precondition
17 (and
18 ( throughput_violated ? slice ?band ? partition )
19 ( latency_violated ? slice ?band ? partition )
20 : effect
21 (and
22 ( probabilistic 0.67 ( throughput_violated ? slice

?band ? partition )
23 0.33 ( throughput_compliant ? slice ?band ?

partition ))
24 ( probabilistic 0.54 ( latency_violated ? slice ?

band ? partition )
25 0.46 ( latency_compliant ? slice ?band ?

partition ))))
26
27 ; Probabilistic Plan Output snippet
28 0 : {( topup_partition embb_premium_p1 n5 p1)}
29 1 : {( topup_partition embb_premium_p1 n5 p1)}
30 2 : {( topup_partition embb_premium_p1 n5 p1)}
31 3 : {( topup_partition embb_premium_p2 n5 p2)}
32 4 : {( topup_partition embb_premium_p2 n5 p2)}
33 5 : {( topup_partition embb_premium_p2 n5 p2)}
34
35 Compilation time: 0.082 s [65 domains ]

Demand Forecasting: learning user behavior; (ii) Infras-
tructure: learning how the underlying infrastructure re-
acts or limits elastic management; (iii) Requirements:
service descriptions that can be processed by the net-
work management functionality. In [5], a multi-objective
radio resource slice management technique is proposed,
which makes use of model-based reinforcement learning
techniques to dynamically modify PRB partitions. The
AI system is trained to meet multiple objectives such as
network slice Service Level Agreement (SLA) compliance,
spectrum usage efficiency and fairness among customer
classes. In [13], a PRB allocation method for Adaptive
RAN is proposed that can improve the communication
quality while reducing the information volume.

Queuing models for slicing: In [14], the transport net-
work slicing is modeled internal ingress and egress queues
within routers via a queuing model. The effects of changing
queue configuration with respect to priority, weights, flow
limits, and packet drops are studied in detail. This is
used to train a model-based Reinforcement Learning (RL)
algorithm to generate optimal policies for flow prioritiza-
tion, fairness, and congestion control. In [15] constraints
on user transmission rate quality of service (QoS) for
different kinds of slice SLAs in dynamic heterogeneous
RAN scenario with differentially covered RAN slicing.

AI planning techniques: The use of temporal plan-
ning techniques has been explored in [6] to jointly plan,
schedule and reconfigure robotic tasks in conjunction with

appropriate network slicing. In [12], Safe-Planner (SP),
an off-line non-deterministic planning algorithm based
on Fully Observable Non-Deterministic (FOND) planning
problems are proposed. However, these techniques have
not been applied to the RAN slicing problem space.

Praetorian: While research directions within slice
assurance have been attempting to use AI planning tech-
niques, the variability in changes in partitions, priorities
and drop rates have not been sufficiently explored. De-
tailed queuing models enable analysis of various scenarios
that may be fed into AI planners. In addition, the tech-
nique is applied to a real-world use case to demonstrate
the solution effectiveness.

VII. Conclusions
Effective slicing of the Radio Access Network is needed

to meet the differentiated service requirements of 5G.
However, the modeling of the slice configuration has
previously not taken the uncertainty in dynamic RAN
configurations into account. In this paper, we propose
Praetorian, a probabilistic framework for slice assur-
ance. Queueing model outputs are used to model the
probabilistic actions. Then, probabilistic planners are used
to determine the optimal plan to reconfigure RAN slices.
This process improves the resilience of slice assurance,
specially with multiple service priorities. The process is
demonstrated over a real mobile network use case.
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