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Abstract—The interpretation of Brain Computed Tomography
(CT) scans predominantly falls under the purview of special-
ized radiologists. However, given the challenges associated with
excessive workloads, human resource limitations, urgency in
emergency scenarios, and inconsistencies in outsourced inter-
pretations, the margin for diagnostic errors is substantial. To
ameliorate this issue, burgeoning research has been directed
towards the automatic synthesis of various medical diagnostic
reports. Contrary to conventional image captioning tasks, the
domain of medical report generation is fraught with inherent
biases, making it arduous to accurately extract features pertinent
to specific pathological lesions. Moreover, redundant descriptions
of normative areas further impede the precise delineation of
anomalies. To address these challenges, this paper introduces a
novel transformer architecture that synergizes lesion detection
algorithms with Fourier Transform techniques. Experimental
results indicate that our proposed model outperforms existing
combined-embedding models and exhibits enhanced performance
when applied to Fourier-transformed image data.

Index Terms—Automated Medical Reporting, Brain CT Scans,
Transformer Architecture, Fourier Transform, Lesion Detection

I. INTRODUCTION

Stroke is a significant medical condition, accounting for
the third leading cause of mortality in South Korea as of
2021. Specifically, cerebral hemorrhage is implicated in ap-
proximately 20% of these instances. The case fatality rate of
cerebral hemorrhage varies globally and regionally, ranging
from 30% to 50%, underscoring the urgency for accurate
diagnosis and timely intervention. Typically, cerebral hemor-
rhages are swiftly detected via non-invasive cranial computed
tomography (CT) scans. However, accurate interpretation of
these images mandates the expertise of specialized radiolo-
gists. The propensity for diagnostic errors exists, exacerbated
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by factors such as high workloads, personnel deficits, emergent
cases, and issues related to outsourced image interpretation. To
address these challenges, ongoing research in the domain of
medical artificial intelligence is aimed at automating medical
report generation, thus expediting its integration into clinical
workflows. Unlike conventional image captioning tasks in
artificial intelligence [1], medical report generation is com-
plicated by variances in imaging data. A pivotal challenge
involves the presence of data biases, both in imaging and
textual data [2], [3]. In the realm of CT scans, the fraction
of slides depicting lesions is minuscule compared to the total
image set. Additionally, these lesions are generally small in
dimension. Furthermore, brain structures are ontogenetically
similar across individual patients, often leading to model
training that is skewed towards these common patterns. As
a consequence, there is a significant challenge in feature
learning pertaining to the lesion itself. Textual data often
includes redundant descriptions of normal anatomical regions,
thereby constraining the model’s capacity to identify unique
pathological features. These intricacies compound the com-
plexities involved in processing unstructured data, accurate
lesion identification, and the generation of clinically relevant
sentences in medical reports. To tackle these issues, this
preliminary study introduces a novel computational approach.
The method involves cropping the lesion area in a CT scan
within a bounding box and then applying Fourier Transform
to this cropped region to re-domainize the image. This ap-
proach isolates the lesion characteristics, minimizes noise, and
reduces computational overhead during model training [4],
[5]. Subsequently, the Fourier-transformed image is used as
the input for a Vision Transformer (ViT) [6], integrated with
a Transformer’s decoder [7] to synthesize the radiological
report. The ViT’s proficiency in contextual feature capture



Fig. 1. Proposed Method

enhances the model’s capacity to learn key imaging attributes
[6]. Moreover, the Transformer algorithm, equipped with an
attention mechanism, is ideally suited for the task of report
generation, given its demonstrated efficacy in natural language
processing [7]. The contributions of this work encompass
the introduction of a new methodology for precise lesion
identification, efficient feature extraction, and the flexible
generation of medical text. This study initially focuses on em-
ploying Fourier-transformed cropped lesion images as training
data. However, future research will expand to include other
mathematical transformations, such as the Radon and Hough
Transforms, as alternative domains for feature extraction and
report synthesis.

II. RELATED WORK

Advancements in deep learning technologies have spurred
extensive research into their application for generating image
captions and medical reports. Specifically within the healthcare
sector, deciphering complex medical images and automatically
generating descriptive reports pose formidable challenges.
Among the myriad neural network architectures, the fusion
of encoder-decoder frameworks and attention mechanisms
has been particularly efficacious in advancing the field of
image captioning research [8]–[10]. These architectures are
extensively employed as robust techniques for extracting vi-
sual features from images and generating captions therefrom.
Notably, these strategies are instrumental in the generation of
medical reports. Numerous studies have advocated for the use
of CNN-RNN architectures to predict image tags and structure
reports accordingly [11]. Moreover, attempts to leverage pre-
trained language models like GPT-2 have been made to
condition the generation of reports [12]. This is facilitated by
introducing novel key and value weights that can be mapped
onto the decoder’s own attentional framework. However, con-
ventional image captioning methodologies often fall short
when applied to medical reporting, owing to distinct feature
disparities between general image data and medical imagery.
Consequently, specialized algorithms such as DeltaNet have

been investigated to produce more reliable reports via itera-
tive search-and-update mechanisms [13]. Building upon these
technological strides, considerable focus has been directed
towards medical image-to-verbal pretraining in recent years.
In this study, a holistic framework termed Vision-Language
Transformer (VLT) is introduced through diverse datasets [14],
serving as the foundation for various medical vision-language
pretraining (VLP) endeavors. To further enhance report qual-
ity, an innovative approach leveraging knowledge graphs is
proposed [15]. This approach aims to augment or update
pre-constructed graphs, thereby activating context-appropriate
knowledge coverage. Despite these advancements, formidable
challenges persist in medical report generation, particularly
concerning lesion identification accuracy and contextual text
generation comprehension. To mitigate these challenges, this
study proposes a novel methodology incorporating the Fourier
Transform results of cropped lesion-specific images into a
Vision Transformer (ViT) for feature learning [6], while em-
ploying the transformer’s decoder for text generation.

III. PROPOSED METHOD

In this paper, we propose a transformer model that combines
a lesion detection model and a Fourier transform to generate
readouts based on medical image data. In this session, we will
describe the proposed model in more detail, and the proposed
model is shown in Figure 1. For precise lesion identification
in medical image data, a lesion region detection model is used
to extract the coordinate values of the lesion. After that, the
extracted coordinate values are used to cut out the suspected
lesion area in the medical image data, and a Fourier transform
is applied to the cut image to convert the image into a new
domain. The transformer model is then trained to generate
appropriate readings for the medical image data. Session A
describes in more detail the feature detection model used for
precise lesion identification. Session B describes the image
encoder model for lesion feature extraction in more detail, and
Session C describes the proposed decoder model for report
generation in more detail.



A. Lesion Detection

The medical CT image data and the corresponding readout
data are organized as shown in (1) and (2). For medical CT
image data, there are multiple cross-sectional images inin one
case of CT image data I, as shown in (1). In the case of reading
text data, there is one caption data ycI for each case of image
data In as shown in (2).

I = [i1, i2, i3, ..., in] (1)

Y = [y1I , y
2
I , y

3
I , . . . , y

c
I ] (2)

In this paper, we use the YOLO [16] model to perform lesion
region detection. For more precise lesion identification, the CT
image data is cropped based on the coordinate values extracted
by the lesion region detection model (see (5)). The cropped
image is divided into low and high frequencies by Fourier
transform using (3). In (3), f(i, j) means image coordinate
values, and (k, l) means image coordinates resulting from
Fourier transform. N is the image size.

DTFT (.) =

N−1∑
i=0

N−1∑
j=0

f(i, j)e−i2π(
ki
N +

li
N ) (3)

eix = cosx+ i sinx (4)

(Ix, Iy) = Crop(I, fd(I, C)) (5)

Icf = DTFT (Ix, Iy) (6)

The final lesion detection model can be represented by
equation (6). The lesion detection model is used to extract
image training data for the readout generation model.

B. Image Encoder

To extract features from medical CT image data, we use
the ViT [6] model as an image encoder. ViT is a model that
applies a transformer to image classification. In this paper,
we extract the features of the Fourier transform image and
use them as input to the decoder for reading text generation
without using them for image classification. The cropped
Fourier transform image is divided into patches and linearly
projected and embedded in D dimensions. In this paper, we
fixed the number of dimensions to 64. We then prefix the
embedded patch with xclass, like a [class] token. Then we add
Positional embedding Epos to have the position information
of the images divided into patches. This is the final output of
the image encoder and serves as an image feature. Using the
basic transformer encoder structure, a multi-head self-attention
layer and a multi-layer perceptron layer are repeated. After
that, the nom layer is used before each block, and the residual
concatenation is used after every block. In this study 3 layers
were stacked. The overall behavior of the encoder is shown in
the following equation.

z0 = [xclass;x
1
pE;x2

pE; . . . ;xN
p E] + Epos,

E ∈ R(P 2)×D, Epos ∈ R(N+1)×D (7)

TABLE I
OVERALL CHARACTERISTICS OF DATA

Characteristics Values
Case count 202
Average age 62.97 ± 16.56
Male 144
Female 58
Slice thickness 3 (mm)
kVp 120 (keV)
SAH 156
SDH 120
IVH 70
Hemorrhage 85
EDH 44
Acute 99

z′l = MSA(LN(zl−1)) + zl−1, l = 1 . . . L (8)

zl = MLP (LN(z′l)) + z′l, l = 1 . . . L (9)

In (7), P refers to the size of the patch being split and is fixed
to 2 in this study.

C. Medical Report Generation Decoder

We propose a transformer model-based decoder for medical
report generation. The transcript caption data is subjected to
word embedding for data generation and each position infor-
mation is added to the embedded transcript data. Then, similar
to the conventional encoder-decoder, it performs masked self-
attention to avoid referring to the input value at a future point
in time. The extracted values are then used as the key and value
of the transformer model and passed on to the next multi-head
attendance. The overall decoder equation is as follows.

ye = WeY (10)

C1 = ye + PE(ye) (11)

C ′
l−1 = MultiHeadAtt([Cl−1, Cl−1, Cl−1]) (12)

Cl = FCN(MultiHeadAtt([zl, Cl−1, Cl−1]) (13)

In (10), We means the embedding weight value and ye
means the embedded caption value. In (11), PE performs the
process of embedding the position information of the caption
by position embedding.

IV. EXPERIMENT

A. Experimental setup

Dataset: Images of patients who visited KU Guro Hospital
from January 1, 2020 to December 31, 2022 and were diag-
nosed with cerebral hemorrhage through head and neck CT
scans. A total of 200 data were collected, and the character-
istics of the data are shown in Table I.



TABLE II
BLEU SCORE COMPARISON

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4

CNN+LSTM 0.17 0.303 0.0063 0.0015
ViT+Decoder
(w/o FT) 0.17 0.032 0.0069 0.0018

ViT+Decoder 0.17 0.034 0.0069 0.002

The data were collected along with the radiologist’s di-
agnosis of the disease. The readings and image data were
reviewed by a radiology data expert and used in the study
after preprocessing personal information. The research design
and data were approved by the Institutional Review Board
(IRB) of Guro Hospital, Korea University. (Approval number:
2020GR0452)

Fig. 2. Visualize the predictions of our proposed model

B. Result

Figure 2 visualizes the results of our proposed model. Figure
2 (a) shows a sample of head and neck CT image data. (b)
in Figure 2 shows a written reading of the head and neck CT
image data by a radiologist. In this study, we used this reading
as the correct answer. Figure 2 (c) shows the predicted reading
from our proposed model. The red text in Figure 2 shows
when the correct reading and the generated reading are the
same. This shows that the sentences are generated based on
the correct disease.

Table 2 compares the results between our proposed model
and other models. We use BLEU as the evaluation metric.
All experiments were conducted on the same dataset, and for
the proposed model, the ViT+Decoder model, the results were
compared using video data with and without Fourier transform.
Table 2 shows that the accuracy of the ViT+Decoder model

is higher than that of the CNN+LSTM model. It can also be
seen that the highest score is achieved when the proposed
model and Fourier transform image data are utilized. In the
case of reading texts, they are written by humans, and the
composition of the texts may be different for each author, and
the composition of the texts is complex. For this reason, the
BLEU score is not as high as that of a typical image captioning
model.

V. CONCLUSION

In this study, we demonstrated that our proposed model
outperforms existing composite embedding frameworks. We
also substantiated that the application of Fourier-transformed
image data yields higher levels of accuracy in comparison to
conventional image data. Although the present study mani-
fests promising outcomes, numerous avenues for enhancement
remain. As part of our future work, we posit that there are
multifaceted strategies to elevate the precision of caption
generations, including the acquisition of supplemental data
and the exploration of alternative datasets. Further research
is warranted to augment both the volume and quality of data,
as procuring more comprehensive and diverse medical datasets
will bolster the model’s robustness and generalizability. It is
anticipated that the employment of data augmentation tech-
niques can optimize the utilization of existing data pools and
refine the model’s training regimen. To glean a comprehensive
spectrum of image features, ensuing research will explore an
approach that generates high-quality captions by assimilating
various types of image data into the Vision Transformer
(ViT); this will include entire CT slides encapsulating cerebral
hemorrhage lesions, cropped lesion-specific images demar-
cated with bounding boxes, and images translated into various
domains such as Fourier, Radon, and Hough Transforms.
While BLEU scores serve as a prevalent metric for evaluating
captioning models, the inclusion of context, semantics, and
domain-specific accuracy is imperative in the medical field. As
such, we advocate for the formulation of a holistic evaluation
metric encompassing these variables. Future extensions of
this research could address a broader array of neurologi-
cal conditions, and additional model development targeting
ailments like stroke, brain tumors, and Alzheimer’s disease
could diversify the range of applicability of the proposed
methodology.

REFERENCES

[1] J. Li, D. Li, S. Savarese, and S. Hoi, “Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language
models,” arXiv preprint arXiv:2301.12597, 2023.

[2] M. Li, R. Liu, F. Wang, X. Chang, and X. Liang, “Auxiliary signal-
guided knowledge encoder-decoder for medical report generation,”
World Wide Web, vol. 26, no. 1, pp. 253–270, 2023.

[3] Y. Li, X. Liang, Z. Hu, and E. P. Xing, “Hybrid retrieval-generation
reinforced agent for medical image report generation,” Advances in
neural information processing systems, vol. 31, 2018.

[4] A. K. Bharodiya, “Feature extraction methods for ct-scan images using
image processing,” Computed-Tomography (CT) Scan, p. 63, 2022.

[5] H. S. Bhadauria and M. Dewal, “Efficient denoising technique for ct
images to enhance brain hemorrhage segmentation,” Journal of digital
imaging, vol. 25, pp. 782–791, 2012.



[6] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[8] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” Advances in neural information processing
systems, vol. 27, 2014.

[9] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence level train-
ing with recurrent neural networks,” arXiv preprint arXiv:1511.06732,
2015.

[10] Q. You, H. Jin, Z. Wang, C. Fang, and J. Luo, “Image captioning with
semantic attention,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 4651–4659.

[11] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A
neural image caption generator,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 3156–3164.

[12] Z. M. Ziegler, L. Melas-Kyriazi, S. Gehrmann, and A. M. Rush,
“Encoder-agnostic adaptation for conditional language generation,”
arXiv preprint arXiv:1908.06938, 2019.

[13] X. Wu, S. Yang, Z. Qiu, S. Ge, Y. Yan, X. Wu, Y. Zheng, S. K. Zhou, and
L. Xiao, “Deltanet: Conditional medical report generation for covid-19
diagnosis,” arXiv preprint arXiv:2211.13229, 2022.

[14] L. Xu, B. Liu, A. H. Khan, L. Fan, and X.-M. Wu, “Multi-modal
pre-training for medical vision-language understanding and genera-
tion: An empirical study with a new benchmark,” arXiv preprint
arXiv:2306.06494, 2023.

[15] M. Li, B. Lin, Z. Chen, H. Lin, X. Liang, and X. Chang, “Dynamic
graph enhanced contrastive learning for chest x-ray report generation,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 3334–3343.

[16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.


