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Abstract— This paper proposes improved adaptive integer 
form of population-based incremental learning and reactive tabu 
search (IAIPBIL-RTS) for an integrated energy supply and 
demand optimization framework in factories. The proposed 
IAIPBIL-RTS is applied to the production scheduling 
optimization problem, namely the primary problem of the 
demand side in factories. As a sub-problem, the optimal 
operational planning problem of energy plants of the supply side 
in factories is solved simultaneously. It is confirmed that 
production costs of a whole factory can be minimized, and the 
high-quality solution can be obtained when the proposed 
IAIPBIL-RTS based method is applied. 

Keywords— Optimal production scheduling, optimal operational 
planning of energy plants, carbon neutrality, hierarchical 
combinatorial optimization problem 

I. INTRODUCTION 

The Sustainable Development Goals, particularly Goals 7 
and 13, have driven global efforts towards achieving carbon 
neutrality [1]. In order to achieve carbon neutrality, it is 
necessary to reduce electricity consumption, which is one of the 
main sources of CO2 emissions. In 2020 in Japan, energy 
consumption in the manufacturing industry accounted for about 
42.2% of total energies in all sectors [2]. It represents the highest 
among all sectors. Therefore, energy reduction efforts in the 
manufacturing industry are crucial for achieving carbon 
neutrality. Furthermore, from a managerial perspective, it is 
crucial to reduce labor costs and energy purchase costs 
associated with operating factory production sites. 

Some medium or large-scale factories have energy plants 
consisting of turbo refrigerators, boilers, a heat storage tank, and 
so on. The energy plants efficiently supply electric power, steam, 
heat, and compressed air (namely tertiary energies) required for 
production facilities using electric power and gas (namely 
secondary energies) purchased from electricity and gas utilities. 

In factories, the energy plants convert secondary energies 
into tertiary energies and supplies them to the production 

facilities (see upper part of Fig. 1 [3]). In terms of determining 
energy purchase costs, hourly tertiary energy consumption, 
which is required to realize the determined production schedule, 
should be determined. Subsequently, the energy plants are 
operated for supplying the tertiary energies. Finally, the required 
hourly secondary energies are determined and the secondary 
energy purchase costs are determined (see the lower part of Fig. 
1). In other words, the hourly tertiary energies supplied by 
energy plants are determined by changing a production schedule. 

At the demand side of factories, optimization of production 
schedule is important to reduce labor costs, energy purchase 
costs, and CO2 emissions. Studies on the production scheduling 
optimization considering energy consumption or CO2 emissions 
have been conducted [4-6]. However, these studies utilized only 
ideal formulations such as job-shop and flow-shop scheduling 
problems. Therefore, these studies cannot be applied to actual 
factories. At the supply side of factories, studies on the optimal 
operational planning of energy plants have been conducted [7-
9]. However, these studies have utilized fixed energy demands 
such as electric power, heat energy, and steam energy. In other 

Fig. 1  A transition of energies from utilities to production equipment and the 
order of the energy costs determination in a factory [3]. 
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words, these studies do not consider variations of energy 
demands by changing a production schedule. 

Based on these backgrounds, the authors' previous study 
proposed the integrated supply and demand optimization 
framework for the production scheduling optimization problem 
(PSOP) and the optimal operational planning problem of energy 
plants (OOPPEPs), which simulate the actual supply-demand 
system [10]. The framework is hierarchical. PSOP is the primary 
problem and OOPPEPs is the sub-problem. The framework 
utilizes a production simulator [11], which can accurately 
reproduce PSOP. Therefore, it can be applied to actual factories. 

In the primary problem of the framework, the authors' 
previous research results have shown that the decision variables 
are “the order of production”, “the ratio of the number of 
produced products per line”, and “the production start time” 
[12]. Since these decision variables can be treated as discrete 
values, the primary problem can be treated as a combinatorial 
optimization problem. There are two effective solution methods 
for combinatorial optimization problems: exact solution and 
approximate solution techniques. Although exact solution 
techniques require large amount of computation time, it obtains 
an exact optimal solution. On the other hand, approximate 
solution techniques obtain a solution close to the optimal 
solution and requires less computation time. The primary 
problem requires a high-quality solution to be obtained in a 
short time considering actual factory operation needs. 
Therefore, the paper applies meta-heuristics, a type of 
approximate solution techniques. Previous researches have 
confirmed that the Integer form of Population Based 
Incremental Learning (IPBIL), which is one of meta-heuristics, 
has been effective for various combinatorial optimization 
problems [13,14]. The authors propose Improved Adaptive 
Integer form of Population Based Incremental Learning 
(IAIPBIL) method and applied IAIPBIL for the PSOP where 
the order of production is utilized as decision variables [10]. 
IAIPBIL has an improved adaptive function and it varies the 
learning rate during the search procedures. The simulation 
results confirmed that the IAIPBIL based method outperforms 
the comparative methods and reduces standard deviations of the 
solutions [10].  

As stated above, the optimal production schedule should be 
obtained in a short time. Actually, the factory production 
manager needs to generate the optimal production schedule 
several times during working hours. For example, the 
maximum time that can be spent on the optimal production 
scheduling per time is around four hours, namely, 14,400 
seconds. In the PSOP targeted in this study, it is required to 
execute a production simulator in order to evaluate the 
objective function values. Since executing the production 
simulator takes around 10 seconds, the maximum number of 
objective function evaluation is limited to around 1,500. 
Therefore, in this study, the maximum number of iterations and 
the number of individuals are set extremely smaller than those 
generally set in various IPBIL based applications. The feature 
leads the conventional IAIPBIL based method to weak 
intensification of the search. 

In the field of optimization, it is widely acknowledged that 
high-quality solutions often exist in the neighborhood of other 

high-quality solutions. The principle is called “Proximate 
Optimality Principle (POP)” [15]. Furthermore, to achieve 
efficient search, optimization methods generally require a 
balance between diversification and intensification. On the other 
hand, the intensification function of PBIL-based methods is not 
sufficient under conditions where the number of the objective 
function value evaluations is small. Therefore, for problems 
with a small number of these evaluations, IAIPBIL had room for 
improvement in the quality of the solutions. 

Generally, evolutionary computation techniques can 
efficiently obtain high-quality solutions by promoting 
diversification in the first half of the search and promoting 
intensification in the second half. To solve the problem of the 
comparative IAIPBIL method, it is effective to promote the 
diversification function using IAIPBIL in the first half of the 
search and to promote the intensification in the second half of 
the search. In order to promote the intensification of the search, 
neighboring search from high-quality solutions is effective 
based on the theory of POPs. Using the optimization methods, 
users can reduce the man-hours required for parameter tuning 
with the fewest number of parameters to be set in advance. There 
are several metaheuristics for combinatorial optimization 
problems. Among them, Reactive Tabu Search (RTS) has fewer 
parameters than other methods [16]. Moreover, RTS is one of 
neighboring search methods. Therefore, RTS is one of the 
appropriate candidates for promoting intensification. 

Considering the above issues, this paper proposes IAIPBIL-
RTS for PSOPs. The proposed method solves the challenge of 
improving quality of solutions by IAIPBIL based method [10] 
because it enhances intensification in the second half of the 
search. In this paper, the proposed method is applied to a PSOP, 
and effectiveness of the proposed method is verified with a 
PSOP of the actual machining process in an assembly and 
fabrication factory and a OOPPEPs [17]. The decision variable 
on the demand side is the order of production of products. The 
effectiveness of the proposed IAIPBIL-RTS based method is 
confirmed by comparing with the comparative RTS based 
method and IAIPBIL based method. 

II. THE INTEGRATED ENRGY SUPPLY AND DEMAND 

OPTIMIZATION FRAMEWORK 

An overview of the integrated supply and demand 
optimization framework [10] is shown in Fig. 2. The algorithmic 
procedure of this framework is also shown below. 

Step 1 In the primary problem, the optimal production 
scheduling sends the production parameters obtained 
by random numbers to the production simulator ((1) in 
Fig. 2). 

Step 2 In the primary problem, the production simulator 
obtains a production schedule based on the production 
parameters and calculate the tertiary energy load per 
hour using the obtained production schedule. Then, the 
simulator sends it to the sub-problem ((2) in Fig. 2). 

Step 3 In the sub-problem, the optimal operational planning 
of energy plants calculates the optimal secondary 
energy purchase costs of energy plants based on the 
tertiary energy load and sends it to the production 
simulator ((3) in Fig. 2). 



Step 4 In the primary problem, the production simulator 
calculates the objective function value based on the 
optimal secondary energy purchase costs of energy 
plants and the production schedule. Then, the 
simulator sends it to the optimal production scheduling 
((4) in Fig. 2). 

Step 5 In the primary problem, the optimal production 
scheduling updates the production parameters based 
on the objective function values ((5) in Fig. 2). 

Step 6 When the number of iterations reaches the maximum 
number of iterations, the procedure terminates. 
Otherwise, return to Step 2. 

As shown above, the framework solves the primary problem 
and the sub-problem alternately and obtains a high-quality 
solution considering PSOP and OOPPEPs. 

A. The Primary Problem 

In the primary problem, the actual production system of an 
assembly and processing plant with multiple production 
facilities and workers is modeled using a production simulator. 
The primary problem aims to generate a production schedule 
that minimizes the production cost index. This index is 
calculated based on factors such as labor cost obtained from 
labor man-hours, electric power purchase costs obtained from 
electric power consumption, and CO2 emission costs obtained 
from the purchased and generated electric power. 

(1) Decision variable 

 The decision variable is the order of production of the 𝑦th 
product at the 𝑥th production line. 

 𝑃௫௬  (𝑃௫௬ ∈ ℕ ∶  𝑥 = 1, … , 𝑁𝐿, 𝑦 = 1, … , 𝑁𝑃௫) 

where 𝑃௫௬  is the order of production of the 𝑦th product at the 
𝑥th production line, ℕ is a natural number. 𝑁𝐿 is the number 
of production lines. 𝑁𝑃௫ is the number of produced products 
at the 𝑥th production line. 

(2) Objective function 

A production cost index is calculated in the objective 
function with three indices (KPIs): productivity, energy 

efficiency, and environmental loads using the following 
equation: 

𝑚𝑖𝑛  𝛼ଵ × 𝑃(𝑃௫௬) + 𝛼ଶ × 𝐸(𝑃௫௬) + 𝛼ଷ × 𝐶(𝑃௫௬) 

+𝑃௢ௗ௥ + 𝑃௘௣௖     (1) 

𝑃(𝑃௫௬) =  
∑(ெ஼(௉ೣ ೤)ା௅஼(௉ೣ ೤))×௅்

ே௉
                                      (2) 

𝐸(𝑃௫௬) =  
∑{ா஼൫௉ೣ ೤൯ାீ (௉ೣ ೤)}×௅்

ே௉
                                      (3) 

𝐶(𝑃௫௬) =  
∑(஼஼൫௉ೣ ೤൯)×௅்

ே௉
                                                  (4) 

𝐿𝑇௫௬ = 𝑂𝑇௫௬ − 𝑆𝑇௫௬                                                       (5) 

      𝑃௢ௗ௥ = (100 − 𝐷𝑅)ଶ                                                      (6) 

𝑃௘௣௖ = ൫𝐸𝐶൫𝑃௫௬൯ − 𝐹𝑇൯ × 100   (𝐸𝐶(𝑃௫௬) > 𝐹𝑇)        (7) 

where 𝑃(𝑃௫௬) is the productivity KPI value calculated with 
𝑃௫௬ , 𝐸(𝑃௫௬) is the energy efficiency KPI value calculated 
with 𝑃௫௬ , 𝐶(𝑃௫௬)  is the environmental load KPI value 
calculated with 𝑃௫௬ , 𝛼ଵ , 𝛼ଶ , and 𝛼ଷ  are weighting 
coefficients ( 𝛼ଵ + 𝛼ଶ + 𝛼ଷ = 1 ), 𝑃௢ௗ௥  is a penalty value 
obtained by squaring the percentage of violations of on-time 
delivery rate constraints in the production schedule,  𝑃௘௣௖  is 
a penalty value calculated from electric power purchase 
costs and their thresholds, 𝑀𝐶(𝑃௫௬)  are material costs 
calculated with 𝑃௫௬ , 𝐿𝐶(𝑃௫௬) are labor costs calculated with 
𝑃௫௬ , 𝐿𝑇௫௬  is a load time interval of the 𝑦th product at the 𝑥th 
line, 𝑁𝑃  is the number of products, 𝐸𝐶൫𝑃௫௬൯  are electric 
power purchase costs calculated with 𝑃௫௬ , 𝐺𝐶൫𝑃௫௬൯ are gas 
purchase costs calculated with 𝑃௫௬ , 𝐶𝐶(𝑃௫௬)  are CO2 
emissions costs calculated with 𝑃௫௬ , 𝑂𝑇௫௬  is an operating 
time interval of the 𝑦th product at the 𝑥 th line, 𝑆𝑇௫௬  is a 
planned shutdown time interval of the 𝑦th product at the 𝑥th 
line, 𝐷𝑅 is on-time delivery rate in the production schedule, 
and 𝐹𝑇 is an electric power purchase cost threshold. 

The weighting coefficients can be set by users considering 
each production situation. 

(3) Constraints 

The constraints of the practical factory production system 
are modeled inside the production simulator, which is a black 
box. Therefore, they cannot be expressed with mathematical 
formulations. 

B. The Sub-problem 

Target energy plants using in the sub-problem is a model 
based on actual energy plants [17]. The energy plants supply 
electric power to an electric power load through gas turbine 
generators (GTGs) using purchased electric power and natural 
gas. The energy plants also supply steam to a steam load by 
generating steam using boilers and waste heat boilers of the 
GTGs. Furthermore, these energy plants supply heat to a heat 
load by supplying chilled water from steam absorption 
refrigerators (SRs) and turbo refrigerators (TRs) through a heat 
storage tank (HST). 

(1) Decision variables 

 
Fig. 2  An overview of the integrated demand and supply optimization 

framework [10]. 



The decision variables are the amount of hourly heat output 
of TR, the amount of hourly heat output of SR, and the amount 
of hourly gas consumed by GTG per day. The details of decision 
variables are shown below. 

𝑄௫௬
௧௥  (𝑄௫௬

௧௥ ∈ ℝ, 𝑥 = 1, ⋯ , 𝑋, 𝑦 = 1, ⋯ , 𝐸௧) 

where 𝑄௫௬
௧௥  is an amount of TR heat output of the 𝑦th unit at 

time 𝑥, ℝ is a real number, 𝑋 is target hours (= 24), and 𝐸௧ 
is the number of TRs. 

𝑄௫௬
௦௧  (𝑄௫௬

௦௧ ∈ ℝ, 𝑥 = 1, ⋯ , 𝑋, 𝑦 = 1, ⋯ , 𝐸௦) 

where 𝑄௫௬
௦௧  is an amount of SRs heat output of the 𝑦th unit at 

time 𝑥, 𝐸௦ is the number of SRs. 

𝑄௫௬
௚௧

 (𝑄௫௬
௚௧

∈ ℝ, 𝑥 = 1, ⋯ , 𝑋, 𝑦 = 1, ⋯ , 𝐸௚௧) 

where 𝑄௫௬
௚௧ is an amount of GTG gas output of the 𝑦th unit at 

time 𝑥, 𝐸௚௧ is the number of GTGs. 

(2) Objective function 

The objective function value is calculated by minimization 
of the secondary energy purchase costs calculated from the 
amount of electric power and natural gas purchased per day. 

𝑚𝑖𝑛   ∑ ቄ𝑢𝑝௫
ா௥𝑒௫ + 𝑢𝑝௫

ீ௥ ቀ∑ 𝑄௫௬
௚௧ா೒೟

௬ୀଵ + ∑ 𝑄௫௬
௕ா್

௬ୀଵ ቁቅ௑
௫ୀଵ   (8) 

where 𝑢𝑝௫
ா௥  is an electricity unit price at time 𝑥 , 𝑒௫  is an 

amount of electricity purchased at time 𝑥, 𝑢𝑝௫
ீ௥ is a natural 

gas unit price at time 𝑥, 𝐸௕  is the number of boilers, 𝑄௫௬
௕  is 

an amount of boiler gas output of the 𝑦th unit at time 𝑥. 

In the objective function, 𝑒௫  and 𝑄௫௬
௕  are dependent 

variables. Namely, 𝑒௫  can be calculated by an electric power 
load plus the amount of electric power input of TRs minus the 
amount of electric power output of GTGs. 𝑄௫௬

௕  can be calculated 
by a steam load plus the amount of steam input of SRs minus the 
amount of steam output of waste heat boilers of GTGs. 

(3) Constraints 

For simplicity, only the demand and supply balance and 
machine characteristic constraint items are listed below. For 
more details on each constraint, see Ref. [17]. 

a) Demand and supply balances: 
- Electric power balance   - Steam balance   - Heat balance 

b) machine characteristics: 
- TR   - SR   - GT   - Boiler   - Thermal storage 

III. THE PROPOSED IMPROVED ADAPTIVE INTEGER FORM OF 

POPULATION BASED INCREMENTAL LEARNING-REACTIVE 

TABU SEARCH AND ITS APPLICATION TO THE PRIMARY 

PROBLEM 

The proposed IAIPBIL-RTS method, which combines 
IAIPBIL [10] and RTS [16] methods, applies to IAIPBIL search 
during the initial phase and RTS search during the latter phase 
of the optimization process. By adopting the method, a well-
balanced search strategy including both diversification and 
intensification is achieved. The PSOP in this paper utilizes the 
production order of products as decision variables. Decision 

variables are combinations of different integer values ranging 
from 1 to the number of products. In other words, each integer 
value is appeared only once in the decision variables. Therefore, 
this paper utilizes an unused list of integer values in decision 
variables at line 𝑧 (𝐿௨௨௭) and an used list of integer values in 
decision variables at line 𝑧  ( 𝐿௨௭ ). Already selected integer 
values as decision variables are added in 𝐿௨௭ and removed from 
𝐿௨௨௭ , and a next decision variable is selected in 𝐿௨௨௭ . The 
algorithm of applying the proposed IAIPBIL-RTS to the 
primary problem is shown below in three parts. Each part is 
performed in this order and the final solution is obtained. 

(1) Initialization  

The algorithm for initialization is shown below. 

Step 1 Set the iteration number of IAIPBIL 𝑖𝑡𝑒𝑟ଵ to 1 and 
the iteration number of RTS 𝑖𝑡𝑒𝑟ଶ to 1. 

Step 2 Set 𝑧 = 1 , 𝐿௨௭ = {} , 𝐿௨௨௭ = {1, … , 𝑝௭}  where 𝑝௭ 
is the number of products in line 𝑧. 

Step 3 Initialize each element of the probability matrix 
with (9). 

𝑃௫௬௭
௜௧௘௥భ =

1

𝑝௭

 

(𝑥 = 1, ⋯ , 𝑝௭ , 𝑦 = 1, ⋯ , 𝑝௭ , 𝑧 = 1, ⋯ , 𝐿) (9) 

where 𝑃௫௬௭
௜௧௘௥భ  is probability value of the 𝑦 th 

possible order of production of product 𝑥 at line 𝑧 
at 𝑖𝑡𝑒𝑟ଵ,  𝐿 is total number of lines. 

Step 4 Set the individual number 𝑖𝑛 to 1 and the order of 
production 𝑦 to 1. 

(2) IAIPBIL part 

The algorithm of IAIPBIL part is shown below. 

Step 1 Determine the product 𝑥  for the order of 
production 𝑦 at line 𝑧 using the probability matrix 
𝑃௫௬௭

௜௧௘௥భ(𝑥 ∈ 𝐿௨௨௭). 

Step 2 Store the product 𝑥 of line 𝑧 determined in step 1 
into 𝐿௨௭  and remove the product 𝑥  of line 𝑧 
determined in step.1 from 𝐿௨௨௭. 

Step 3 If the order of production 𝑦 equals to 𝑝௭, go to Step 
4. Otherwise, return to Step 1 and the order of 
production 𝑦 is set to 𝑦 + 1. 

Step 4 If the individual number 𝑖𝑛  equals to 𝑁௜௡ௗ  , go to 
Step 5. Otherwise, the individual number 𝑖𝑛  is 
changed to 𝑖𝑛 + 1 and return to Step 1. 

Step 5 Update the learning rate using (10) and (11). 

ε௜௧௘௥భ =

⎩
⎪
⎨

⎪
⎧

୪୭୥ (ଵ க೔೙೔⁄ )×ா೎

(௜௠೔ೌ೔೛್೔೗)మ × 𝑖𝑡𝑒𝑟ଵ + ε௜௡௜   (𝑖𝑡𝑒𝑟ଵ < 𝑖௧)

−
୪୭୥ (ଵ க೔೙೔)×ா೎⁄

ଶ×(௜௠೔ೌ೔೛್೔೗)మ × (𝑖𝑡𝑒𝑟ଵ − 𝑖௧)

  +
୪୭୥ (ଵ க೔೙೔)×ா೎⁄

(௜௠೔ೌ೔೛್೔೗)మ × 𝑖௧ + ε௜௡ (𝑖𝑡𝑒𝑟ଵ ≥ 𝑖௧)

        

(10) 
𝑖௧ = 𝑅𝑈(𝑖𝑚௜௔௜௣௕௜௟ × 𝛽)                                    (11) 

where ε௜௧௘௥భ  is a learning rate when iteration is  
𝑖𝑡𝑒𝑟ଵ, ε௜௡௜ is an initial learning rate, 𝑖𝑚௜௔௜௣௕௜௟  is the 



maximum iteration number, 𝐸௖  is the number of 
column elements in the probability matrix, 𝑖௧  is a 
preset iteration when the learning rate begins to 
decrease, 𝑅𝑈() is the round-up function, and 𝛽 is a 
constant value. 

Step 6 Calculate an objective function value for each 
individual using the order of production obtained 
from Step 1 to Step 5, and the individual with the 
best value is selected as the best individual (𝐵𝐼). 

Step 7 Update the probability matrix using the learning 
rate updated in Step 5 and the decision variable of 
the best individual selected in Step 6 with (12). 

𝑃௫௬௭
௜௧௘௥భାଵ

= 𝑃௫௬௭
௜௧௘௥భ + ε௜௧௘௥భ  

(𝑥 = 1, ⋯ , 𝑝௭ , 𝑦 = 𝐵𝐼, 𝑧 = 1, ⋯ , 𝐿) (12) 

Step 8 Mutate the probability matrix according to the 
mutation probability (𝑀𝑈𝑇_𝑃) using (13). 

𝑃௫௬௭
௜௧௘௥భାଵ

= (1.0 − 𝑆) × 𝑃௫௬௭
௜௧௘௥భାଵ

+ 𝑅(0 𝑜𝑟 1) × 𝑆 

(𝑥 = 1, ⋯ , 𝑝௭ , 𝑦 = 1, ⋯ , 𝑝௭ , 𝑧 = 1, ⋯ , 𝐿) (13) 

Step 9 Normalize the probability matrix using (14). 

𝑃௫௬௭
௜௧௘௥భାଵ

=
𝑃௫௬௭

௜௧௘௥భାଵ

∑ 𝑃௫௬௭
௜௧௘௥భାଵ௣೥

௬ୀଵ

 

(𝑥 = 1, ⋯ , 𝑝௭ , 𝑦 = 1, ⋯ , 𝑝௭ , 𝑧 = 1, ⋯ , 𝐿) (14) 

Step 10 If the line number 𝑧  equals to 𝐿 , go to Step 11. 
Otherwise, line number 𝑧 is changed to 𝑧 + 1 and 
return to Step 1. 

Step 11 If 𝑖𝑡𝑒𝑟ଵ  equals to 𝑖𝑚௜௜௔௣௕௜௟  , the best order of 
production in the search is saved as  𝐼𝐴𝐼𝑃𝐵𝐼𝐿௕௘௦௧  
and go to the RTS part. Otherwise, 𝑖𝑡𝑒𝑟ଵ is changed 
to 𝑖𝑡𝑒𝑟ଵ + 1 and return to Step 1. 

(3) RTS part 

The algorithm of RTS part is shown below. 

Step 1 Set an initial solution as 𝐼𝐴𝐼𝑃𝐵𝐼𝐿௕௘௦௧ . 

Step 2 Generate 𝑁௡௘௜௚௛௕௢௥  candidates order of production 
of the current solution by generating neighboring 
order of production. 

Step 3 Evaluate the production cost of each candidate 
order of production. 

Step 4 Determine whether the order of production 
violates tabu conditions or not. 

Step 5 Select the best order of production that does not 
violate tabu conditions. 

Step 6 If the selected order of production is searched 
again within a fixed iteration, or the selected 
solution is already searched, expand the length of 
the tabu list. 

Step 7 If the length of the tabu list is not adjusted for a 
longer iteration than a moving average of the 
iteration until the searched order of production are 
appeared again, shorten the length of the tabu list. 

Step 8 When 𝑖𝑡𝑒𝑟ଶ  equals to 𝑖𝑚௥௧௦ , the best order of 
production and the best schedule in the search is 

output and the search is terminated. Otherwise, set  
𝑖𝑡𝑒𝑟ଶ to 𝑖𝑡𝑒𝑟ଶ + 1 and return to Step 2. 

IV. SIMULATIONS 

A. Simulation Conditions 

The primary problem models some production processes in 
an actual assembly and processing factory. Specifically, the 
problem is to determine the processing order of product models 
(16 variables) for eight types of products in two lines. The sub-
problem is the optimization benchmark problem of OOPPEPs 
[17]. Since the sub-problem can be formulated as a linear 
programming problem, the linear programming package is 
utilized. Using the comparative IAIPBIL method (the 
comparative method 1 [10]), RTS method (the comparative 
method 2), and the proposed IAIPBIL-RTS method (the 
proposed method), for the primary problem, the production costs 
are compared. 

The common parameters, parameters of the proposed and the 
comparative methods are shown below. These parameters are 
determined by pre-simulations. The number of objective 
function evaluations for the comparative method and the 
proposed method is set to be the same for fair comparison. 

1) Common parameters:  
The number of trials: 30, 𝛼ଵ, 𝛼ଶ, 𝛼ଷ: 0.333 each, 𝑝௭: 8, 𝐿: 2 

2) A parameter of the proposed method and the comparative 
method 1: 
elements of the initial probability matrix: 1/6 each, 𝜀௜௡௜: 0.1, 
𝑀𝑈𝑇_𝑃: 0.02, 𝑆: 0.02, 𝛽: 0.8, 𝑁௡௘௜௚௛௕௢௥: 50 

3) A parameter of the comparative method 1:  
𝑖𝑚௜௔௜௣௕௜௟: 30 

4) A parameter of the comparative method 2: 
𝑖𝑚௥௧௦: 30, 𝑁௜௡ௗ: 50 

5) Parameters of the proposed method: 
𝑖𝑚௜௔௜௣௕௜௟: 10, 15, 20, 24, 𝑖𝑚௥௧௦: 20, 15, 10, 6 

Simulation softwares are developed using C language (Microsoft 

Visual studio 2019 Visual C++)，C# (Microsoft Visual studio 

2019 Visual C#), Microsoft SQL Server 2016, and GLPK 
(VS2012 ARM Cross Tools Command Prompt) on an Intel core 
i9-10980XE (3.00GHz) PC. 

B. Simulation Results 

Table 1 shows comparison of average and standard deviation 
values of objective function and the number of minimum 
solution obtained through 30 trials by the proposed method and 
the comparative methods, and a result of a statistical test with a 
p-value using the Friedman test. Normality of the simulation 
results is not confirmed by D'Agostino and Pearson, and 
Anderson and Darling tests. Therefore, the Friedman test is 
applied. The average value of the objective function value by the 
proposed method (𝑖𝑚௜௔௜௣௕௜௟ = 15, 20) is lower than the value by 
the comparative methods. The standard deviation value of the 
objective function value by the proposed method (𝑖𝑚௜௔௜௣௕௜௟ =
15) is lower than those values by the comparative methods. In 
the number of the minimum solution obtained, the number by 
the comparative method 1 is two, and the number by the 



comparative method 2 is zero. Namely, the comparative method 
2 cannot obtained the minimum solution. On the other hand, the 
proposed method (𝑖𝑚௜௔௜௣௕௜௟ = 20) can obtained it 6 times. It 
indicates that the neighborhood search by RTS in the proposed 
method can obtain more minimum solutions than the 
comparative method 1. There is a significant difference among 
the three methods with 0.05 significant level because p-value is 
4.91E-05 as shown in the table. As a post hoc test, the 
Wilcoxon's signed rank tests between two methods are 
performed with correction for p-values by Holm method. From 
results of the test, the proposed method is confirmed to be more 
significant than the comparative methods. 

Figure 3 shows comparison of an initial production schedule 
and the optimal production schedule by the proposed method. 
In the initial production schedule, many products are produced 
at the over work time intervals and higher electricity unit 
purchase price time intervals. Therefore, labor costs and electric 
power purchase costs become high. On the other hand, in the 
best production schedule by the proposed method, production 
time at over time work intervals and higher electricity unit 
purchase price time intervals is shorter than the time of the 
initial production schedule. Therefore, labor costs and electric 
power purchase costs can be reduced effectively. 

V. CONCLUSIONS 

This paper proposes IAIPBIL-RTS for a PSOP. The 
proposed method solves the challenge of improving quality of 
solutions by IAIPBIL based method because it can enhance 
intensification in the second half of the search. Effectiveness of 
the proposed method is verified with a PSOP of the actual 
machining process in an assembly and fabrication factory and 

OOPPEPs. It is confirmed that the proposed method can 
generate high-quality solutions and can reduce the production 
costs. 

As future works, more effective metaheuristic and 
evolutionary computation methods are investigated for PSOPs 
of various discrete manufacturing industries. 
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(a) An initial production schedule. 

(b) The optimal production schedule. 

Fig. 3. Comparison of an initial production schedule and  
the optimal production schedule by the proposed method.  
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TABLE I.  AVERAGE AND STANDARD DEVIATION VALUES OF 
OBJECTIVE FUNCTION, THE  NUMBER OF MINIMUM SOLUTION OBTAINED BY 
THE PROPOSED AND THE COMPARATIVE METHODS, AND A RESULT OF A 
STATISTICAL TEST WITH A P-VALUE USING THE FRIEDMAN TEST.  

Method 𝒊𝒎𝒊𝒂𝒊𝒑𝒃𝒊𝒍 Ave. Std. 
Num. of Min. 

obtained 
p-value 

The proposed 
method 

10 2536.014 30.344 3 

4.91E-05 

15 2521.930 27.915 4 

20 2519.220 30.202 6 
The comparative 

method 1 [10] 
30 2522.179 30.194 2 

The comparative 
method 2 

0 2575.742 57.690 0 

 


